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Abstract—Social network-based Sybil defenses exploit the al-
gorithmic properties of social graphs to infer the extent to which
an arbitrary node in such a graph should be trusted. However,
these systems do not consider the different amounts of trust
represented by different graphs, and different levels of trust
between nodes, though trust is being a crucial requirement in
these systems. For instance, co-authors in an academic collabo-
ration graph are trusted in a different manner than social friends.
Furthermore, some social friends are more trusted than others.
However, previous designs for social network-based Sybil defenses
have not considered the inherent trust properties of the graphs
they use. In this paper we introduce several designs to tune
the performance of Sybil defenses by accounting for differential
trust in social graphs and modeling these trust values by biasing
random walks performed on these graphs. Surprisingly, we find
that the cost function, the required length of random walks to
accept all honest nodes with overwhelming probability, is much
greater in graphs with high trust values, such as co-author
graphs, than in graphs with low trust values such as online social
networks. We show that this behavior is due to the community
structure in high-trust graphs, requiring longer walk to traverse
multiple communities. Furthermore, we show that our proposed
designs to account for trust, while increase the cost function of
graphs with low trust value, decrease the advantage of attacker.

I. INTRODUCTION

The Sybil attack is a well-known and powerful attack in
distributed systems, such as sensor networks and peer-to-peer
systems. In the basic form of this attack, a peer representing
the attacker generates as many identities as she can and acts
as if she is multiple peers in the system, which are then
utilized to influence the behavior of the system [1]. The
number of identities that an attacker can generate depends
on the attacker’s resources such as bandwidth, memory, and
computational power. With the sharp hardware growth—in
terms of storage and processing capacities—and the popularity
of broadband Internet, even an attacker who uses “commodity”
hardware can cause a substantial harm to large systems.

Despite being known for long time, this attack lacked
technical defenses and many papers have reported its existence
without suggesting any defense while many proposed defenses
are limited in many aspects [2]. The majority of defenses
proposed in literature to defend against, limit, or mitigate the
Sybil attack can be classified into centralized defenses and
decentralized defenses. In the centralized defenses (e.g., [1],
[3], [4], [5]), a centralized authority is responsible for verifying
the identity of every user in the systems. Because they depend
on a centralized authority, these defenses are ruled out in
many distributed settings. On the other hand, the decentralized

defenses (e.g., [6], [7], [8], [9]) utilize collaborative and
distributed approaches to bind credentials to the identities of
peers, and verify the peers authenticity.

A recent class of the decentralized defenses uses social
networks, where peers in the network are not merely com-
putational entities—the human users behind them are tied to
each other to construct a social network. The social network
is then used for bootstrapping the security and detecting
Sybils under two assumptions: algorithmic and sociological.
The algorithmic assumption is the existence of a “sparse cut
between the Sybil and non-Sybil subgraphs” in the social
network, which implies a limited number of attacker edges;
edges between Sybil and non-Sybil nodes. The sociological
assumption is a constraint on the trust in the underlying
social graph: the social graph used in these defenses needs
to exhibit strong trust as evidenced, for example, by face-
to-face interaction demonstrating social actors’ knowledge of
each other [9], [10]. While the first assumption has been
recently questioned in [11], where it is shown that even honest
subgraphs may have cuts that disrupt the algorithmic property,
the trust—though being a crucial requirement for these designs
to perform well—was not considered carefully. Even worse,
many of these defenses [9], [10], [12], [13]—when verified
against real-world social networks—have considered samples
of online social graphs, which are known to possess weaker
value of social trust.

We have recently measured the mixing time, a concrete
measure of the algorithmic property required in social net-
works, in [14], and demonstrated that it is greater than the
values used in literature. Also, we pointed out that social
graphs with same size have different mixing times implying
that social networks, even algorithmically, cannot be taken
equally for the purpose of these designs (see sec. V). However,
the different mixing times are not arbitrary: social graphs that
exhibit knowledge (e.g., co-authorship) or intensive interaction
(e.g., social blogs) are slower mixing than social graphs that
require less interaction or where edges are less meaningful
(e.g., wiki-vote and online social networks such as Orkut
and Facebook), which suggest that the algorithmic and trust
properties in social graphs are at odds. To this end, we explore
designs to model trust in social graphs in order to base the
performance of the Sybil defenses more accurately on both
assumptions: algorithmic and sociological.

