
240978-1-5090-4749-9/17/$31.00 ©2017 IEEE ICUFN 2017

Performance of Deep Learning Computation with
TensorFlow Software Library in GPU-Capable

Multi-Core Computing Platforms

Young Jong Mo†, Joongheon Kim‡, Jong-Kook Kim∗, Aziz Mohaisen�, and Woojoo Lee§
†‡School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

∗School of Electrical Engineering, Korea University, Seoul, Republic of Korea
�Department of Computer Science and Engineering, State University of New York at Buffalo (SUNY Buffalo), NY, USA

§Department of Electronic Engineering, Myongji University, Yongin, Republic of Korea
E-mails: dudwhd93@naver.com, joongheon@cau.ac.kr, jongkook@korea.ac.kr, mohaisen@buffalo.edu,

spacelee@mju.ac.kr

Abstract—In this paper we measure and verify the perfor-
mance improvements in deep learning computation under the
support of GPU-enabled multi-core parallel computing plat-
forms. To measure the performance practically, we built our
own computing platforms using a GPU hardware (1152 cores)
and the TensorFlow software library. In order to evaluate
the performance with GPU, we conducted the deep learning
computation with various numbers of hidden layers in multilayer
perceptron. As presented in the comparative performance results,
utilizing GPU hardware improved the performance in terms of
computation time (about 3 times or even more).

I. INTRODUCTION

Recently, deep learning algorithms and their applications
have received a lot of attention from both academia and the
industry. Along with the advancing deep learning algorithms
suited for real-world complex problems, computing platforms
have evolved, too. For example, processing units (both of
central processing unit (CPU) and graphics processing unit
(GPU)) are becoming faster and are increasingly upgraded,
every single day [4], [5]. To make use of such an evolution,
various software packages and libraries have been imple-
mented, including TensorFlow, a major software library imple-
mented by Google Brain Team [1]–[3]. The evolution in both
software and hardware is promising to make deep learning
computations not only performance-relevant but feasible.

With the potential of applying deep learning on advanced
hardware architectures, in this paper we sit out to answer
the question of “how much the multi-core GPU hardware
improve the performance of deep learning computation in
terms of computation speed”. To answer this question, we
built our own computing platforms with an Intel i5 CPU and
a NVIDIA GeForce GTX 1060 3GB (with 1152 cores). Using
this platform, we ported and operated deep learning algorithms
for the MNIST data set classification. We observe multifold
performance improvements with GPU multi-core computing
platforms while changing the number of layers in multilayer
perceptron. Finally, we can observe the performance gap be-
tween (i) CPU-enabled and GPU-disabled computing and (ii)

𝑥𝑥𝑀𝑀

𝑥𝑥1

𝑥𝑥2 𝑦𝑦1

Input

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑀𝑀
…

Output

Fig. 1. Neuron – a computational element of artificial neural networks.

CPU-enabled and GPU-enabled computing. As presented in
performance evaluation results (section III), the GPU-enabled
platform achieves about 3 times better performance than the
GPU-disabled platform.

The rest of this paper is organized as follows. In section II,
multilayer perceptron, a fundamental concept of deep learning
technique, is introduced. In section III, the performance results
measured at various layers in multilayer perceptron and var-
ious hardware configuration are presented. In section IV we
sum up with concluding remarks.

II. MULTILAYER PERCEPTRON

An artificial neural network (ANN) is defined as an inter-
connected network of simple computational elements, where
the elements are named neurons. The architecture of ANN
is as illustrated in Fig. 1. As presented in this figure, the
input to a neuron consists of a number of values, namely
x1, · · · , xM , while the output is a single value y1. Both the
input and the output values are continuous values, usually
in the range of (0, 1). In this ANN, a neuron does the
following: (i) it computes the weighted summation of its
inputs x1, · · · , xM , where the weights are w1, · · · , wM , (ii)
it subtracts a predefined threshold T , and (iii) it outputs the
result into a nonlinear function f , e.g., a sigmoid function

241241

Performance of Deep Learning Computation with
TensorFlow Software Library in GPU-Capable

Multi-Core Computing Platforms

Young Jong Mo†, Joongheon Kim‡, Jong-Kook Kim∗, Aziz Mohaisen�, and Woojoo Lee§
†‡School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

