
DFD: Adversarial Learning-based Approach to
Defend Against Website Fingerprinting

Ahmed Abusnaina†

University of Central Florida
Orlando, FL, USA

ahmed.abusnaina@knights.ucf.edu

Rhongho Jang†

University of Central Florida
(UCF) & Inha University
r.h.jang@knights.ucf.edu

Aminollah Khormali
University of Central Florida

Orlando, FL, USA
aminkhormali@knights.ucf.edu

DaeHun Nyang
Inha University

Incheon, South Korea
nyang@inha.ac.kr

David Mohaisen
University of Central Florida

Orlando, FL, USA
mohaisen@ucf.edu

Abstract—The Onion Router (Tor) is designed to support an
anonymous communication through end-to-end encryption. To
prevent vulnerability of side channel attacks (e.g. website finger-
printing), dummy packet injection modules have been embedded
in Tor to conceal trace patterns that are associated with the
individual websites. However, recent study shows that current
Website Fingerprinting (WF) defenses still generate patterns
that may be captured and recognized by the deep learning
technology. In this paper, we conduct in-depth analyses of two
state-of-the-art WF defense approaches. Then, based on our new
observations and insights, we propose a novel defense mechanism
using a per-burst injection technique, called Deep Fingerprinting
Defender (DFD), against deep learning-based WF attacks. The
DFD has two operation modes, one-way and two-way injection.
DFD is designed to break the inherent patterns preserved in
Tor user’s traces by carefully injecting dummy packets within
every burst. We conducted extensive experiments to evaluate the
performance of DFD over both closed-world and open-world
settings. Our results demonstrate that these two configurations
can successfully break the Tor network traffic pattern and achieve
a high evasion rate of 86.02% over one-way client-side injection
rate of 100%, a promising improvement in comparison with state-
of-the-art adversarial trace’s evasion rate of 60%. Moreover, DFD
outperforms the state-of-the-art alternatives by requiring lower
bandwidth overhead; 14.26% using client-side injection.

I. INTRODUCTION

The Onion Router (Tor) provides anonymous communica-
tion to more than two million daily Internet users [1] to hide
their location and online activity, e.g. website visits, instant
messages, posts, etc. from those who conduct traffic analysis
and network monitoring, such as Internet Service Providers
(ISPs). To set out, first the communications’ content and
routing information is encrypted, then the encrypted traffic is
relayed through a route that is built by random selection of
nodes among more than seven thousand nodes [2], such that
only a single node knows its immediate peers but never the
origin and destination of a communication at the same time.

Previous research works have investigated the privacy as-
pects of Tor network, showing that Tor network is prone to

†These authors contributed equally.

side-channel attacks where a local adversary can infer which
website was visited by a user [3]. The adversary can access
communication’s metadata from the side-channel leakage, for
instance, using the side channel. Moreover, the adversary may
have access to the direction and size of the encrypted network
packets. Such information can be utilized to construct a unique
fingerprint, allowing network eavesdroppers to reveal which
website was visited based on the network traffic.

Particularly, Website Fingerprinting (WF) is a traffic anal-
ysis attack that allows an attacker to recognize the patterns
of visited websites, exploiting the content differences, in a
connection that is encrypted using Tor software. A large body
of research has investigated the feasibility of WF in breaking
the privacy that is offered by Tor [4], [5], [6], [7], [8]. WF can
be considered as a pattern recognition problem from a machine
learning point of view. Generally, the attacker first trains a
classifier over a set of representative traffic features extracted
from a large number of websites, then uses this model to
predict a victim’s traces as one of those websites. Therefore,
several research works attempted to improve the effectiveness
of WF by introducing various sets of hand-crafted features
that represent Tor traffic and state-of-the-art machine learning
algorithms [5], [9], [10]. Although machine learning-based
classifiers are able to achieve more than 91% classification
accuracy [10], [11], [5], their performance is highly dependent
not only on the structure of the classifier but also on the
manually extracted traffic features. In addition, those features
are not robust against changes in the network protocols [12],
[13], [8]. A few research works attempted to address these
issues by using deep learning [7], [8]. Deep learning has shown
to outperform traditional machine learning networks and does
not need feature engineering.

Machine learning networks are widely used in a wide range
of applications [14], [15], [16], [17], [18], [19]. Despite the
unique characteristics of deep learning-based models, it has
been shown that they are vulnerable to Adversarial Examples
(AEs) [20]. AEs are carefully crafted samples by applying
small perturbation to the input dataset, leading the classifier

to misclassification. We note that AEs are similar to the
original inputs, and not necessarily outside of the training data
manifold [21]. Adversarial learning is an active research area
and several algorithms for generating adversarial examples
are presented, such as the fast gradient sign method [22].
The primary goal of these adversarial attack methods is to
generate AEs such that not only reduces the confidence of
the classifier, but also forces the model to generate adver-
sary’s desired output. Although adversarial machine learning
has been an active research area, mostly to compromise the
performance of the machine and deep learning models in
sensitive domains, there are only very few research works
that investigate their application as a defensive strategy against
website fingerprinting [23]. Such defense strategies need to be
investigated in more detail, e.g. evasion rate, practicality, and
bandwidth overhead.
Goal of this study. Motivated by the aforementioned research
gap, the main goal of this study is to improve the privacy of the
users of Tor network against WF attacks by introducing a novel
defense mechanism based on adversarial learning technique.
Approach. To tackle the above objectives, first we conducted
fully automated deep learning-based WF attack that works
based on raw traffic traces and does not require hand-crafted
features. It should be noted that deep learning-based WF
attacks are designed to be more resistant to changes in
the features introduced by defenses. Second, we investigate
the performance of two well-established defense methods,
including WTF-PAD [13] and Walkie-Talkie [24]. Finally, we
explore the feasibility of adversarial learning as a potential
defense strategy against deep learning-based WF attacks, while
preserving the practicality of the traffic traces. To set out, we
looked into the defense strategy and real-world traces of WTF-
PAD and W-T. Through analysis, we observed a potential flaw
that leads to residual patterns to be captured by the deep
learning models. Based on our new findings, we proposed a
novel approach, Deep Fingerprinting Defender (DFD), which
maintains the practicality of the generated adversarial traffic
traces while achieving a high misclassification rate; which
maintains Tor users’ privacy.
Contributions. In this paper, we are making the following
contributions:
1 We conduct in-depth analyses of the working flow of WTF-

PAD and W-T. Particularly, we looked into the strategies of
both approaches to find potential behaviors that can expose
features to the deep learning-based attacks. We described our
observations and explained rationals of these attack surfaces.
2 To address the issues associated with previous defense

schemes, we proposed DFD, per burst injection technique to
defend against deep learning-based website fingerprinting.
3 Through extensive experiments, it has been shown that

DFD can dramatically reduce the success rate of the adversary
in identifying user’s visiting website. DFD shows a good mis-
classification performance in both open-world and close-world
settings. Further, we evaluate the performance of DFD against
deep learning models trained on its generated traces, proposing
an optimization to overcome traces pattern recognition.

