
2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

1

Two-Stage IoT Device Scheduling with Dynamic
Programming for Energy Internet Systems

Laihyuk Park, Chunghyun Lee, Joongheon Kim, Aziz Mohaisen, and Sungrae Cho

Abstract—With the rapid evolution of electric systems, there
has been a significant demand for Energy Internet (EI) systems
that allow sustainable and environmentally friendly energy man-
agement. Several research efforts regarding EI systems have
been aimed at providing reliable, efficient, and cost-effective
techniques. In this paper, we propose a novel algorithm and
system for real-time electricity pricing and scheduling. Our
algorithm consists of a two-stage operation. The first stage
performs real-time pricing to determine the maximum electricity
consumption while the second stage performs Internet of Things
(IoT) device scheduling. In the second stage, the optimization
framework for scheduling is modeled as a 0-1 Knapsack problem;
therefore, the solutions to the optimization problem are computed
using a dynamic programming framework. Through intensive
simulations with well-defined parameters, it is verified that the
proposed scheme provides several features, especially reductions
in electricity bills with the appropriate parameter settings.

Index Terms—Energy management problem, dynamic pro-
gramming, IoT device scheduling, 0-1 Knapsack problem.

I. INTRODUCTION

Recently, there have been considerable efforts to minimize
fossil fuel usage, given that fossil fuels have been one of
the major contributors to various environmental problems
leading to global warming [1]–[4]. On the other hand, global
electricity consumption has significantly increased over the
past decade [1]–[4], making it difficult to address energy
needs in the face of fluctuating yet increasing energy demands.
Electric power retailers who try to respond to these demands
rapidly must cope with the variations in these demands. To
this end, Energy Internet (EI) systems have been envisioned
as a type of future power system to address many of to-
day’s electricity problems [1]–[4]. In particular, EI systems
aim to reduce the peak electricity load and induce effec-
tive electricity consumption through an energy management
problem (EMP) in order to optimize electricity usage in an
intelligent manner [5]. The definition of EMP, which is one
of the fundamental challenges in a power system, is similar
to the demand response in a smart grid [5]. Over the past
several years, demand response researchers have focused on
incorporating and implementing different components such as
energy aggregator, dynamic pricing, and load shifting [6]–[9].
In general, the implementation of such components is aimed
at supporting cost-effective and reliable energy management

This research was supported by Korea Electric Power Corporation(Grant
Number: RX17A05-43.) (Corresponding author: Sungrae Cho.)

L. Park, C. Lee, J. Kim, and S. Cho are with School of Software, Chung-
Ang University, South Korea (email: srcho@cau.ac.kr). A. Mohaisen is with
the Department of Computer Science, University of Central Florida, Orlando,
FL 32816-2362 USA (e-mail: mohaisen@ucf.edu).

in real time. Previous studies have focused on the scheduling
of IoT devices, assuming that the aggregator gets a real time
pricing. In prior researches, exemplified by the works of Li et
al. [6] and Muratori et al. [7], EMP algorithms were proposed
for controlling peak demand and for dynamic pricing. These
previous studies had considered device scheduling assuming
that the aggregator receives real-time pricing results from the
power retailer. However, in the proposed algorithms, all of
the EI components send the resources, priorities, and other
constraints to integrate the EMP systems. Nguyen et al. [8]
presented an optimal pricing design for the distribution net-
work using a bilevel programming approach. For forecasting
the optimal pricing, they assumed that the power retailer and
EMP brokers collect the load preference information for each
hour in a day. In the EI environment, however, operations
of the IoT devices can be initiated anytime, and it is unpre-
dictable. Unlike the scheme presented in [8], the proposed
scheme determines the real-time pricing based on real-time
load information, and schedules the IoT devices. McKenna
et al. [9] proposed the load modeling of a price-based EMP
system. In [9], the device model was classified according to
the consumer occupancy, activity, device electrical, thermal
operation, and electrical demand. However, that study [9]
did not consider the delay tolerance, which is significantly
important for facilitating user convenience during IoT device
scheduling. Moreover, meaningful energy harvest-assisted ap-
proaches [10]–[13] have been proposed to handle the energy-
related issues in IoT. For large-scale EI systems, several game
theoretic approaches have been proposed recently to reduce
the computational complexity of scheduling [14]–[17]. Latifi
et al. [14] proposed a Stackelberg game based approach, in
which strategies are exchanged between the leader (power
retailer) and the followers (IoT devices). In [15], a Newton
method based algorithm was proposed for improving the
computational efficiency of finding Nash equilibrium. In [16],
a resilient distributed real-time scheduling based on population
game theory was proposed. The above game theoretic ap-
proaches have tried to reduce the computation and exchanging
strategies by customizing their methods. In an IE environment,
however, they still require a large number of iterations to
reach Nash equilibrium, which in turn result in communication
overheads among IoT devices. This shortcoming is a problem
since the communication overhead causes a large amount of
energy consumption as well as delay. The communication
overhead problem of game theoretic approach is analyzed in
[17]. In order to handle the issue, a non-iterative Stackelberg