∗School of Electrical Engineering, Korea University, Seoul, Republic of Korea
�Department of Computer Science and Engineering, State University of New York at Buffalo (SUNY Buffalo), NY, USA

§Department of Electronic Engineering, Myongji University, Yongin, Republic of Korea
E-mails: dudwhd93@naver.com, joongheon@cau.ac.kr, jongkook@korea.ac.kr, mohaisen@buffalo.edu,

spacelee@mju.ac.kr

Abstract—In this paper we measure and verify the perfor-
mance improvements in deep learning computation under the
support of GPU-enabled multi-core parallel computing plat-
forms. To measure the performance practically, we built our
own computing platforms using a GPU hardware (1152 cores)
and the TensorFlow software library. In order to evaluate
the performance with GPU, we conducted the deep learning
computation with various numbers of hidden layers in multilayer
perceptron. As presented in the comparative performance results,
utilizing GPU hardware improved the performance in terms of
computation time (about 3 times or even more).

I. INTRODUCTION

Recently, deep learning algorithms and their applications
have received a lot of attention from both academia and the
industry. Along with the advancing deep learning algorithms
suited for real-world complex problems, computing platforms
have evolved, too. For example, processing units (both of
central processing unit (CPU) and graphics processing unit
(GPU)) are becoming faster and are increasingly upgraded,
every single day [4], [5]. To make use of such an evolution,
various software packages and libraries have been imple-
mented, including TensorFlow, a major software library imple-
mented by Google Brain Team [1]–[3]. The evolution in both
software and hardware is promising to make deep learning
computations not only performance-relevant but feasible.

With the potential of applying deep learning on advanced
hardware architectures, in this paper we sit out to answer
the question of “how much the multi-core GPU hardware
improve the performance of deep learning computation in
terms of computation speed”. To answer this question, we
built our own computing platforms with an Intel i5 CPU and
a NVIDIA GeForce GTX 1060 3GB (with 1152 cores). Using
this platform, we ported and operated deep learning algorithms
for the MNIST data set classification. We observe multifold
performance improvements with GPU multi-core computing
platforms while changing the number of layers in multilayer
perceptron. Finally, we can observe the performance gap be-
tween (i) CPU-enabled and GPU-disabled computing and (ii)

𝑥𝑥𝑀𝑀

𝑥𝑥1

𝑥𝑥2 𝑦𝑦1

Input

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑀𝑀
…

Output

Fig. 1. Neuron – a computational element of artificial neural networks.

CPU-enabled and GPU-enabled computing. As presented in
performance evaluation results (section III), the GPU-enabled
platform achieves about 3 times better performance than the
GPU-disabled platform.

The rest of this paper is organized as follows. In section II,
multilayer perceptron, a fundamental concept of deep learning
technique, is introduced. In section III, the performance results
measured at various layers in multilayer perceptron and var-
ious hardware configuration are presented. In section IV we
sum up with concluding remarks.

II. MULTILAYER PERCEPTRON

An artificial neural network (ANN) is defined as an inter-
connected network of simple computational elements, where
the elements are named neurons. The architecture of ANN
is as illustrated in Fig. 1. As presented in this figure, the
input to a neuron consists of a number of values, namely
x1, · · · , xM , while the output is a single value y1. Both the
input and the output values are continuous values, usually
in the range of (0, 1). In this ANN, a neuron does the
following: (i) it computes the weighted summation of its
inputs x1, · · · , xM , where the weights are w1, · · · , wM , (ii)
it subtracts a predefined threshold T , and (iii) it outputs the
result into a nonlinear function f , e.g., a sigmoid function

𝑥𝑥𝑀𝑀

𝑥𝑥1

𝑥𝑥2
……

……
…… …… 𝑦𝑦𝑁𝑁

𝑦𝑦1

𝑦𝑦2

…

…

…

Input Layer Output LayerHidden Layer

……

Fig. 2. A conceptual diagram for multilayer perceptron.

S(t), which is defined as follows:

S(t) =
1

1 + e−t
. (1)

Therefore, the neuron in an ANN computes the following:

y1 = f

(
M∑
i=1

wixi − T

)
. (2)

The outputs of some neurons are connected to the inputs
of other neurons. In a multi-layer perceptron architecture,
neurons are grouped into distinct layers as presented in Fig. 2.
The outputs of each of those layer are connected to inputs in
the following layers. The inputs of the first layer (input layer)
are the inputs to the network, whereas the outputs of the last
layer form the output of the network.