Organization. This work is organized as follows: The related
work is reviewed in section II. In section III, a threat model
and adversarial settings are provided. Traditional WF defenses
and DFD system designs are described in section IV. The
evaluation of the proposed approach is in section V. Finally,
the work is concluded in section VI.

II. RELATED WORK

WF attacks. WF attacks against Tor was first evaluated by
Herrmann et al. in 2009 [25]; their classification accuracy
was only 3% in a closed world of 775 websites. However,
later in 2011, Panchenko et al. were able to achieve a
classification accuracy of 55% on the same dataset using
an improved set of engineered features [26]. Moreover, the
success rate of WF attacks improved gradually up to 90%
using classifiers that perform based on edit-distances [27],
[28]. However, these classifiers were not practical due to
their high computational costs. Recently, researchers utilized
both more advanced machine along with sophisticated features
set that not only improved the attack success rate but also
could be deployed in real-world due to their reduced attack
costs. Wang et al. [11] presented a WF attack based on
the k-Nearest Neighbors (k-NN) classifier that measures the
similarity between websites based on a set of features, such
as the number of incoming and outgoing cells, the numbers of
bursts, packet ordering, etc.. This approach was able to achieve
an accuracy rate of 91% in a closed world of 100 websites.
Moreover, Panchenko et al. [5] presented WF attack based on
Support Vector Machine (SVM) classifier that performs over
a set of engineered features constructed using the cumulative
sum of packet lengths. Similarly, they achieved a success rate
of 91% in a closed-world setting. Hayes and Danezis [10]
presented k-fingerprinting, an elegant WF attack method using
random forests.
DL-based WF Attacks. In order to overcome the short-
comings of traditional machine learning-based WF attacks,
researchers presented deep learning-based WF attacks. For
instance, Abe and Goto [29] introduced the application of
Stacked Denoising Autoencoders (SDAE) to WF attacks.
Moreover, CNN-based website fingerprinting is presented by
Lu et al. [30]. Similarly, Rimmer et al. [8] conducted a
systematic study to incorporate deep learning networks into
WF. The proposed method is able to reach a success rate
of 96% and 94% on closed-world of 100 websites and 900
websites, respectively. Moreover, Sirinam et al. [7] presented
a deep learning-based WF attack against Tor. Their approach
is able to achieve more than 98% success rate on undefended
Tor traffic, outperforming existing WF attacks. In addition,
for defended Tor traffic it was able to reach 90% and 49.7%
success rate on WTF-PAD and Walkie-Talkie, respectively.
WF defenses. In general, WF attack methods aim to increase
the misclassification rate of the adversary through different
strategies, such as injecting dummy packets, delaying packets,
etc. For example, Dyer et al. [31] introduced BuFLO, a
traffic modification mechanism that removes packets’ specific
features, thus making the traffic look constant. Later, Cai et

al. [32], [33] attempted to improve the function of BuFLO
by grouping sites based on their size. Then all sites in a
group are padded to the largest size in that group. How-
ever, these methods were expensive in terms of bandwidth
and latency overheads. To overcome these issues, Juarez et
al. [13] proposed Website Traffic Fingerprinting Protection
with Adaptive Defense (WTF-PAD). WTF-PAD is lightweight
and causes small bandwidth overhead while incurring zero-
latency overhead. Wang and Goldberg [24] proposed Walkie-
Talkie, a solution that works based on half-duplex commu-
nication methods. Imani et al. [23] introduced adversarial
traces based on padding techniques, and add those traces to
the Tor traffic as a defense against WF attacks. Their approach
drooped the accuracy of deep learning based WF attack from
98% to 60%, while resulting in 47% bandwidth overhead.
Adversarial Methods. Machine/deep learning networks are
actively used in many sensitive applications and domains,
including website fingerprinting [7], [8]. However, it has been
shown that adversaries can manipulate their output using
adversarial examples [34]. Note that such an attack can
be utilized to implement a defense strategy against website
fingerprinting, and to undermine the adversary’s ability to
identify the Tor users’ visited websites [23]. Recently, different
adversarial attack algorithms have been introduced by the
research community. For example, Goodfellow et al. [22]
introduced FGSM, image-based adversarial method that forces
the model to misclassification through crafted AEs. Further,
Abusnaina et al. [35] introduced the adversarial examples into
the field of anomaly detection. In this work, we leverage the
idea of applying perturbation into implementing a defense
against website fingerprinting.

III. THREAT MODEL

Despite Tor’s goal in protecting users’ privacy, adversarial
entities are able to undermine Tor’s protection and identify
users activity profiles through traffic analysis techniques. There
are several research works that have demonstrated adversary’s
capability in exploiting network traffic patterns to identify
visited pages by a Tor user [10], [5], [6], [7], [8]. To set
out, first, the adversaries monitor traffic sequences of their
own visits to a set of known websites, including websites
they are interested in detecting. Then, a set of representative
features, such as packet size [25], time and volume [36], edit-
distance score [28], rate of traffic bursts in both directions [9],
etc. are extracted from the captured traffic flows. Finally, the
extracted features can be utilized to train a machine/deep
learning classifier that predicts Tor users’ visited websites.