We model the trust exhibited in the social graph as pa-
rameters of modified and biased random walks, as opposed
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to the uniform random walks used in Sybil defenses—where
social graphs are presumed to have similar trust value. The
proposed designs use two observations: nodes in the social
graph trust themselves more than they trust others, and they
trust other nodes unequally. We use the first observation to
incur gravitational probability in the random walk – at either
the current or originator node of the walk – and use the
second observation to incur weights on edges between the
different nodes. In the first direction we introduce the lazy and
originator-biased random walks. In the second direction we
introduce the similarity and interaction-biased random walks
to model trust. We investigate their power in modeling trust
and influencing the Sybil defenses.
Contributions: The novel and original contributions of this
paper are as follows. First, motivated by the observed re-
lationship between the quality of the algorithmic property
and hypothesized trust in social graphs, we propose several
designs, each in the form of modified random walk, to model
trust in social networks. Second, we learn the impact of the
different designs on the performance of the Sybil defenses
by comparing them to each other when operated on top of
SyilLimit, a design for defending against the Sybil attack using
social networks. For experiment part, we use several real-world
social graphs that exhibit different levels of knowledge be-
tween nodes. We provide several insights through discussions
that relate to observations on the measurements.
Organization: Some of the related work is reviewed in section
II and preliminaries in section III. In section IV we introduce
several designs to model trust in social networks, which
are used for Sybil defenses. In section V we discuss the
main results, which include experiments on real-world social
networks. In section VI we present implications of the findings
followed by the conclusion and future work in section VII.

II. RELATED WORK

Sybil defenses based on social networks include Sybil-
Guard [10], SybilLimit [9], SybilInfer [12], SumUp [16],
and Whānau [13]. In principle, the performance of these
defenses depends on the quality of the algorithmic property
and assuming strong trust in the underlying social graph.
These studies can benefit from our findings in quantifying their
performance more accurately by making up for variable trust
exhibited in the social graphs which they operate on top of.
A study on analyzing these designs can be seen in [11].

Also, several other studies were introduced in the literature
on using the trust in social graphs. For instance, Daly et
al. [17] used social networks for routing in disconnected delay
tolerant networks. In [18], Marti et al. constructed DHTs over
social networks. In [19], Pai et al. used the trust in social
graphs for bootstrapping trust in ad-hoc networks. The social
capital exhibited in social networks is used in [20] to replace
the tit-for-tat model in peer-to-peer systems. In all of these
studies, trust is considered binary and they can benefit from
our findings though our designs are not intended for them.

Understanding, predicting, and analyzing interactions in
social networks are studied by Viswanathet al. in [21] and

by Wilson et al. in [22]. We use the latter model for our
interaction-biased random walk in this study.

Understanding the negative and positive links in social
networks – which we can base our designs on – are studied by
Leskovec et al. in [23]. The similarity and centralities in social
graphs are studied and evaluated in [24], [25], and [26]. All of
these studies can be further used to derive similarity metrics,
where these metrics can be utilized in our designs.

Influential studies on analyzing the topological structures in
online social networks are in [27] and in [28].

Trust in social networks has been also studied since most
systems built on top of social networks exploit it – samples of
related work on characterizing trust in social networks can be
seen in [29] and [30], which are not clear how to use in the
context of the problem in hand. Finally, the power of social
graphs as good mixers is studied in [31] and [14]. For more
detailed exposition on related work, please see [15].

III. PRELIMINARIES

A. Network Model

We view the social network as an undirected unweighted
graph G = (V,E) where |V | = n, V = {v1 , v2, . . . , vn},
|E| = m, eij ∈ E = vi → vj if vi ∈ V is adjacent to vj ∈ V
for 1 ≤ i ≤ n and 1 ≤ j ≤ n. We refer to A = [aij ]

n×n as
the adjacency matrix where aij = 1 if eij is in E and aij = 0
otherwise. We refer to P = [pij ]

n×n as the transition matrix

pij =

{
1

deg(vi)
eij ∈ E

0 otherwise
, (1)

where deg(vi) is the degree vi, or the row-norm of A:

deg(vi) =

n∑
k=1

Aik. (2)

The set of neighbors of vi is N(vi) and deg(vi) = |N(vi)|.

B. Simple Random Walks and Mixing Time

The “event” of moving from a node to another is captured
by a Markov Chain (MC) which represents a random walk over
G. A random walk of length w over G is a sequence of vertices
in G beginning from an initial node vi and ending at vt, the
terminal node, using the transition matrix (1). The MC is said
to be ergodic if it is irreducible and aperiodic, meaning that
it has a unique stationary distribution π and the distribution
after random walk of length w converges to π as w →∞. The
stationary distribution of the MC is a probability distribution
that is invariant to the transition matrix P (i.e., πP = π). The
mixing time of the MC, T is defined as the minimal length of
the random walk in order to reach the stationary distribution.
More precisely, Definition 1 states the mixing time of MC on
G parameterized by a variation distance parameter ε.