By optimizing the weights and thresholds for all nodes in the
multilayer perceptron networks, the network can represent a
wide range of classification functions. Optimizing the weights
can be conducted by a supervised learning process, where the
network learns from a large number of samples. The samples
are usually provided one at a time. For each sample, the
actual vector is computed and compared to the desired output.
After this procedure, weights and thresholds are adjusted,
proportional to their contribution to the error made at the
respective output. One of the most widely used methods to
achieve that is the back-propagation method (which works in
an iterative manner), where the errors are propagated into the
lower layers, to be used for the adaptation of weights. The
error in this context is defined as the difference between the
desired output and the actual output of the ANN.

When the number of layers in multilayer perceptron is large,
the ANN setup is called deep-learning computation. For a long
time, deep learning, while feasible as a concept, was not prac-
tically possible for its high computational requirements and
the lack of the proper hardware to match such requirements.
More recently, however, and thanks to the advanced hardware
technologies such as general purpose GPU (GPGPU) multi-
core computing, deep learning has been realized.

CPU (Intel i5)
• Intel i5-2500 CPU @

3.30GHz 3.60GHz

GPU (GeForce GTX 1060)
• # Cores: 1152
• Memory: 3GB GDDR5

CPU
Only

CPU+
GPU

Memory

TensorFlow Software
Library Setting

• CPU-Only
• CPU+GPU

GPU-Capable Multi-Core Computing Platform

Operating System (OS)
• Windows 10 Pro

Applications
• MNIST data set

classification with
Multilayer Perceptron

Fig. 3. A reference multi-core system model

TABLE I
SPECIFICATION OF MULTI-CORE COMPUTING PLATFORMS.

System Specification

CPU Intel(R) Core(TM) i5-2500 CPU@3.30GHz
• RAM: 8GB

GPU

NVIDIA GeForce GTX 1060 3GB
• Built-In Memory: 3GB
• NVIDIA CUDA Cores: 1152
• Memory: 3GB GDDR5
• Memory Speed: 8Gbps

Software
OS: Windows 10 Pro (64 bits)
• TensorFlow Version: tensorflow-gpu-1.0.1
• CUDA Version: cuda 8.0.61
• CuDNN Version: cuDNN v5.1 (Jan 20, 2017)

More details on multilayer perceptron are in [6].

III. A PERFORMANCE COMPARISON STUDY

This performance comparison study is present in this sec-
tion. Namely, in the following, we outline the GPU-capable
computing platform specification (section III-A) and the de-
tailed performance comparison results (section III-B).

A. GPU-Capable Computing Platform Specification

The multi-core computing platform used in this study for
the performance evaluation of deep learning is illustrated in
Fig. 3. In addition, the detailed specifications of each of the
components listed in this figure are shown in Table I.

B. Performance Comparison Details

To evaluate the performance boast due advanced hardware,
we used the MNIST data set as an input to the multilayer
perceptron based learning in order to conduct classification.
In order to observe the performance difference between
computations with CPU (referred to as CPU-only) and and
computations with CPU and GPU (referred to as CPU+GPU),
the number of layers is fixed to 4, 6, 8, and 10.

To measure the multilayer perceptron computation speed
across the two hardware settings, we conducted 50 experiment
iterations. For each iteration, we measured the computation

242242

TABLE II
AVERAGE TIME FOR MULTILAYER PERCEPTRON COMPUTATION

Numbers of CPU-only CPU+GPU Performance
Layers (Unit: Sec.) (Unit: Sec.) Gap

4 83.7599790 28.83337065 2.90
6 104.9254136 32.12257901 3.27
8 145.0726396 39.76726586 3.65

10 151.6537407 44.31995752 3.42

TABLE III
VARIANCES IN MULTILAYER PERCEPTRON COMPUTATION

Numbers of CPU-only CPU+GPU Performance
Layers (Unit: Sec.) (Unit: Sec.) Gap

4 (min) 82.0042253 28.41898632 2.89
6 (min) 103.0235872 31.82259274 3.24
8 (min) 139.7174885 39.22879481 3.56

10 (min) 150.0382178 43.60450292 3.44

4 (Max) 85.9771371 29.34874034 2.93
6 (Max) 116.2098830 33.40200472 3.48
8 (Max) 150.8112738 40.87909937 3.69

10 (Max) 154.2534342 46.08502030 3.35

speed with various numbers of layers in the CPU-only mode
and CPU+GPU settings. The measurement results are listed
in Table II, Table III, and Table IV.