In this study, we considered the threat model presented
in [7], [8], as shown in Figure 1, where the adversary has
access only to the link between the entry node of the Tor
network and the user, through which he can only monitor
network packets in a passive manner. A passive adversary is
only able to record the transmitted network packets during the
communication, however, the adversary is not able to change,
delay, drop, or insert new packets to the sequence of packets.
All entities that have such level of access to the network

Client

Attacker

Tor Network Server

Guard
Middle

Exit

Bridge

Figure 1. Website Fingerprinting Threat Model. The adversary observes the
traffic between the client and the entry point of the Tor network.

traffic can conduct WF attacks, such as Autonomous Systems
(AS), ISPs, local network administrators, etc. In this work, an
ISP-level adversary launches the WF attack through collecting
traffic at the Transmission Control Protocol (TCP) layer. Note
that it is generally assumed that the encryption provided by
Tor network cannot be decrypted by the adversary.
Closed/Open-world Setting. WF attacks are evaluated in two
scenarios, a closed-world and an open-world of websites. The
closed-word assumes that users can only visit a small set of
websites and that the adversary has samples to train his models
on all of them [3]. This assumption was criticized for being
unrealistic [4], [37], as the population of sites that can be
potentially visited is so large that not even the most powerful
adversaries have the resources to collect data and train for
every site. Subsequent studies have considered an open-world
scenario, a more realistic setting in which the adversary can
only train on a small fraction of the sites the user can visit. We
use the closed-world experiments for a detailed comparison
of different algorithms and parameter settings, and we report
the results of the open-world experiments for a more realistic
evaluation of the attack.
Adversarial Settings. The main goal of the adversary in
adversarial machine learning is to fool The deep learning clas-
sifier f using adversarial examples x′, generated by applying
small perturbations δ into input sample x. The adversary uses
the crafted adversarial example to force the model to generate
his desired output, e.g. misclassification. Attacks on deep
learning networks can be categorized from different points of
view, including adversary’s goals and capabilities [34]. The
followings are the description of each point of view.
• Adversarial Goals. The main goal of the adversary

in deep learning systems is to force the model into
incorrect results. The main goal of the adversary can
be categorized based on the nature of the incorrectness
into confidence reduction, untargeted misclassification,
and targeted misclassification.

• Adversarial Capabilities. Considering attacks conducted
at the test time, the adversarial attacks are divided into
white-box attacks and black-box attacks. While in white-
box attacks the adversary has access to either of the model
architecture or the training data, in black-box attacks the
adversary has only oracle access to the model. In this
study, we initially assume an adversary with no prior
knowledge of the classifier and only has an oracle access
to the model. Later, we loosen up the assumption, where

Figure 2. WTF-PAD: message padding after each burst.

the adversary is aware of the deep learning classifier and
the used defense. In addition, the adversary’s goal is to
conduct an untargeted misclassification.

Deep Learning-based Attacks. Deep learning has been uti-
lized to produce a state-of-the-art classification accuracy in
several research fields. In our work, we mainly focus on two
well-established deep learning networks to conduct WF, the
Deep Neural Networks (DNNs) and Convolutional Neural Net-
works (CNNs). DNN is a type of feed-forward artificial neural
network with multiple hidden layers between the input and the
output layers [38]. DNN focuses on turning the input into the
output by manipulating the weights of the links and calculating
the probability of each output. Similarly, CNN is a convo-
lutional layer-based classifier, usually used to extract deep
patterns within sequences. Both CNNs and DNNs are well-
known for their unique characteristics in automatic feature
extraction, dealing with a large number of features, provid-
ing high performance, and requiring minimal pre-processing
effort [39]. Recently, researchers have employed deep learning
algorithms to identify Tor users’ browsing patterns by abusing
their network traffic. Therefore, they are suitable candidates
for conducting WF attacks using network traffic traces [30].

IV. METHODOLOGY

A. Traditional WF Defenses

The main focus of website fingerprinting (WF) defense
is to decrease the adversary’s success rate in predicting the
Tor users’ visited websites. Recently, two different defense
techniques have been deployed in Tor network, namely, Web-
site Traffic Fingerprinting Protection with Adaptive Defense
(WTF-PAD) [13] and Walkie-Talkie (W-T) [24]. Both of those
techniques are based on the dummy message injection, but
employed in different ways. Although these defense strategies
are well-appreciated by the Tor community due to their low
bandwidth and latency overheads, a recent study has shown
that they are vulnerable to deep learning-based WF attacks [7].
In the following, we describe these defense schemes and
provide rational explanations as to why they are vulnerable to
DL-based attack, which was missing in the original paper [7].
WTF-PAD. WTF-PAD was proposed by Juarez et al. [13] as
a defense method against website fingerprinting. This defense
is based on Adaptive Padding that is originally designed
to defend against the end-to-end traffic analysis [40]. The
term “adaptive” here means that the defender injects dummy

Figure 3. W-T: burst molding using the burst sequence of the real page.

messages following the real-world distribution of inter-packet
arrival time to disrupt the time feature from the packet flow.
Meanwhile, by injecting these dummy messages at the end
of each burst (i.e., burst padding), the volume information
and burst boundary are concealed for defending against WF.
While WTF-PAD was shown to be robust with traditional
machine learning (i.e., k-NN, Pa-SVM [26], DL-SVM [28],
VNG++ [31] etc.), it is vulnerable with CNN and DNN [7].
Observation. Figure 2 shows an example of the original and
WTF-PAD traces from our dataset. Basically, WTF-PAD is
a zero-delay scheme, which means that the real messages
are sent out without buffering or blocking. Thanks to this
design, WTF-PAD provides a good user experience to users
surfing sensitive web pages. However, this design also exposes
the traffic features and patterns to adversaries. As shown in
Figure 2, and since WTF-PAD starts the padding process
once the idle time of the egress port expires with a certain
threshold, the real messages can go back and forth before
the padding. More specifically, the full-duplex communication
mechanism of WTF-PAD results in a small inter-burst time,
which means two continuous real bursts can be observed in
the packet flow. Moreover, the receiving of TAGs (e.g. img)
causes immediately a request of the corresponding resources,
which can lead to three continuous real bursts combining
the previous example. To this end, these short patterns are
preserved and repeated in the packet flows, which is a strong
feature combination exposed to the adversaries. In this paper,
we reproduced the DL model proposed by Sirinam et al. [7]
and achieved similar detection accuracy as reported.
W-T. W-T is based on half-duplex communication with the
web server [24], where both the client and the proxy maintain
a buffer. The buffer is mainly responsible for queuing and
sending out messages as a burst without intersecting with the
burst from the peer. W-T conceals the time features by sending
each message with a constant time interval. Meanwhile, and
for hiding the sensitive message sequence information of the
real page, it simulates the connection of a fake page then mixes
the two burst patterns in what is known as “molding”.
Observation. Figure 3 shows an example of the original and
W-T traces from our dataset. Let’s assume the sequence of
burst of the real page is bi = (bi+, bi−), where bi+ stands
for the outgoing bursts and bi− is the incoming bursts. By