Definition 1 (Mixing time): The mixing time (parameter-
ized by ε) of a Markov chain is defined as

T (ε) = max
i

min{t : |π − π(i)Pt|1 < ε}, (3)

where π is the stationary distribution, π(i) is the initial
distribution concentrated at vertex vi, Pt is the transition



3

matrix after t steps, and | · |1 is the total variation distance,
which is defined as 1

2

∑
j |πj−π

(i)
j |. Notice that |·|1 is at most

1. The MC is rapidly mixing if T (ε) = poly(log n, log 1
ε ).

Papers such as [12], [13], [9], [10] refer to this as “fast mixing”
and strengthen the definition by considering only the case of
ε = Θ( 1

n ), and requiring T (ε) = O(log n).
Theorem 1 (Stationary distribution): For undirected un-

weighted graph G, the stationary distribution of the MC over
G is the probability vector π = [πvi ] where πvi = deg vi

2m . This
is, π = [deg(v1)2m

deg(v2)
2m

deg(v3)
2m . . . deg(vn)2m ].

Theorem 2 (Second largest eigenvalue [32]): Let P be the
transition matrix of G with ergodic random walk, and λi for
1 ≤ i ≤ n be the eigenvalues of P. Then all of λi are real
numbers. If we label them in decreasing order, 1 = λ1 > λ2 ≥
· · · ≥ λn−1 ≥ λn > −1 holds. We define the second largest
eigenvalue modulus (SLEM) as µ = max (|λ2|, |λn−1|). Then,
T (ε) is bounded by µ

2(1−µ) log( 1
2ε ) ≤ T (ε) ≤ log(n)+log( 1

ε )

1−µ .
We observe that the mixing time captures the connectivity

of the graph. Well-connected graphs have small mixing time
while weakly connected graphs have large mixing time [32].
Also, the second largest eigenvalue used for measuring the
mixing time bounds the graph conductance, a measure for the
community structure [11]. In short, the conductance Φ ≥ 1−µ.

C. Social Network based Sybil Defenses

As mentioned in section II, there are several defenses to the
Sybil attack using social networks. Here we limit ourselves to
SybilLimit, which we use to measure our designs.

Unlike SybilGuard which uses one long random route for
verification, SybilLimit [9] uses several shorter instances of
random routes. A verifier as well as the suspect perform
O(
√
m) random routes each of length w = O(log n) to

obtain samples of the honest region – since O(
√
m) = r0

√
m,

SybilLimit fixes r0 = 4 to ensure high intersection probability.
The verifier determines to accept a suspect if he is registered at
one of the tails in his sample. SybilLimit accepts a suspect if
intersection with the verifier happens on a tail, which is the last
edge of the random routes. In SybilLimit, if a tail ends up in
the Sybil region, it will always end-up in it due to the random
routes one-to-one pre-computed permutation structure. Also,
if a tail ends up in the Sybil region, it may advertise many
non-existent intersections with routes initiated by Sybil nodes.
To avoid that, SybilLimit limits the number of intersections
into g ×w ×m intersections on honest tails – where g is the
number of attack edges and w is the random walk length.
This means that SybilLimit accept at most w = O(log n)
Sybil identities per attack edge. SybilLimit greatly depends
on w for its security and uses benchmarking techniques
for estimating it. However, since these techniques are not
provable, underestimating or overestimating the parameters is
problematic. SybilLimit works as long as g ≤ o( n

logn ).

IV. DESIGNS TO ACCOUNT FOR SOCIAL TRUST

In most of the literature that considered social networks
for building Sybil defenses, the simple uniform random walk
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Fig. 1. An illustration of
the lazy random walk. For
simplicity, α is equal for
each node though it can be
determined by each node
locally to reflect what that
node perceive as the trust
of the network.

highlighted in section III has been used. In this section, we
introduce several designs of modified random walks that con-
sider a “trust“ parameter between nodes. In all of the proposed
modified random walks, the purpose is to assign “trust-driven”
weights and thus deviate from uniform. We do this by either
capturing the random walk in the originator or current node,
as the case of originator-biased and lazy random walks, or
by biasing the random walk probability at each node, as the
case of interaction and similarity-biased random walks, or a
combination of them. The intuition of the lazy and originator-
biased random walk is that nodes trust “their own selves” and
other nodes within their community more than others. On the
other hand, interaction and similarity-biased trust assignments
try to weigh the natural social aspect of trust levels. Given
the motivation for these designs, we now formalize them by
deriving P and π required for characterizing them. We omit
the details for lack of space (see [15] for the complete proofs).

A. Lazy Random Walks

To accommodate for the trust exhibited in the social graph,
we assume a global single parameter α in the network which
is used to characterize this trust level and used in the different
schemes to enforce and apply the trust along with other
parameters used (e.g., driven from the algorithmic property
in the graph). The transition matrix

P′ = αI + (1− α)P (4)

which yields a transition according to pij defined as follows:

pij =


1−α

deg(vi)
vj ∈ N(vi)

α vj = vi

0 otherwise

(5)

We note that for the transition probability defined in (4),
by adding self loops it does not alter the final stationary
distribution from that in Theorem 1. This is, since P′ =
αI+(1−α)P, by multiplying both sides by π, we get πP′ =
π(αI+ (1−α)P) = απI+ (1−α)πP = απ+ π−απ = π.