model and a historical real time pricing algorithm were pro-
posed in [17]. However, they assumed massive manufacturing
systems where the operations of IoT devices are static. In

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

2

Fig. 1: The architectural view of an EI systems, consisting of an EMP agent that performs the pricing and communication
decisions, an EMP broker, and IoT devices. (Since all components are connected by the Internet, EMP can manage the operation
of the IoT devices by reflecting their demand.)

order to overcome the above shortcomings of prior schemes,
we propose a novel architecture1 definition for the energy
management problem of EI systems, as illustrated in Fig. 1. An
EI system consists of a number of EMP groups and each EMP
group includes an EMP agent, EMP brokers, and IoT devices.
This paper assumes that all EI components are equipped
with network interfaces such as Wi-Fi, local area network
(LAN), and power line communications (PLC). Through the
network interface, the EI components share their strategies
and information for the EMP. This networking with power
retailers or other components promises intelligent EMP since
more information can be gathered [18]. In order to solve the
EMP, this paper introduces the concept of EMP agent and
EMP broker. The EMP agent in the power retailer system
efficiently supports the scheduling of IoT devices. The EMP
agent is equipped with the electricity pricing policy of the
power retailer, and collects electricity usage requests from each
EMP broker. Based on the collected information, the real-time
pricing is calculated to aid the electricity scheduling of the
EMP broker. The EMP broker, which is located between the
power retailer and the IoT device, manages the IoT device’s
operational schedule to accommodate both requests. For our
system architecture, this paper proposes a two-stage approach
with dynamic programming for IoT device scheduling (also
called admission control for IoT devices) in the EMP of the
EI system. The first stage involves taking the decision of real-

1To resolve the communication overhead and computational efficiency in
massive EI systems, the proposed architecture is hierarchical and central-
ized. In contrast with previous works, the proposed scheme exchanges the
information once in each timeslot via hierarchical architecture. In addition,
the centralized EMP broker schedules grouped IoT devices, which improves
computational efficiency.

time pricing. This real-time pricing is computed by a pricing
decision entity in the power retailer EMP agent. If an IoT
device is scheduled for operation, it sends an admission request
to the EMP broker through its network interface. In each time
slot, the EMP broker forwards the collected admission requests
to the centralized EMP agent through the Internet. Therefore,
the EMP agent can compute in real time the pricing of the next
time slot based on these requests in a centralized manner.

The second stage in our approach is delay tolerant IoT
device scheduling. When the EMP agent decides in real-time
the pricing of the next time slot, it will inform the EMP brokers
of the pricing results. Based on the obtained real-time pricing
information, the EMP broker conducts IoT device scheduling
(i.e., admission control) and announces the results to the IoT
devices. In the second stage, the IoT device scheduling scheme
is modeled as a 0-1 Knapsack problem considering the delays.
According to the 0-1 Knapsack modeling, the solutions of
this optimization framework can be derived via a dynamic
programming-based technique in pseudo-polynomial time.

The rest of this paper is organized as follows. Section II
provides the basic assumptions, system models, and cor-
responding optimization problems. Section III presents the
proposed two-stage algorithm, which is inspired by the 0-
1 Knapsack formulation and dynamic programming-based
solution approaches. In Section IV, the performance of the
proposed scheme is evaluated through intensive simulations
of its various aspects, and the conclusions of this paper and
future research directions are summarized in Section V.