simulating the fake page, we have the fake sequence of burst
b′i = (b′i+, b

′
i−). As shown in Figure 3, W-T compares the

length of each i-th burst and sends the real burst with the
length of the longer burst, namely the burst molding (i.e., b̂i =
(max{bi+, b′i+},max{bi−, b′i−})). However, the design of W-
T leaves an opportunity for adversaries to capture the features.
Since the bursts of the fake page can either be longer or shorter
than the real page, 0% of molding happens in the worst case
and 100% in the best case. Overall, the quality of the selected
fake page determines how many sensitive burst sequences can
be hidden. However, it is difficult to determine the fake page
because the burst sequence of the real page is unpredictable.
We also repeated DL-based WF attack on W-T and achieved
a near 50% accuracy, which is the maximum according to the
theory of W-T [24] (See subsection V-C).
Summary. Through the discussions above, we can conclude
that neither the burst padding nor the random hiding of
the burst is helpful in defending against the DL-based WF
attack since the real burst sequences can be preserved and
captured by The deep learning models (i.e., CNN and DNN).
Through these observations, however, we can infer that inject-
ing dummy messages within a burst is a more efficient way
to break the patterns of the real trace than injecting them after
the burst, as injecting packets within the burst is more likely
to conceal the patterns. Based on these findings, we designed
a burst injection-based WF defense, which aims to hide the
burst sequences. Our design is based on an experiment-driven
approach, by simulating different injection scenarios.

B. Deep Fingerprinting Defender

Our proposed defense scheme, DFD, is a client-side dummy
message injection solution that aims to conceal the sequence
pattern within the packet flow and to provide a low bandwidth
overhead as well. DFD is designed to inject dummy messages
into every outgoing burst for hiding the real burst pattern.
At the same time, the amount of injection follows a targeted
manner (i.e., perturbation rate p) so that the overall bandwidth
overhead can be limited with with a fixed boundary. In this
paper, we do not consider the time features (i.e., inter-packet
arrival time and inter-burst time) since they are insignificant
in WF attacks [24], [7]. The structure of the DFD is shown
in Figure 4. As demonstrated in Figure 4, DFD is composed
of two modules, the Burst observer and the Injection buffer.
a Burst Observer. The main purpose of this module is

monitoring bursts of outgoing messages. In this paper, we
refer the burst as a set of continuous messages such that the
length is larger than 2. Once the DFD start running, Burst
observer records the length of the burst (li) and triggers the
injection event when the new burst arrives. For determining
the number of dummy messages to inject within the newly
arriving burst, DFD takes perturbation rate (P) as a parameter
then multiply it with the length of each burst (i.e., P × li).
By doing so, the overhead of injection is P of the total
amount of the outgoing messages. However, since the length
of the ongoing burst is unpredictable, we approximate the
overhead by using the length of the last recorded burst (i.e.,

Figure 4. General structure of DFD approach. Here li refers to the length of
each outgoing burst and P is the perturbation rate. Note that P = 0.5 in this
example.

P × li−1). Therefore, the total amount of injection (Itotal) is
Itotal =

∑n−1
i=0 P × li−1 ≈

∑n−1
i=0 P × li, where n is the total

number of bursts. By doing so, the total injection overhead can
be limited by around P (percent) of the outgoing messages.
b Injection Buffer. This module is responsible for injecting

the dummy messages into the current outgoing burst. For
minimizing the injection delay, we duplicate and buffer the
passed real messages by maintaining an injection buffer. As
such, we could inject dummy messages within the outgoing
burst in a timely manner. To avoid the additional bandwidth
overhead, we use the previous acknowledged messages for
injection. Note that adding dummy messages to the packet
flow will not affect the practicality of the generated adversarial
packet flows. HTTP/HTTPS are based on the TCP transmis-
sion protocol, where each TCP packet has a sequence number,
once it is received by the server, an acknowledgement (ACK)
is sent to the client to inform of the packet arrival. If the
server receives a previously acknowledged packet, the server
will simply discard it [41], [42]. In DFD, the dummy message
is selected from the previous ACKs, to ensure that it will be
discarded by the server without affecting the communication.

Algorithm 1 shows the steps taken by Burst observer to
signal the Inject Buffer. Burst Observer takes the packet flow
f and the perturbation rate P as inputs. For every outgoing
message (msg) from f , Burst Observer counts the length of
the ongoing burst (i.e., continuously outgoing messages). The
counting of bursts is interrupted by the incoming message
indicating the end of the burst. As a result, the length of the
burst is stored in li−1 and starts the new round counting. To
this end, li−1 is continuously updated with the length of the
last burst (lines 9-12). The injection event is triggered during
the ongoing burst (line 7-8). Once the length of continuous
messages exceeds two, which indicates the outgoing messages
become a burst, it signals Inject Buffer to inject li−1 × P
messages into the ongoing burst, where li−1 is the length of
the last burst and P is the perturbation rate. By doing so,
the overhead caused by the injection can be limited by P of

Algorithm 1: Burst observer module algorithm
1 Function BurstObserver (f, P);

Input : Packet flow f , Perturbation rate P
2 BurstCount ← 0
3 li−1 ← 0
4 foreach msg in f do
5 if (msg is outgoing) then
6 BurstCount ++
7 if (BurstCount = 2) then
8 Signal InjectorBuffer(P × li−1)
9 end

10 else if (msg is incoming) then
11 if (BurstCount 6= 0) then
12 li−1 ← BurstCount

13 BurstCount ← 0
14 end
15 end
16 end

the outgoing messages. Inject Buffer is a non-block function
that only captures the injection signal from Burst Observer.
It maintains an injection buffer that duplicates and stores
the previous outgoing ACK message for injecting messages
without delay. Note that the previous ACK will be ignored by
the server due to the TCP protocol operation.