B. Originator-biased Random Walk

We incorporate the concept of biased random on the social
graph walks to characterize the bias introduced by the trust
among different social actors (nodes). At each time step,
each node decides to direct the random walk back towards
the node that initiates the random walk, i.e., node vr, with
a fixed probability α or follow the original simple random
walk by uniformly selecting among its neighbors with the
total remaining probability 1 − α. The transition probability
that captures the movement of the random walk, initiated by
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a random node vr, and moving from node vi to node vj is
defined according to pij as follows

pij =


α j = r, vr 6∈ N(vi)

α+ 1−α
deg(vi)

j = r, vr ∈ N(vi)
1−α

deg(vi)
j 6= r, vj ∈ N(vi)

0 otherwise

(6)

We note that, unlike the lazy random walks, the transition
probability here considers moving the state back to the origi-
nator of the random walk, a state that may not be connected
to the current state in the social graph. This requires a virtual
connection between each node through the walk – every
node in the graph – and each originator of a random walk.
To mathematically model this transition loop, for each node
vr(1 ≤ r ≤ n), we define Ar as an all-zero matrix with
the exception of the rth row which is 1’s. Using Ar, we
further define the originator-biased transition matrix, for the
walk originated from vr, as

P′ = αAr + (1− α)P. (7)

We can show that P′ is stochastic since each row in it sums
to 1. Furthermore, since P′ depends on the initial state vr,
we observe that the “stationary” distribution is not unique
among all initial states, and so we refer to it as the “bounding
distribution” for the walk initiated from vr. The bounding
distribution in that case is π(vr) = [πi]

1×n where πi is

πi =

{
(1− α)deg(vi)

2m vi ∈ V \ {vr}
α+ deg(vi)

2m vi = vr
(8)

We note also that the bounding distribution in (8) is a valid
probability distribution since α + deg(vr)

2m +
∑
vi∈V \{vr}(1 −

α)deg(vi)
2m = α +

∑n
i=1(1 − α)deg(vi)

2m = α + (1 −
α)

∑n
i=1

deg(vi)
2m = α+(1−α) = 1. It is also easy to show that

given distribution bounds the random walk since πP′ = π.
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Fig. 2. An illustration of the originator biased random walk.

C. Interaction-biased Random Walk

The interaction between nodes can be used to measure
the strength of the social links between nodes in the social
network [22]. In this model, high weights are assigned to
edges between nodes with high interaction and low weights
are assigned to edges between nodes with low interaction.
Formally, let B be the raw interaction measurements between
nodes in G and D be a diagonal matrix representing the
row norm of B, computed as in (2). The transition matrix
P of the random walk based on interaction is then computed
as P′ = D−1B. The stationary distribution of the random

walk on G following to the probability in P′ is π = [πi]
1×n

where πi = (
∑n
j=1

∑n
k=1 bjk)−1(

∑n
z=1 bzi). We observe that

this distribution makes a valid probability distribution since∑n
i=1 πi = 1 and is a stationary distribution since πP = π.
Wilson et al. [22] introduced a slightly different model to

capture interaction between nodes in the social graph. The
interaction graph G′ = (V,E′) is defined for a social graph
G = (V,E) where E′ ⊆ E and eij ∈ E′ if I(vi, vj) ≥
δ, where I is an interaction measure to assign weights on
edges between vi and vj for all i, j, and δ is a threshold
parameter. The interaction measure used in [22] is the number
of interactions over a period of time. This later model further
simplifies the random walk where the P′ is defined over G′,
as well as the stationary distribution.

D. Similarity-biased random walk

The similarity between social nodes in social networks is
used for measuring the strength of social links and predicting
future interactions [24], [26]. For two nodes vi and vj with sets
of neighbors N(vi) and N(vj), respectively, the similarity is
N(vi)∩N(vj)
N(vi)∪N(vj)

. For ai and aj , two rows in A corresponding
to the entries of vi and vj , we use the cosine similarity
measure given as S(vi, vj) =

vi·vj
|vi|2|vj |2 , where | · |2 is

the L2-Norm. To avoid disconnected graphs resulting from
edge cases, we augment the similarity by adding 1 to the
denominator to account for the edge between the nodes.
Also, we compute the similarity for adjacent nodes only,
so that S = [sij ] where sij = S(vi, vj) if vj ∈ N(vi)
or 0 otherwise. The transition matrix P of a random walk
defined using the similarity is given as P = D−1S where
D is a diagonal matrix with diagonal elements being the
row norm of S. Accordingly, the stationary distribution of
random walks on G according to P is π = [πi]

1×n where
πi = (

∑n
z=1 szi)(

∑n
j=1

∑n
k=1 sjk)−1.