II. SYSTEM MODELS

Before delving into the details of our approach, we intro-
duce the preliminaries in this section. Namely, we review the

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

3

Fig. 2: State diagrams of three types of IoT devices used
in our system: a) non-interruptible, (b) interruptible and (c)
emergency.

basic assumptions and definitions in Subsection II-A, pricing
decision models in Subsection II-B, and admission control
models in Subsection II-C.

A. Basic Assumptions and Definitions

In this paper, in order to formulate the models considered
for the EMP of the EI system, the time scale is assumed to
be divided into equivalent time slots t such that

t ∈ T , where T = {1, 2, 3, · · · , T} . (1)

The time slot can be represented using any unit of time;
for simplicity, an hour is taken as the unit time in this paper.
Note that the proposed algorithms in this paper are scalable,
i.e., the algorithms can work as desired with any time scale.

In this paper, the notations for the set of IoT devices that
belong to the m-th EMP broker is defined as Am, i.e.,

Am =
{
a(m,1), a(m,2), · · · , a(m,n), · · · , a(m,Nm)

}
, (2)

where m indicates the index of the EMP broker and Nm

represents the total number of IoT devices that belong to the
m-th EMP broker.

This paper also assumes that an IoT device a(m,n) consumes
Eon

(m,n) energy per time slot t during operation.
Some IoT devices may consume electricity continuously. On

the other hand, some IoT devices (especially, those equipped
with a lithium battery) may consume electric power intermit-
tently. For example, a smart robotic vacuum does not need to
be continuously charged before its actual operation. Therefore,
this paper categorizes the given IoT devices according to how
controllable they are with respect to the energy consumption
as follows:

1) Non-interruptible IoT devices. There are some IoT de-
vices that cannot be suspended during operation. These
IoT devices are referred to non-interruptible IoT devices,
for example, smart dishwashers and smart washing ma-
chines. When an EI system operates its own scheduling
strategies, the non-interruptable IoT devices should be
scheduled continuously (without any suspension). For
more clarity, Fig. 2 (a) shows the state diagram of
non-interruptable IoT devices. When the IoT device is

not in operation in the given time slots, it sleeps. If
it receives an operation command from the centralized
load controller, it will wait until its scheduled time to
be activated for operation.

2) Interruptible IoT devices. In contrast with non-
interruptible IoT devices, some IoT devices can be sus-
pended during operation. These IoT devices are referred
to interruptible IoT devices, for example, house Heat
Ventilation Air Conditioning (HVAC), water heaters, and
Plugged Hybrid Electric Vehicles (PHEVs). They can
be scheduled at discrete times in order to avoid peak
load increase. Fig. 2 (b) shows the state diagram of
interruptible IoT devices; when the IoT device in not
in the operation, it sleeps. If the IoT device receives an
operation command from the load controller, it will wait
until the scheduled time of operation, and then it will be
activated. After activation, its operation can be stopped,
and then it will operate for the remainder of the jobs.

3) Emergency IoT devices There are some IoT devices
that should be activated immediately when their op-
erations are initiated. These IoT devices are referred
to as emergency IoT devices, for example, fire alarm,
flame sensor, and flammable gas detector. They should
be scheduled immediately since they are time-critical
IoT devices. Fig. 2 (c) shows the state diagram of
emergency IoT devices. In contrast with interruptible or
non-interruptible devices, their operations are not paused
when they wake up.

The parameter φ(m,n) denotes the IoT device controllable
type a(m,n) and is represented as

φ(m,n) ∈ [IT,NIT,ED], (3)

where IT stands for an interruptible IoT device, NIT stands
for a non-interruptible IoT device, and ED stands for an
emergency IoT device. In our system, interruptible and non-
interruptible IoT devices may not operate immediately upon
receiving an operation request from the system user. Therefore,
in this paper, it is assumed that the user can set the tolerance
delay for each IoT device (a(m,n)), which is denoted by τ(m,n).
For example, if a user wants the operation of a(m,n) to be
completed within the next 5 hours and the time slot unit is 1
hour, τ(m,n) will be set to 5. In this paper, it is assumed that
the user can set the threshold of the electricity bill for each
EMP broker for a time slot t. For this purpose, Pt

m is defined
as the threshold of the m-th EMP broker for time slot t. For
example, the summation of electricity bills for all IoT devices
belonging to the m-th EMP broker at time slot t should not
exceed γ dollars if Pt

m is set to γ dollars. It is assumed that
all the EMP brokers set Pt

m to infinity by default, i.e., all
admissions will be accepted with a default value. Then, the
users can configure the thresholds if they need to reduce the
electricity bill.