V. EXPERIMENTS AND EVALUATION

A. Dataset

To evaluate the efficiency of WF defense techniques, we
obtained the WF datasets collected by Sirinam et al. [7]. A
brief description of the utilized datasets is in the following.
Closed-World Setting (CWS). Sirinam et al. [7] collected
fingerprints of websites by visiting the homepage of each of
the top Alexa 100 sites for 1250 times using tor-browser-
crawler [4]. Corrupted and short traffic traces are discarded
in a pre-processing phase. The final dataset contained 1000
visit traces of 95 known websites.
Open-World Setting (OWS). For an open-world dataset,
Sirinam et al. visited the top Alexa 50,000 sites excluding
the first 100 websites used in the closed-world dataset. They
obtained a trace of each visited website, then they filtered the
corrupted traces, along with access denied and blank pages
responses. The final open-world dataset consists of 40,716
unmonitored traffic traces along with the 95,000 monitored
traffic traces from the closed-world dataset.
Data Representation. Each visit of a website is considered
as a sample, where each sample is represented by a vector of
size 1 × 5000 indicating the direction of the packets (−1 for
incoming and +1 for outgoing). For training purposes, each
website is identified with a unique integer number. The label of
a sample is the corresponding website identifier. In the open-
world, all the samples of unmonitored websites were labeled
with a single identifier.

B. Implementation

This section provides details into our system implementa-
tion, including The deep learning based WF attacks and DFD.

1

Input Data

Fully Connected Layer

Fully Connected Layer

Max Pooling

Dropout

Fully Connected Layer

Dropout

ReLU

ReLU

ReLU

Prediction

Repeat 2 times

Repeat 2 times

Flatten

(a) DNN-based WF attack

1

Input Data

Convolutional Layer

Convolutional Layer

Max Pooling

Dropout

Fully Connected Layer

Dropout

ReLU

ReLU

ReLU

Prediction

Repeat 4 times

Repeat 2 times

Flatten

(b) CNN-based WF attack

Figure 5. The general architecture of the designed DL-based WF attacks.

1) DL-based WF Implementation: We evaluated the perfor-
mance of the DFD over two deep learning-based WF attacks.
These models are trained over a large closed-world dataset,
described in subsection V-A. In the following, we provide a
brief description of the implementation of these WF attacks.
DNN-based WF Attack. Based on the characteristics of
DNNs, i.e., extracting representative features automatically,
we designed a DNN-based network to identify the Tor users’
visited websites. The general architecture is shown in 5(a).
The model is composed of two main blocks. The first block
contains two fully connected layers with ReLU activation
function, followed by max pooling and dropout layers. The
second block consists of one fully connected layer with ReLU
activation, followed by a dropout layer. We set the number of
epochs to 50, a batch size of 256, and a filter size of 64.
CNN-based WF Attack. The general structure of our design
for the CNN model is shown in 5(b). The implemented CNN
consists of two main blocks: convolutional layers and fully
connected layers. The first block consists of two consecutive
convolutional layers with ReLU activation function, followed
by max pooling and dropout layers. The second block consists
of a fully connected layer with ReLU activation function,
followed by a dropout layer. We set the number of epochs
to 50, with a batch size of 256 and a filter size of 64.

2) DFD Implementation: To evaluate our DFD, we devel-
oped two operation modes for different injection scenarios,
namely one-way injection and two-way injection.
One-way Injection (OWI). In one-way injection, dummy
message injection can be performed by either the client or the
server-side. For website surfing, the client-side injection results
in less bandwidth overhead and a reasonable misclassification
rate. Moreover, the implementation of one-way injection can
be done without modifying the server-side codes.
Two-way Injection (TWI). In two-way injection, we use the
symmetric and asymmetric injections. The purpose of the two-
way injection is for a higher misclassification rate at the cost
of increasing the bandwidth overhead. For our implementation,
we need to modify both the client and the server code. For
simplicity, and instead of modifying the web server, we can

Table I
THE CLASSIFICATION ACCURACY RATE OF THE THREAT MODELS AGAINST
CLOSED-WORLD DATASETS. * THE MAXIMUM THEORETICAL ACCURACY

AGAINST W-T IS 50%.

Threat Model No Defense WTF-PAD W-T*
DNN 97.99% 80.65% 36.32%
CNN 99.93% 97.94% 49.52%

Table II
THE CLASSIFICATION ACCURACY RATE OF THE THREAT MODELS AGAINST

OPEN-WORLD DATASETS. * THE MAXIMUM THEORETICAL ACCURACY
AGAINST W-T IS 50%.

Threat Model No Defense WTF-PAD W-T*
DNN 71.50% 31.33% 25.95%
CNN 96.93% 81.80% 37.52%

apply our scheme in the entry server (i.e., bridge or proxy)
which is a volunteer of the Tor network (See Figure 1).

C. Results

In order to provide a better understanding of our finding,
this section is broken down into two main parts: 1) WF
attacks evaluation and 2) DFD evaluation. We evaluated the
performance of both deep learning-based WF attacks and DFD
approach over both closed-world and open-world datasets.
Assumptions. We assume that the adversary can obtain all the
network traffic from the client to Tor network and vice versa.
Moreover, and as mentioned earlier, the adversary has only
passive access to the network traffic.

1) WF Attacks Evaluation: In the following, we evaluate
the performance of our deep learning-based WF attacks in the
closed-world and open-world settings.
CWS . We built our DL-based WF attacks based on the

collected network traces in the closed-world scenario. The
closed-world traffic is categorized into defended, with WTF-
PAD and W-T methods, and undefended traces. We trained
CNN and DNN models for each of these categories. The
performance of each of these WF attacks is listed in detail
in Table I. As it can be seen, both CNN and DNN models
are able to achieve high accuracy rates—99.93% and 97.99%,
respectively—for the undefended dataset. Note that for the
case of W-T any threat model can theoretically obtain at most
50% of accuracy rate [24]. Thus, the obtained result of 49.52%
classification accuracy rate is quite reasonable. Although the
performance of the DNN model drops for the defended
datasets, the performance of CNN model remains high. This
is quite justifiable given that the convoluted structure provides
better feature extraction, thus classification accuracy.
OWS . We trained our CNN and DNN WF attacks in the

open-world settings. All steps taken are similar to the closed-
world setting, and the classification results are in Table II.
In comparison to the closed-world scenario, the performance
has decreased. This is because of the increased size of the
data and accordingly the complexity of the classification task.
Similar to the closed-world scenario, the performance of the

CNN model is higher than DNN model in both the defended
and the undefended datasets. This can be inferred as smaller
confidence of the DNN model compared to the CNN model.