In Table II, the average computation speeds of 50 ex-
periment iterations with various numbers of layers in the
CPU-only mode and the CPU+GPU mode are presented. In
Table II, the performance gap, which captures the performance
difference between the CPU-only mode and the CPU+GPU
mode is presented. This gap is calculated as follows:

Performance Gap =
α

β
, (3)

where α and β are the computation speed with CPU-only and
the computation speed with CPU+GPU, respectively.

As observed in the average computation speed comparison
in Table II, we notice that CPU+GPU is 2.90 − 3.65 times
faster than that of the CPU-only in executing the same task.

In Table III, the fastest and slowest computation speed cases
among the 50 experiment iterations are obtained with various
numbers of layers in the CPU-only mode and CPU+GPU
mode, respectively. In Table III, the performance gap between
the two cases of hardware setups is calculated as before, where
the gap is shown to be 2.89− 3.56 and 2.93− 3.69 times.

As in Table II and Table III, the performance gap is smallest
when the number of layers is minimum (i.e., 4 in this study).
This is, the gap grows as the number of layers grows.

In Table IV, the differences between the fastest and slowest
computation speed cases among the 50 experiment iterations
are obtained with various numbers of layers in the CPU-only

TABLE IV
STABILITY ON PERFORMANCE

Numbers of CPU-only CPU+GPU
Layers (Unit: Sec.) (Unit: Sec.)

4 3.97291184 0.92975402
6 13.18629575 1.579411983
8 11.09378529 1.650304556

10 4.215216398 2.480517387

mode and the CPU+GPU mode. As observed in Table IV, the
CPU-only mode computation shows a larger variance (3.97−
13.19) than the CPU+GPU mode computation (which had
0.93− 2.48).

IV. CONCLUDING REMARKS AND FUTURE WORK

This paper verifies the performance improvements with
GPU-enabled platforms for deep learning computation in
terms of computation speed. In order to verify the performance
with real-world platforms, we implemented the MNIST data
classification using the multilayer perceptron. In addition, we
used TensorFlow software library and GPU-enabled platforms
(with 1152 cores) to understand the performance boast as
compared to CPU-only computations. The performance evalu-
ation was conducted while changing the number of layers, i.e.,
4, 6, 8, and 10, and as presented in performance evaluation
results, the GPU-enabled platform delivers about 3 times better
performance (in term of speed of computations) than that
of the CPU-only settings. Moreover, the performance with
GPU-enabled platform shows lower variances among the 50
iterations, which verifies that the GPU-enabled computing is
more stable.

As a future research direction, we will consider various
algorithms and applications of deep learning in order to
measure the performance improvements with GPU-enabled
computing platforms.

ACKNOWLEDGEMENT

Joongheon Kim is a corresponding author of this paper.
This work was supported by National Research Foundation
of Korea (NRF Korea) under Grant 2016R1C1B1015406.

REFERENCES

[1] P. Louridas and C. Ebert, “Machine Learning,” IEEE Software,
33(5):110–115, September-October 2016.

[2] S. Lim and J. H. Yang, “Driver State Estimation by Convolutional Neural
Network using Multimodal Sensor Data,” IET Electronics Letters, vol.
52, no. 17, pp. 1495–1497, August 2016.

[3] L. Sánchez, J. Otero, I. Couso, and C. Blanco, “Battery Diagnosis for
Electrical Vehicles through Semi-Physical Fuzzy Models,” in Proc. of
the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Vancouver, Canada, 24 - 29 July 2016.

[4] H. Jeon, W. H. Lee, and S. W. Chung, “Load Unbalancing Strategy for
Multi-Core Embedded Processors,” IEEE Transactions on Computers,
vol. 59, no. 10, pp. 1434-1440, October 2010.

[5] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing on GPUs: Where
are the bottlenecks?,” in Proc. of the IEEE International Symposium on
Workload Characterization (IISWC), Raleigh, NC, October 2014.

[6] S. K. Pal and S. Mitra, “Multilayer Perceptron, Fuzzy Sets, and
Classification,” IEEE Transactions on Neural Networks, vol. 3, no. 5,
pp. 683–697, September 1992.