B. Pricing Decision Models

In our EMP for the EI system, real-time pricing is de-
termined by a centralized EMP agent in the power retailer
system. The EMP agent decides the real-time pricing based

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

4

on the electricity consumption in each time slot. In this paper,
Et denotes the electricity consumption at time slot t, and the
total electricity pricing at time slot t (referred to as Bt(·)) is
described as follows:

Bt(Et) , αt

(
Et2

)
+ βtE

t + γt, (4)

where αt ≥ 0 and βt, γt ≥ 0 at each hour t ∈ T [19], [20].
The parameter pt denotes the real-time pricing. This can be

calculated by

pt ,
Bt(Et)

Et
. (5)

In this paper, it is assumed that the EMP agent announces
the approximated value of pt before t. In order to approximate
pt, the EMP agent collects the amounts of electricity require by
IoT devices from all the deployed EMP brokers. In our EMP
for the EI system, the system broadcasts admission requests to
all the deployed EMP brokers through their network interface
when an IoT device initiates an operation. The admission
request of a(m,n) is represented by

REQ(m,n) , [a(m,n), φ(m,n), E
on
(m,n), ρ(m,n), τ(m,n)] , (6)

where a(m,n) stands for an IoT device that requests admission,
φ(m,n) stands for the IoT device type, ρ(m,n) indicates the
required operating time, and τ(m,n) is a delay tolerance time
2. In the proposed system, τ(m,n) decreases at every timeslot,
and ρ(m,n) decreases when REQ(m,n) is operated.

When an EMP broker receives admission requests, it stores
the requests in its reservation buffer, which is denoted by
RBm. RBm is represented by the set of REQ(m,n), and can
be described by

RBm = [REQ(m,1),REQ(m,2), · · · ,REQ(m,|RBm|)], (7)

where |RBm| is the number of REQ(m,n) in RBm.
In each time slot, each EMP broker sends the abstract

information regarding the reservation buffer to the EMP agent
to obtain real-time pricing. The reason that the EMP broker
delivers abstract information instead of its reservation buffer
is to prevent information loss due to Internet congestion. In
this case, RBAt

m is referred to as the abstract information of
the m-th EMP broker at time slot t, which can be modeled as
follows:

RBAt
m ,

[
Pt
m,MaxEt

m,MinEt
m

]
, (8)

where MaxEt
m stands for the required maximum electricity

amount for IoT devices that belong to the m-th EMP broker at
time slot t (i.e., the m-th EMP broker would like to consume
MaxEt

m, if available) and MinEt
m stands for the required

minimum electricity amount for IoT devices that belong to
m-th EMP broker at time slot t (i.e., m-th EMP broker will
at least consume MinEt

m in the given time slot t).
Then, MaxEt

m is determined by the m-th EMP broker and

2 Since the EI system can become larger with thousands or even millions
of devices, the users cannot completely set all the delay tolerances of the
IoT devices. Therefore, we assume that the default delay tolerance of the IoT
device can be set according to the application. Then, the users can configure
the delay tolerances of the IoT device according to their preference.

can be calculated as follows:

MaxEt
m ,

|RBm|∑
i=1

Eon
(m,i). (9)

Consequently, MinEt
m will be also determined by the m-th

EMP broker and can be calculated as follows:

MinEt
m ,

|RBm|∑
i=1

⌊
ρ(m,i)

τ(m,i)

⌋
· Eon

(m,i). (10)

C. Admission Control Models

As mentioned previously, the users in our system are able to
set Pt

m in order to control the final electricity bills. Depending
on the determined Pt

m and pt, which can be obtained from
the EMP agent, each EMP broker affects the limitation of
electricity in each time slot t. In this paper, Ψt

m is defined as
the limitation of electricity in each time slot t, and this Ψt

m

can be obtained as follows:

Ψt
m =

Pt
m

pt
. (11)

When an EMP broker decides Ψt, it conducts its own
admission control for the IoT devices in RBm. The scheduling
vector xi, where xi ∈ {0, 1}, determines whether an IoT
device ai is scheduled or not. Obviously, xi = 1 when the
IoT device ai is scheduled, and vice versa. The optimization
problem considered in this paper aims to maximize user
satisfaction, and it is assumed that the user is satisfied when an
IoT device is operated within the pre-defined delay tolerance
time. Therefore, the corresponding objective function of the
optimization problem can be formulated as:

maximize
|RBm|∑
i=1

ρ(m,i)

τ(m,i)
· xi, (12)

subject to

|RBm|∑
i=1

Eon
(m,i) · xi ≤ Ψt

m, (13)

xi ∈ {0, 1},∀i, (14)

where i ∈ {1, · · · , |RBm|}. The values of ρ(m,i), τ(m,i),
Eon

(m,i), and |RBm| are taken from RBm, and Ψt
m is cal-

culated using (11).
It is not difficult to see that this is a conventional 0-

1 Knapsack problem, given that all the values except xi
are constants. If an IoT device ai is scheduled (i.e., xi is
determined to be 1) with the optimization framework (12)-
(14), this information (CFM(m,i)) is stored in the working
buffer (WBm) of the EMP broker. The working buffer is
described by

WBm =
[
CFM(m,1), · · · , CFM|WBm|

]
, (15)

where |WBm| stands for the number of CFM(m,i) in WBm.
Before starting time slot t, the CFM(m,i) in WBm are
delivered to the IoT devices in order to announce the results
of the admission control procedures.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

5

Fig. 3: Phases in each time slot.

The proposed model can also be applied to energy har-
vesting environments. If the IoT device is equipped with an
energy generation device and a battery, the generated energy
can be stored in its battery. In this environment, Eon

(m,n) of the
admission request should be recalculated since the device can
use the harvested energy. Accordingly, let ht(m,n) denotes the
amount of stored electricity of IoT device a(m,n) at timeslot
t. Then, Eon

(m,n) is updated as follows:

Eon
(m,n) ⇐ max

(
Eon

(m,n) · ρ(m,n) − ht(m,n)

ρ(m,n)
, 0

)
(16)

III. IOT DEVICE SCHEDULING ALGORITHMS

In this section, we provide detailed descriptions of the
proposed IoT device scheduling algorithms.

Fig. 3 shows the detailed operations of our system in each
time slot. As shown in Fig. 3, each time slot is divided
into multiple phases, including idle, reservation buffer abstract
(RBA) transmission phase, real-time pricing (RTP) decision
phase, RTP announcement phase, admission control phase,
and confirmation (CFM) announcement phase. For all of the
defined phases in each time slot, an IoT device can send
an admission request message to the EMP broker through
its network interface. However, only requests that are not
sent until the RBA transmission phase are considered for
approximating the real-time pricing. In the RBA transmission
phase, each EMP broker transmits RBAt

m to the centralized
EMP agent through the Internet. According to (8), (9), and
(10), the EMP broker generates RBAt

m from RBm.
During the real-time pricing decision phase, the proposed

EMP agent calculates the real-time pricing information for the
operation of the next time slot. In this formulation, ktm denotes
the amount of electricity expected for the IoT devices that
belong to the m-th EMP broker in each time slot t. RBAt

m

contains the upper limit of the electricity bill in each time
slot t. Based on this definition, the following constraint can
be derived:

ktm · pt ≤ Pt
m. (17)

Algorithm 1: IoT device scheduling (admission control for
IoT devices) for EMP broker

1: procedure IOT DEVICE SCHEDULING(m-th EMP broker)
2: Step 1: Transfer WBm to RBm

3: for i = 0 to |WBm| do
4: if φ(m,i) = IT then
5: update REQ(m,i) from WBm to RBm

6: end if
7: i⇐ i+ 1
8: end for
9: Step 2: Emergency IoT device scheduling

10: for i = 0 to |RBm| do
11: if φ(m,i) = ED then
12: update REQ(m,i) from RBm to WBm