2) DFD Evaluation: Generally, machine/deep learning-
based WF models learn the inherent pattern of the Tor
users’ online activity from his network traffic. Therefore, any
potential defense mechanism should be able to break the
pattern such that the adversary cannot identify the Tor users’
destination. Such patterns can be broken by injecting dummy
messages at the client-side only or both client and server sides.
OWI . In one-way injection, the dummy messages are in-

jected in every outgoing burst. The injection is performed in
either the client or the server. To observe which side injection
has more impact on breaking the patterns, we performed two
individual experiments by varying the perturbation rate (P).

• Client-side Injection (CSI). Here, we inject the dummy
messages in each burst based on the length of the previous
burst. We argue that injection of dummy messages using
this approach is more logical. We evaluated the perfor-
mance of this approach using closed-world and open-
world undefended datasets. The misclassification rate of
DFD using the different perturbation rates is shown
in Figure 6 and Figure 7. As it can be seen, the higher the
perturbation rate, the higher is the misclassification rate
as well. For instance, DFD achieved a misclassification
rate of 86.02% over the CNN model.

• Server-side Injection (SSI). Unlike client-side injec-
tion, here we injected dummy messages only on the
server-side. The performance of this approach is eval-
uated based on both the closed-world and open-world
settings. Figure 8 and Figure 9 demonstrate the misclas-
sification rate of the DL-based WF attacks using different
perturbation rates. We found that the misclassification
rate increases at higher perturbation rates. Specifically,
in the closed-world setting, the misclassification rate at
25% and 50% perturbation rate were 67.43% and 82.8%,
respectively. The misclassification rate increases up to
94.52% using 100% perturbation rate over the CNN
model. The same trend is seen in the open-world setting.

Observation. In these experiments, we found that the server-
side injection significantly impacts the misclassification rate,
in compare to the client-size injection.
TWI . The two-way injection approach is similar to the

one-way injection, although dummy messages are injected at
both the client and server. To observe the impact of each
injection side (i.e., client or server), we performed extensive
experiments based on the symmetric and asymmetric injection.

• Symmetric injection (SI) Here, the percentage of
incoming and outgoing dummy messages are equally
changed from 1% to 25%. Figure 10 and Figure 11 show
the misclassification of the two-way injection method for
closed-world and open-world settings using six pertur-
bation rates. We observed that the misclassification rate
varies from 65.07% (P = 1%) to 67.77% (P = 25%) for
the CNN model over the closed-world setting.

 65

 70

 75

 80

 85

 90

5 10 25 50 75 100

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 6. Misclassification rate of
OWI-CSI in CWS .

 65

 70

 75

 80

 85

 90

 95

5 10 25 50 75 100

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 7. Misclassification rate of
OWI-CSI in OWS .

 65

 70

 75

 80

 85

 90

 95

 100

5 10 25 50 75 100

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 8. Misclassification rate of
OWI-SSI in CWS .

 65

 70

 75

 80

 85

 90

 95

 100

5 10 25 50 75 100

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 9. Misclassification rate of
OWI-SSI in OWS .

• Asymmetric injection (AI). Unlike the symmetric in-
jection, here, we fixed the percentage of either the client-
side or the server-side’s dummy message injection rate
and explored the behavior of the model under different
injection rates on the other side.
Fixed towards client-side (FTCS). In this experiment,
we fixed the perturbation rate at the client-side to 100%,
while the injection rate at the server side is varied from
5% to 100%. Figure 14 and Figure 15 show the closed-
world and open-world experiment results, respectively.
We observed that there is a positive correlation between
the misclassification and injection rates. We observed
that as the injection rate at the client-side increases, the
misclassification rate increases over the CNN model.
Fixed towards server-side (FTSS). We fixed the pertur-
bation rate at the server side to 15%, while the injection
rate at the client side is varied from 5% to 100%. Fig-
ure 12 and Figure 13 depict the misclassification rate over
the closed-world and open-world settings, respectively.
We observed that as the injection rate at the client-side
increases, the misclassification rate increases.

Observations. We observed that we could achieve almost
the same misclassification rate of 67.77% using both 25%
perturbation rate for one-way client-side and two-way sym-
metric injections. In addition, in the asymmetric experiment,
we achieve a misclassification rate of 86.02% and 85.76%
using 100% and 15% injection rates at the client and server-
side, respectively. Where nearly the same misclassification rate
can be achieved using one-way injection method at the client-
side (P = 100%). Therefore, we argue that one-way client-
side injection is, in general, equivalent to two-way injection
approach in terms of the misclassification rate.
Defense-aware Adversary. Similar to WTF-PAD and W-T,
we evaluate our proposed approach performance in defending
against adversaries fully aware of the used defense method,
and the underneath machine learning architecture. To this
end, we trained CNN and DNN models on closed-world
samples generated from DFD (i.e., two-way injection: client
15% and server 25%). The CNN and DNN models achieved
a remarkable results of 97.37% and 76.91% in identifying
traces websites, respectively. This performance is caused by
the injection, as it depends on the original traces length. While
the extracted patterns are not similar to the original patterns,
deep learning models were able to learn and distinguish

Table III
CWS : BANDWIDTH OVERHEAD USING DIFFERENT CONFIGURATIONS.

HERE, BO: BANDWIDTH OVERHEAD AND MR: MISCLASSIFICATION RATE.

Operation Method P (Out) P (In) BO MR

One-way (client-side)
50% 0% 7.21% 66.07%
75% 0% 10.80% 66.93%

100% 0% 14.43% 86.02%

One-way (server-side)
0% 50% 42.78% 82.80%
0% 75% 64.17% 90.73%
0% 100% 85.56% 94.52%

Two-way (symmetric)
5% 5% 5.00% 65.00%
15% 15% 15.00% 65.79%
25% 25% 25.00% 67.77%

Two-way (asymmetric)
50% 15% 20.05% 80.08%
75% 15% 23.66% 81.15%

100% 15% 27.27% 85.76%

Table IV
OWS :BANDWIDTH OVERHEAD USING DIFFERENT CONFIGURATIONS.

HERE, BO: BANDWIDTH OVERHEAD AND MR: MISCLASSIFICATION RATE.