∑n
i=1 πi = 1).

E. Mixed random walks

It is intuitive and natural to consider a hybrid design
that constitutes more than one of the aforementioned ran-
dom walks. In particular, the interaction and similarity-biased
models “rank” different nodes differently and “locally” assign
weights to them. Though this limits the mixing time of social
graphs as we will see later, it does not provide nodes any
authority on the random walk once they are a “past state”. On
the other hand, benefits of these models are shortcomings in
other models. It’s hence technically promising and intuitively
sound to consider combinations of these designs. Another
potential of a mixed design is to use both the lazy and
originator-biased random walk in a single walk. As we will
see later, in some rapidly mixing social graphs where the
underlying social trust is hypothesized to be weak, the lazy
random walk poorly captures the behavior of the Sybil defense.

V. RESULTS AND DISCUSSION

In this section we outline the results of this study. We first
measure the mixing time of the social graphs used in this
study (in Table I) and highlight its variable nature among
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TABLE I
DATASETS, THEIR SIZE AND THEIR SECOND LARGEST EIGENVALUES OF

THE TRANSITION MATRIX. PHYSICS 1, 2, 3 ARE RELATIVITY, HIGH
ENERGY AND HIGH ENERGY THEORY CO-AUTHORSHIP

RESPECTIVELY [33].

Social network Nodes Edges SLEM
Physics 1 [33] 4,158 13,428 0.998133
Slashdot [34] 82,168 582,533 0.987531

Physics 2 [33] 11,204 117,649 0.998221
Physics 3 [33] 8,638 24,827 0.996879
Wiki-vote [23] 7,066 100,736 0.899418

Enron [33] 33,696 180,811 0.996473
Epinion [35] 75,879 13,428 0.998133

DBLP [36] 614,981 1,155,148 0.997494
Facebook A [22] 1,000,000 20,353,734 0.982477
Facebook B [22] 1,000,000 15,807,563 0.992020

Livejournal A [27] 1,000,000 26,151,771 0.999387
Livejournal B [27] 1,000,000 27,562,349 0.999695

Youtube [27] 1,134,890 2,987,624 0.997972

networks with similar size. We follow this by examining the
impact of using proposed models on the mixing time and the
performance of SybilLimit, a well-known Sybil defense. We
limit ourself to this defense scheme though our conclusions
apply to all other schemes that using the mixing time as the
underlying property for their performance.

A. Social graphs—the datasets

The social graphs used in our experiments are in Table I.
These graphs are carefully selected to feature different models
of knowledge between nodes in the social networks. These
networks are categorized as follows. (1) social networks that
exhibit knowledge between nodes and are good for the trust
assumptions of the Sybil defenses; e.g., physics co-authorships
and DBLP. These are slow mixing (see Fig. 3). (2) Graphs
of networks that may not require face-to-face knowledge but
require interaction; e.g., Youtube and Livejournal, which are
slow mixing, but faster than the first category. (3) Datasets that
may not require prior knowledge between nodes or where the
social links between nodes are less meaningful to the context
of the Sybil defenses; e.g., Facebook and wiki-vote, which
are shown to be very fast mixing. While these graphs are
used for demonstrating the first part of the results, measuring
the performance of SybilLimit and the impact of our designs
on the mixing time is done over samples of these graphs.
For feasibility reasons, we sample only 10K nodes, using the
breadth-first search algorithm, from each graph larger than
10K in Table I. The resulting sub-graphs are in Table II. The
diameter is the maximal eccentricity (set of maximal shortest
paths from each source in the graph) and the radius is the
minimal eccentricity. We compute them to show some insight
on the structure of the graphs. For Facebook and Livejoural
datasets, the sub-graphs are from dataset A of each.

B. Measuring the mixing time

While measuring the mixing time using SLEM as explained
in section III requires computing µ, the computed mixing time
might be an overestimation for quality which is necessary in
the Sybil defenses. In principle, the overestimation occurs be-
cause the computed mixing time using SLEM is the maximal,

TABLE II
SOCIAL GRAPHS WITH THEIR SIZE, DIAMETER, AND RADIUS. PHYSICS 1,

2, 3 ARE RELATIVITY, HIGH ENERGY AND HIGH ENERGY THEORY
CO-AUTHORSHIP RESPECTIVELY [33].