13: end if
14: i⇐ i+ 1
15: end for
16: Step 3: Calculate size of Knapsack
17: ψt ⇐ Ψt

m

18: for i = 0 to |WBm| do
19: ψt ⇐ ψt − Eon

i

20: i⇐ i+ 1
21: end for
22: if ψt ≤ 0 then
23: Alarm to user
24: go to 35
25: end if
26: Step 4: Scaling the electric power
27: set η as GCD among ψt, Eon

(m,1), Eon
(m,2), · · · ,

Eon
(m,|RB|m)

28: ψt ⇐ ψt ÷ η
29: for i = 0 to |RBm| do
30: ωi ⇐ Eon

(m,i) ÷ η
31: i⇐ i+ 1
32: end for
33: Step 5: Admission control by dynamic program-

ming
34: DP(|RBm|, ψt,w,v, r)
35: end procedure

In addition to this constraint, an additional constraint can
be consequently defined for the maximum and minimum of
electricity required amounts as follows:

MinEt
m ≤ ktm ≤MaxEt

m, (18)

where MaxEt
m and MinEt

m are obtained by RBAt
m. Ac-

cording to (4) and (5), the approximated real-time pricing (pt)
can be calculated using the following constraint:

pt ≥
Bt(
∑M

m=1 k
t
m)∑M

m=1 k
t
m

, (19)

where Bt(·) is obtained by (4).
In our proposed system, it is assumed that all the EMP

brokers want to consume as much electricity as possible.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

6

Therefore, the proposed EMP agent utilizes the following
optimization problem:

maximize
M∑

m=1

ktm, (20)

subject to

ktm · pt ≤ Pt
m,∀m (21)

MinEt
m ≤ ktm ≤MaxEt

m,∀m (22)

pt ≥
Bt(
∑M

m=1 k
t
m)∑M

m=1 k
t
m

. (23)

In order to obtain the solutions for this optimization
problem, i.e., by calculating the values ktm, the proposed
EMP agent utilizes software tools such as MOSEK [21] or
CPLEX [22]–[24]; these tools are widely used for solving opti-
mization problems in power electronics systems and networks.
When the proposed EMP agent finally obtains the optimal ktm,
it can find the real-time pricing information as follows:

pt ,
Bt(
∑M

m=1 k
t
m)∑M

m=1 k
t
m

, (24)

where Bt(·) is as modeled in (4).
During the real-time pricing announcement phase, the EMP

agent broadcasts the approximation of pt (which is calculated
using (24)) to all the EMP brokers through the Internet.

During the admission control phase, each EMP broker
conducts admission control operations using its RBm and
pt, which are received from the centralized EMP agent. As
mentioned in Section II-C, the optimization problem for IoT
device scheduling can be modeled using a 0-1 Knapsack prob-
lem under pricing limitations and delay tolerance. However,
solving the Knapsack problem using brute-force algorithms
is well known to be NP-hard because brute-force algorithms
(a.k.a., full search algorithms) introduce a combinatorial order
of the search space. In order to resolve this issue, an improved
method using dynamic programming for solving the 0-1
Knapsack problem in pseudo polynomial-time, while ensuring
optimal solutions [25], [26], is used.

The pseudo-code in Algorithm 1 shows the detailed proce-
dure of the dynamic programming for admission control in the
EMP brokers. The IoT device scheduling algorithm consists
of following steps:

Step 1: In the first part of the algorithm, the interruptible
IoT devices in WBm are moved to RBm, since they
can be rescheduled (lines 2-8 in Algorithm 1).

Step 2: Since the priorities of emergency IoT devices
are the highest, the EMP broker has to accept the
requests from the emergency IoT devices, i.e., each
EMP broker moves the emergency IoT devices in
RBm to WBm (lines 9-15 in Algorithm 1).

Step 3: On the basis of the updated reservation buffer
and the upper limit of electricity, each EMP broker
recalculates the amounts of available electricity (ψt)
in order to utilize the Knapsack formulation (lines
18-21 in Algorithm 1). In this step, the electricity
bill can be greater than the threshold due to the

requests from the emergency IoT devices. If the
electricity bill exceeds the threshold, the EMP broker
will generate an alarm to inform to the user and stop
device scheduling (lines 22-25 in Algorithm 1).