Operation Method P (Out) P (In) BO MR

One-way (client-side)
50% 0% 7.13% 68.95%
75% 0% 10.69% 71.99%

100% 0% 14.26% 92.71%

One-way (server-side)
0% 50% 42.86% 87.50%
0% 75% 64.38% 93.20%
0% 100% 85.73% 96.24%

Two-way (symmetric)
5% 5% 5.00% 66.98%
15% 15% 15.00% 67.63%
25% 25% 25.00% 71.72%

Two-way (asymmetric)
50% 15% 19.99% 89.19%
75% 15% 23.55% 89.63%

100% 15% 27.12% 92.66%

between websites. We observed similar results in the open-
world setting, where the accuracy were 89.20% for CNN
model and 73.05% for DNN model. To highlight this issue,
we investigated the effect of changing the injection rate on
the performance of the trained model. To do so, we applied
DFD with two-way injection (client 25% and server 100%) on
closed-world traces, achieving a detection accuracy of 12.25%
and 3.36% for CNN and DNN trained models, respectively.
Similarly, we achieved a detection accuracy of 17.47% for
CNN model, and 53.37% for DNN models under same settings
on open-world traces. Due to DFD design, and the ease of
changing the injection rate (P), adapting a dynamic injection
rate (i.e., automatic update of P) prevents the exposure of the

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84

1 5 10 15 20 25

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 10. Misclassification rate of
TWI-SI in CWS . CSI and SSI

are changed equally.

 65

 70

 75

 80

 85

 90

1 5 10 15 20 25

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 11. Misclassification rate of
TWI-SI in OWS . CSI and SSI

are changed equally.

 65

 70

 75

 80

 85

 90

5 10 25 50 75 100

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 12. Misclassification rate of
TWI-AI in CWS . SSI is fixed to

15%, while CSI is changed.

 65

 70

 75

 80

 85

 90

 95

5 10 25 50 75 100

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 13. Misclassification rate of
TWI-AI in OWS . SSI is fixed to

15%, while CSI is changed.

 82

 84

 86

 88

 90

 92

 94

 96

5 10 25 50 75 100

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 14. Misclassification rate of
TWI-AI in CWS . CSI is fixed

to 100%, while SSI is changed.

 86

 88

 90

 92

 94

 96

 98

 100

5 10 25 50 75 100

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

Perturbation (%)

CNN DNN

Figure 15. Misclassification rate of
TWI-AI in OWS . CSI is fixed

to 100%, while SSI is changed.

users’ patterns, resulting in a secure website visiting.

D. Discussion

We introduced DFD to break the inherent pattern observed
while visiting websites and used to break the privacy of Tor. In
line with previous defenses, the message injection is carried
out within bursts. However, DFD injects the messages over
each burst, where the number of injected messages is decided
by two factors: 1) the previous burst length and 2) perturbation
rate. Injecting at each burst ensures the destruction of the
existing patterns utilized by The deep learning model. Our
evaluations show a high correlation between the misclassifica-
tion rate and the perturbation rate.
Trade-off. Through our experiments, we conclude that the
burst injection of both the client-side and server-side has
a significant impact in terms of the misclassification rate.
Although the increase of injection ratio leads to a higher
misclassification rate, they cause a huge increase in bandwidth
overhead, which degrades the user experience. In the one-
way injection scenario, the outgoing bandwidth overhead is
equivalent to the perturbation rate of outgoing traffic. Whereas,
the overall bandwidth overhead of the two-way symmetric
injection is the perturbation rate of the entire traffic (i.e., in-
coming and outgoing). Obviously, two-way injection presents
a higher bandwidth overhead compared to the one-way in-
jection. To show the trade-off, we list the average bandwidth
overhead and the corresponding misclassification rate for each
injection mode (i.e., one-way, two-way symmetric, two-way
asymmetric) in Table III and Table IV. Moreover, as shown
in Figure 16 and Figure 17, the fraction of the outgoing
messages is way smaller than that of incoming messages for
most traces, which enables us to apply higher injection rates at
the client-side without significantly increasing the bandwidth
overhead. This can be illustrated by the bandwidth overhead

0 0.2 0.4 0.6 0.8 1
Volume (normalized)

0

0.2

0.4

0.6

0.8

1

C
D

F
of

 tr
ac

es

Outgoing Incoming

Figure 16. CDF of traces with out-
going/incoming volumes in CWS .

0 0.2 0.4 0.6 0.8 1
Volume (normalized)

0

0.2

0.4

0.6

0.8

1

C
D

F
of

 tr
ac

es

Outgoing Incoming

Figure 17. CDF of traces with out-
going/incoming volumes in OWS .

of 14.43% in 100% client-side perturbation rate, which is
less than 15% two-way symmetric injection while providing
25.08% more of the misclassification rate. The same pattern
can also be observed from the one-way server-side injection,
where injecting at 50% rate will cause a bandwidth overhead
of 42.86%. Overall, the one-way client-side injection with
100% perturbation rate presents the best misclassification to
bandwidth overhead trade-off.

VI. CONCLUSION

In this paper, we introduced a novel Website Fingerprinting
(WF) defense scheme, called Deep Fingerprinting Defender
(DFD), to defend against deep learning-based attacks. In its
heart, DFD carefully inject dummy messages within every
traffic burst generated by the communication between the
Tor client and server. DFD supports one-way and two-way
injection modes for users to handle trade-off between mis-
classification rate and overhead on demand. In the open-world
setting, DFD achieved 86.02% misclassification rate with only
14.43% of bandwidth overhead. Further, in the close-world
setting, the misclassification rate was as high as 92.71% with
the similar bandwidth overhead (14.26%). We evaluated the
performance of DFD against adversaries with prior knowledge
of our injection mechanism. We found that applying DFD with
automatic update of the injection rate can mitigate the deep
learning-based WF attacks effects, concealing the patterns and
providing a secure website visiting behavior.

ACKNOWLEDGEMENT

This research was supported by Global Research Laboratory
Program by the National Research Foundation of Korea (NRF-
2016K1A1A2912757) and a CyberFlorida Capacity Building
Award.

REFERENCES

[1] “Users-tor metrics.” [Online]. Available: https://metrics.torproject.org/
userstats-relay-country.html

[2] “Tor network status.” [Online]. Available: http://torstatus.blutmagie.de/
[3] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:

attacking popular privacy enhancing technologies with the multinomial
naïve-bayes classifier,” in Proceedings of the 2009 ACM workshop on
Cloud computing security, 2009, pp. 31–42.