Social network Nodes Edges Diameter Radius
Physics 1 [33] 4,158 13,428 17 9

Sdot [34] 10,000 14,6469 6 3
Physics 2 [33] 11,204 117,649 13 7
Physics 3 [33] 8,638 24,827 18 10
Wiki-vote [23] 7,066 100,736 7 4

Enron [33] 10,000 108,373 4 2
Epinion [35] 10,000 210,173 4 2

DBLP [36] 10,000 20,684 8 4
Facebook [22] 10,000 81,460 4 2

Livejournal [27] 10,000 135,633 6 3
Youtube [27] 10,000 58,362 4 2

Rice-cs-grad [37] 501 3255 9 5
Rice-cs-ugrad [37] 1221 43153 6 3

where a few outlier nodes may capture the mixing time of the
entire graph, while the majority of nodes may have relatively
smaller mixing time than these outliers [14]. For that, we limit
ourselves to measuring the mixing time using Definition 1,
and considering a few initial distributions. We classify graphs,
shown in Table I, based on their size into large (> 600, 000
nodes) and small (< 100, 000 nodes) graphs. For each social
graph, we compute the mixing time according to Definition 1
for a sample of 1, 000 initial distributions (nodes). We then
compute the total variation distance for a given walk length w
as the average distance among the 1, 000 nodes. The results
are shown in Fig. 3. In short, two things to observe from these
measurements [14]. First, the mixing time is larger than used
in literature (e.g., 10 to 15 in [8], [9] for 106-node graphs). For
example, for ε ≈ 1/4, which is required for ≈ 99% admission
rate in SybilLimit, w = 30 is required in Physics 1. Second,
we observe that the mixing time is variable among social
graphs with similar size where graphs with meaningful edges
are slower mixing than others with less meaningful links.
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Fig. 3. The average mixing time of a sample of 1000 initial distributions in
each graph in Table I using the sampling method for computing the mixing
time by its definition over P.

C. Implication of the designs on the mixing time

Along with the simple random walk-based design, we
implement three of the proposed designs: lazy, originator, and
similarity biased random walks. We use the simple random
walk-based implementation over the interaction graph of Wil-
son et al.’s [22] to learn the performance of the interaction-
based model. We examine the impact of each design on the
mixing time on some graphs from Table II. The results are
shown in Fig. 4 and Fig. 5. We observe that, while they bound
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the mixing time of the different social graphs, the originator-
biased random walk is too sensitive even to a small α. For
example, as in Fig. 5(a) for Facebook social graph in Table II,
ε ≈ 1/4 is realizable at w = 6 with the simple random
walk, w > 10 for both lazy and originator-biased random
walk. However, this happens with α = 0.5 in the lazy against
α ≈ 0.1 in the originator-biased walk. This observation is
made clearer on Fig. 5 which compares the mixing time of
four different social graphs with different characteristics when
using the simple and modified random walks.

We also observe in Fig. 4 and Fig. 5 that the linear
increments in the parameters do not necessarily have linear
effect on the measured mixing time. Furthermore, this behavior
is made clearer in the experiments performed on SybilLimit
and shown in Fig. 6 and Fig. 7. This however is not surprising,
at least with the originator-biased random walk since the
probability of intersection when sampling from the stationary
distribution is ≤ e−8(1−α)

4

[15] from which one can see
the exponential effect of α on the admission rate. While
this explains the general tendency in the admission rates of
SybilLimit, it does not answer some inconsistency shown in
Fig. 7(b) for the transition between α = 0.12, 0.16, and 0.20.
One additional explanation for that is the community structure
in this graph, which is shown in [11] to be clear in Physics 1
and problematic for Sybil defenses (results for the same graph
are in Fig. 6(b) and Fig. 7(b)). On the other hand, some graphs
are less sensitive to the same value of these parameters, e.g.,
Facebook with the results shown in figures 4(a), 5(a), 6(d),
and 7(d). One possible explanation for this behavior is that
this graph has less community structure. Reasoning about this
behavior and its quantification is to be our future work.

D. Sybil defense performance over simple random walks

To understand the necessary mixing time quality required
for the operation of SybilLimit, we measure the performance
of SybilLimit using simple random walks, where the evalua-
tion metric is the percent of honest nodes accepted by other
honest nodes. For each walk with length w(0 ≤ w ≤ 30),
we compute the number of accepted nodes as a percent out of
n(n−1)—total verifier/suspect pairs. Since SybilLimit accepts
nodes on edges only, it works for w ≥ 2. The results are shown
in Fig. 8 and the variable mixing time shown earlier is further
highlighted by observing the percent of accepted nodes when
varying w. We observe that, unlike claims in SybilLimit where
one would expect 95% admission rate at w = 4, some graphs
require w = 30; where graphs which admit high percent of
nodes for small w are those with poor trust.

E. Sybil defense performance over modified random walks

Now we study the impact of the modified random walks
on the performance of SybilLimit. We select four datasets
with different characteristics from Table II: DBLP, Facebook,
Facebook (Rice grad), and Physics 1 (relativity theory). We
implement modified SybilLimit versions that consider changes
introduced by the modified random walks and test the admis-
sion rate of honest nodes under different values of α and w.