Step 4: To solve the dynamic programming for the given
Knapsack formulation efficiently, scaling is con-
ducted by calculating the greatest common divisor
(GCD) among the Knapsack size and the power
consumed in RBm (lines 26-32 in Algorithm 1)

Step 5: After the scaling procedure, each EMP broker per-
forms the dynamic programming algorithm. In order
to design the dynamic programming framework, the
following notations are introduced:
• w is defined for the set of ωi, and all ωi are

computed by the scaling step.
• v is defined for the set of τ(m,i)/ρ(m,i) in RBm.
• r is used for describing the set of admission

results ri, which indicate whether or not the ad-
mission of IoT device a(m,i) is confirmed, for all
IoT devices. That is, if the admission of a(m,i) is
confirmed, ri is set to 1. Otherwise, ri is set to 0.
At the beginning of the dynamic programming
algorithm operation, all ri are initialized to 0.

The optimal solutions of the proposed optimization
problem (12)-(14) are obtained using the dynamic
programming framework, and the recursive formu-
lation for the dynamic programming is given as
follows:

fj(y) = max

[
fj−1(y),fj−1(y−Eon

(m,j)
)+
τ(m,j)
ρ(m,j)

]
,(25)

f0(y) = 0, (26)
∀y ≥ 0, (27)

where y stands for the size of the Knapsack (i.e.,
y is set to ψt) and j in (25) stands for the number
of scheduled IoT devices. The detailed procedure for
solving the proposed dynamic programming frame-
work is presented in [25], [26].

During the CFM announcement phase, each EMP broker
broadcasts all CFM(m,n) information to the IoT devices. If
an IoT device receives a confirm message through its network
interface, it will operate during the next time slot (i.e., by
having the IoT device scheduled for the next time slot). In
addition, each EMP broker updates the timer parameter for
the reservation buffer and the working buffer. For the delay
tolerance values, each EMP broker reduces (i.e., τ(m,n) ←
τ(m,n)−1,∀n) from the reservation buffer and working buffer.
For the operation time values, each EMP broker reduces (i.e.,
ρ(m,n) ← ρ(m,n) − 1, ∀n) from the working buffer. If ρ(m,n)

becomes 0, the EMP broker will remove its request from the
buffer (i.e., timeout).

IV. PERFORMANCE EVALUATION WITH SIMULATIONS

The performance of our IoT device scheduling scheme is
evaluated through comprehensive simulations. For our per-
formance evaluation, an event-driven simulator for dynamic
programming is implemented using the C programming lan-
guage. In this evaluation, we focus on a) the price convergence

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

7

TABLE I: Simulation Parameters

Parameter Value

M 500
Nm, ∀m 20
Mean of inter-arrival time (Poisson distribution) 10
Unit of time slot 1 hour
Eon

(m,n)
, ∀m,n (Uniform distribution) From 1w to 100w

ρ(m,n), ∀m,n (Uniform distribution) From 1 to 10
τ(m,n), ∀m,n (Uniform distribution) From 1 to 20

Topology 1
Ratio of IT 0.45
Ratio of NIT 0.45
Ratio of ED 0.1

Topology 2
Ratio of IT 0.8
Ratio of NIT 0.1
Ratio of ED 0.1

Topology 3
Ratio of IT 0.1
Ratio of NIT 0.8
Ratio of ED 0.1

Topology 4
Ratio of IT 0.3
Ratio of NIT 0.3
Ratio of ED 0.4

(electricity bill), b) the impacts of admission requests and
their frequency on the average electricity bill and accepted IoT
device ratio, c) the peak electricity consumption capabilities
(i.e., load balancing) of our scheme, and d) the electricity
bill and accepted IoT device ratio for the energy harvesting
environments. Moreover, the scheme presented in [15] is
compared with the proposed scheme in terms of the electricity
bill. In addition, the schemes in [12], [13] are compared with
regard to the energy harvesting environments.