[4] M. Juárez, S. Afroz, G. Acar, C. Díaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
2014, pp. 263–274.

[5] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale,” in Proceedings
of the 23rd Annual Network and Distributed System Security Symposium,
NDSS, 2016.

[6] T. Wang and I. Goldberg, “On realistically attacking tor with website
fingerprinting,” PoPETs, vol. 2016, no. 4, pp. 21–36, 2016.

[7] P. Sirinam, M. Imani, M. Juárez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS, 2018, pp. 1928–1943.

[8] V. Rimmer, D. Preuveneers, M. Juárez, T. van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in Proceed-
ings of the 25th Annual Network and Distributed System Security
Symposium, NDSS, 2018.

[9] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting.” in Proceedings
of the USENIX Security Symposium, 2014, pp. 143–157.

[10] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique,” in Proceedings of the USENIX Security Sym-
posium, 2016, pp. 1187–1203.

[11] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in Proceedings
of the 23rd USENIX Security Symposium, 2014, pp. 143–157.

[12] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 227–238.

[13] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an
efficient website fingerprinting defense,” in Proceedings of the European
Symposium on Research in Computer Security, 2016, pp. 27–46.

[14] A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern
recognition using rbf neural network with new training algorithm and
practical features,” ISA transactions, 2018.

[15] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: high-fidelity,
behavior-based automated malware analysis and classification,” Com-
puters & Security, vol. 52, pp. 251–266, 2015.

[16] J. Niu, Y. Liu, M. Guizani, and Z. Ouyang, “Deep cnn-based real-time
traffic light detector for self-driving vehicles,” IEEE Transactions on
Mobile Computing, 2019.

[17] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang, “Large-scale
and language-oblivious code authorship identification,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS, 2018, pp. 101–114.

[18] M. Abuhamad, J. Rhim, T. AbuHmed, S. Ullah, S. Kang, and D. Nyang,
“Code authorship identification using convolutional neural networks,”
Future Generation Computer Systems, vol. 95, pp. 104–115, 2019.

[19] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,
A. Awad, D. Nyang, and A. Mohaisen, “Analyzing and detecting
emerging internet of things malware: A graph-based approach,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8977–8988, 2019.

[20] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based iot mal-
ware detection systems,” in 39th IEEE International Conference on
Distributed Computing Systems, ICDCS, vol. 10, 2019.

[21] A. Abusnaina, H. Alasmary, M. Abuhamad, S. Salem, D. Nyang, and
A. Mohaisen, “Subgraph-based adversarial examples against graph-
based iot malware detection systems,” in International Conference on
Computational Data and Social Networks, 2019, pp. 268–281.

[22] C. S. Ian J. Goodfellow, Jonathon Shlens, “Explaining and harnessing
adversarial examples,” in Proceedings of the International Conference
on Learning Representations., 2015.

[23] M. Imani, M. S. Rahman, and M. Wright, “Adversarial traces for website
fingerprinting defense,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 2225–2227.

[24] T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,” in Proceedings of the 26th
USENIX Security Symposium (USENIX Security 17), 2017, pp. 1375–
1390.

[25] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial
naïve-bayes classifier,” in Proceedings of the first ACM Cloud Comput-
ing Security Workshop, CCSW, 2009, pp. 31–42.

[26] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proceedings
of the 10th annual ACM workshop on Privacy in the electronic society,
WPES, 2011, pp. 103–114.

[27] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: website fingerprinting attacks and defenses,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security, CCS, 2012, pp. 605–616.

[28] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,”
in Proceedings of the 12th annual ACM Workshop on Privacy in the
Electronic Society, WPES, 2013, pp. 201–212.

[29] K. Abe and S. Goto, “Fingerprinting attack on tor anonymity using deep
learning,” Proceedings of the Asia-Pacific Advanced Network, vol. 42,
pp. 15–20, 2016.

[30] D. Lu, S. Bhat, A. Kwon, and S. Devadas, “Dynaflow: An efficient
website fingerprinting defense based on dynamically-adjusting flows,” in
Proceedings of the 2018 Workshop on Privacy in the Electronic Society,
2018, pp. 109–113.

[31] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
Proceedings of the IEEE Symposium on Security and Privacy, S&P,
2012, pp. 332–346.

[32] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 227–238.

[33] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society, 2014, pp. 121–130.

[34] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
IEEE European Symposium on Security and Privacy, EuroS&P, 2016,
pp. 372–387.

[35] A. Abusnaina, A. Khormali, D. Nyang, M. Yuksel, and A. Mohaisen,
“Examining the robustness of learning-based ddos detection in software
defined networks,” in 2019 IEEE Conference on Dependable and Secure
Computing (DSC). IEEE, 2019, pp. 1–8.

[36] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proceedings
of the 10th annual ACM workshop on Privacy in the electronic society,
2011, pp. 103–114.

[37] “A critique of website traffic fingerprinting attacks,”
Nov 2013. [Online]. Available: https://blog.torproject.org/
critique-website-traffic-fingerprinting-attacks

[38] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[39] “Deep learning and machine learning differences:
Recent views in an ongoing debate,” Mar
2017. [Online]. Available: http://www.dataversity.net/
deep-learning-machine-learning-differences-recent-views-ongoing-debate/

[40] V. Shmatikov and M. Wang, “Timing analysis in low-latency mix
networks: Attacks and defenses,” in Proceedings of the 2006 European
Symposium on Research in Computer Security, ESORICS, 2006, pp. 18–
33.

[41] M. Allman, “On the generation and use of tcp acknowledgments,” ACM
SIGCOMM Computer Communication Review, vol. 28, no. 5, pp. 4–21,
1998.

[42] K. Liu and J. Y. Lee, “On improving tcp performance over mobile data
networks,” IEEE Transactions on Mobile Computing, vol. 15, no. 10,
pp. 2522–2536, 2016.

https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
http://torstatus.blutmagie.de/
https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks
http://www.dataversity.net/deep-learning-machine-learning-differences-recent-views-ongoing-debate/
http://www.dataversity.net/deep-learning-machine-learning-differences-recent-views-ongoing-debate/