1) Performance over lazy random walk: we measure the
performance of SybilLimit operating with the lazy random
walks – results are shown in Fig. 6. We vary w from 0 to 30
with steps of 2. We further vary α associated with the lazy
random walk from 0 to 0.80 with steps of 0.16—α = 0 means
simple random walk. While the performance of SybilLimit is
generally degraded when increasing α, we observe that the
amount of degradation varies and depends on the initial quality
of the graph. For example, by comparing DBLP (Fig. 6(c)) to
Facebook (Fig. 6(d)) we observe that for w = 10, DBLP and
Facebook admit about 97% and 100% of the honest nodes
respectively for α = 0. For the same w and α = 0.64, the
accepted nodes in Facebook are still close to 100% while the
accepted nodes in DBLP are only 50% suggesting variable
sensitivity of different graphs to same α. Once we raise α
to 0.80, the number of accepted nodes in Facebook decreases
to 80% while giving only 25% in DBLP. One explanation of
this behavior is what we have discussed in section V-C. Also,
since the ultimiate goal of this model is to characterize trust,
which already differs in these graphs, we know that α should
not necessarily be equal in both cases. For instance, if one is
concerned about achieving same admission rate for the same
w in both cases, one may choose α = 0.48 in DBLP and
α = 0.80 in Facebook where w = 10 in both cases which
yields 80% admission rate in both cases.

2) Performance over originator-biased random walk: The
same settings in section V-E1 are used in this experiment
but here we vary α from 0 to 0.2 with 0.02 steps since the
originator-biased walk is more sensitive to smaller α than the
lazy-random walk. Similar to the lazy walk, the originator-
biased walk, as shown in Fig. 7, influences the performance
of SybilLimit on different graphs differently, and depending
on the underlying graph. However, two differences are specific
to the originator-biased walk over the lazy random walk.

First, the insensitivity shown earlier is even clearer in
the originator-biased model. Second, while the end result of
SybilLimit operating with lazy random walk is identical to the
simple random walk if one allows long enough walk to com-
pensate for the laziness, the behavior of the originator-biased
walk is different. The indirect implication of the originator-
assigned probability to herself is “discontinuity” in the graph
(with respect to each node), where each node gives up some
of the network by not trusting nodes in it. To cover the whole
graph with that same α, w needs to be exponentially large.
To challenge the insensitivity of the fast mixing social graphs,
we extend α beyond the values used in Fig. 7 with Facebook
from Table II and use α(0 ≤ α ≤ 0.5) with 0.1 steps and
compute the admission rate. The result shows (not included
here) that the originator-biased walk limits the number of
accepted nodes, even in fast mixing graphs, but for larger α.

3) Performance over similarity and interaction-biased
walk: The similarity and interaction-biased random walks
as used in this paper are unparameterized. We compute the
similarity for Facebook in Table II, as explained in IV-D. The
similarity is then used to assign weights to edges between
nodes, and bias the transition matrix. We run SybilLimit with
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(b) Livejournal A
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(c) Facebook A
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(d) Livejournal A
Fig. 4. The impact of the originator and lazy walks on the mixing time—(a) and (b) are for originator-biased while (c) and (d) are for lazy random walks.
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(c) Physics 1
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(d) DBLP
Fig. 5. The mixing time of four different social graphs when using simple vs. lazy, originator, and similarity-biased random walks, for each graph. While
they are similar in size, a mixing time (parameterized by the same ε) is variable.

similarity-biased random walks on Facebook in Table II, where
the result is shown in Fig. 9. In short, the similarity – while
expected to capture some truth about the underlying graph –
has less influence on the behavior of SybilLimit. It is however
worth noting that the impact of the similarity-biased random
walk is clearer on other social graphs, such as DBLP and
Physics, which have clearer community structures.

For the interaction-biased design, we borrow the interaction
graph of Wilson et al. [22] on Facebook (same dataset in Ta-
ble II). The interaction model introduces a richer model than
the mere connections between nodes: it shows how strong are
the links between nodes in the graph. With the same settings
as earlier, we run SybilLimit – as a simple random walks –
over the interaction graph. The results are shown in Fig. 9.

F. All designs: comparative study

Finally, we consider all designs at the same time. Because
we only have interaction measurements for the Facebook
dataset, we limit ourselves to that dataset. The result is shown
in Fig. 9. While the performance of the similarity-biased
random walk produces almost same results as the simple
random-walk, the interaction-biased walk affects the number
of the accepted nodes. Furthermore, the lazy random walk
captures the behavior of model when deviated from the simple
random-walk. As shown for this dataset, the interaction model
behavior is characterized by the behavior of the lazy random
walk for two given parameters (α = 0.48 and α = 0.64)
suggesting that the interaction model can be further modeled
as a lazy random walk where the problem is to find the proper
parameters to match its behavior. Note that the value of α
works for this dataset in particular. However, other datasets
may be characterized by other values. We also find that the
number of escaping tails per node is also decreased using
our design, as shown in Fig. 10. In this last experiment,
we compute the average escaping tails per 100 honest node
samples, and by running the experiment 5 times, independently
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with a the given attackers edges for which nodes are selected
uniformly at random from the honest region. In the experiment
of Fig. 10, and for the interaction model, we assume that the
attacker may infiltrate the social graph but cannot produce
meaningful interactions, and thus the number of escaping tails
to the attacker is always zero. It would be interesting in the
future to generalize this model to an attacker with limited
budget of interactions, and see how this changes the number
of escaping tails with varying budgets. Finally to understand
the impact of the different random walks on the accepted
Sybil nodes per attack edge, we experiment with the same
dataset (Facebook) and for varying g. The results are shown
in Figure 11. Similar to above, our designs outperform the
uniform design (more experiments are in [15]).

VI. IMPLICATIONS OF FINDINGS

To sum up, we find in this study that one can control the
behavior of the social network-based Sybil defenses by incor-
porating parameters for trust. For this purpose, we introduced
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(d) Facebook
Fig. 6. The performance of SybilLimit measured for accepted honest nodes when using different lengths of lazy random walk for different social graphs.
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(d) Facebook
Fig. 7. The performance of SybilLimit depends on the underlying social graph, where different graphs require different walk lengths to ensure the same
number of accepted nodes. The originator-biased random walk can further influence the number of nodes accepted in each graph.
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and experimented the behavior of four designs. In graphs that
are empirically-proven to be fast mixing and well-performing
for the utility of the Sybil defense – though having poor value
of trust – we have shown that one can select the necessary
parameters to account for trust and make the performance of
the defense on that graph equivalent to stronger and richer
version of the same graph – e.g., the case of the interaction-
based model versus the mere connections on the Facebook
dataset. With these designs being intuitive in characterizing
trust, the results being in agreement one another, and with
this paper being the first of its own type in this direction, we
believe that this study is a first step in the direction of bringing
well-received theoretical results into practice. The implications
of our findings can be summarized as follows.

First, the mixing time and utility of the Sybil defense
depend on the underlying graph. Through measurements, we

supported our hypothesis that the quality of the social graph
depends on the characteristic of the social links between the
nodes. On one hand, social links that are easier to make result
in well-enmeshed graphs but are bad in principle for the Sybil
defense since they already tolerate bad edges. However, these
are shown to provide good honest nodes acceptance rate even
with shorter random walks. On the other hand, social links
that are harder to make result in graphs with more community
structure, which are bad for the detection (as shown in [11])
and require longer walks to operate for the honest nodes.

Second, it is now possible for the Sybil defense operator,
when given multiple options of social graphs, to further derive
the utility of the Sybil defense using several criteria. Our
study empowers the operators by an additional dimension that
influences the behavior of the Sybil defense: trust.

Third, our findings answer a recently called for question
in [11] of studying the behavior of Sbyil defenses when
operated on the interaction-based model rather than the mere
social connections, which are sometimes less meaningful. In
short, our study shows that the interaction model can influence
the behavior of the Sybil defense, by requiring longer random
walk for the defense to work for honest nodes. However, this
finding also suggests that a more community-structure is in the
interaction model than in the mere social graph. This implies
that, while the original social graph does not possess clear
community structure, the use of the interaction model would
add sensitivity for the detection part of the defense and result
in weaker detection. However, the underlying graphs in both
cases are different and the interpretation of the results should
also consider the trust value in the interaction model, which
is a better fit to the trust required in the Sybil defense.

Finally, online social graphs are known to possess weaker
value of trust [30]. However, their potential for being used
for Sybil defenses is very high since alternatives are limited,
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too expensive, and may not fit into the Sybil defense settings.
For example, co-authorship social graphs which are known
for their trust value may not necessarily include most users
of a particular online system that tries to deploy the Sybil
defense. On the other hand, given the popularity of online
social networks, Sybil defenses may benefit from them, across
systems and networks. To this end, the main finding of the
paper is to open the door wide open for investigating trust, its
modeling, and quantification for these systems.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we propose several designs to capture the
trust value of social graphs in social networks used for Sybil
defenses. Our designs filter weak trust links and successfully
bound the mixing time which controls the number of accepted
nodes using the Sybil defenses to account for variable trust.
Our designs provide defense designers with parameters to
model trust and evaluate Sybil defenses based on the “real
value” of social networks.

Several directions are worth investigation in the near future.
First, we would like to investigate generalized node-wise
parameterized designs that consider different parameters for
different users, or categories of them. Second, we would
like to theoretically formulate the behavior of the different
designs considering other features of the underlying graph,
e.g., its eigenvalues, mixing time, etc. Finally, we would like to
investigate the applicability of these designs in other contexts
where the trust of social networks is used. For more on open
problems and further work, please see [15].
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