Parameters. In order to compute the quadratic cost function,
which is modeled as (4), we assume that αt = 5/9, βt = 0,
and γt = 0 [19]. The settings and parameters used in
our comprehensive simulation are shown in Table I. These
parameters are used for analyzing the impact of Pt

m.
When Pt

m is too small, it is difficult to confirm the ad-
mission requests. On the other hand, when Pt

m is sufficiently
large, the electricity bill will not be decreased. In the event-
driven simulation, requests that have passed the delay tolerance
but have not received admission confirmation will be removed
from the reservation buffer. If the delayed requests remain
in the buffer, it will be difficult to evaluate the performance
because the delayed requests will accumulate in the buffer.
Moreover, the proposed algorithm is evaluated for the various
topologies to measure the impact of the IoT device type
ratio. Accordingly, in Topologies 1, 2, and 3, we measure
the performance according to the distributions of NIT and
IT , whereas Topology 4 is designed to measure the impact of
emergency data generation (ED).

Price convergence. Fig. 4 shows the average electricity bill
per EMP broker graph according to the time slot in Topology
1. In our simulation, Pt

m = ∞ means that the proposed
scheme is not being applied (i.e., if an IoT device generates
operation requests, electricity will be consumed immediately
during the requested operation time). As shown in Fig. 4, it
can be observed that the electricity bills increase with time, for
each time slot, and converge at some time slot. This is because
there are no requests at the beginning of the simulation, and

0 50 100 150

Timeslot (t)

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 o
f E

le
ct

ric
ity

 B
ill

 (
C

en
t)

P
m
t =

P
m
t = 150

P
m
t = 100

P
m
t = 50

Li et. al. [15]

Converge (limit is infinite)

100 cents

Converge (limit is 100 cents)

Fig. 4: Average of electricity bill over time for Topology 1.

the generation of requests also converges to a fixed number.
From the same result, we can also see that the proposed

scheme reduces the electricity bills in comparison to the case
where the proposed scheme is not applied (i.e., Pt

m = ∞).
The proposed scheme, with Pt

m = 150, Pt
m = 100, and

Pt
m = 50, reduce the electricity bills as much as 57%,

72%, and 90%, respectively, in comparison to the case with
Pt
m =∞, as clearly presented in Fig. 4. In particular, although

the electricity bill with Pt
m = ∞ is less than 100 cents, the

bill with Pt
m = 100 is still reduced to 72% compared to the

bill with Pt
m = ∞. The reason for this drastic reduction in

the electricity bill is that the peak electricity consumption has
a significant impact on the bill due to the fact that the pricing
model is designed as a quadratic function. Furthermore, the
average electricity bill per EMP broker is much smaller than
Pt
m, since the IoT device does not always generate a request.

If the IoT device always generates a request, the average
electricity bill per EMP broker will obviously be Pt

m. In
contrast with the results of the proposed scheme, the result of
the [15] fluctuates over time. Since the comparison scheme
is designed for day-ahead scheduling, it is not applicable to
the time-varying EI environment. Moreover, the comparison
scheme does not reduce the electricity bill significantly since
it does not conduct admission control, i.e., all requests are
permitted.

Admission requests. In Fig. 5, the performance of the
proposed scheme and comparison scheme is presented with
respect to the admission request frequency for the various
topologies. In this figure, the average of the electricity bill
per EMP broker is illustrated according to the inter-arrival
time of the admission requests. As shown in Fig. 5, the
electricity bills increase exponentially when the admission
requests increase. In addition, it can be also observed that the
electricity bills with smaller Pt

m are less than the bills with
larger Pt

m. This is mainly due to the fact that the proposed
scheme suppresses the peak demands through Pt

m. Moreover,
the proposed scheme shifts the electricity loads (by indirectly
performing load-balancing over time). Instead, the comparison

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

8

5 10 15 20

Inter Arrival Time

0

50

100

150

200

250

300
A

ve
ra

ge
 o

f E
le

ct
ric

ity
 B

ill
 (

C
en

ts
)

P
m
t =50 (Topology 1)

P
m
t =100 (Topology 1)

P
m
t =150 (Topology 1)

LI et. al.[15](Topology 1)

P
m
t =50 (Topology 2)

P
m
t =100 (Topology 2)

P
m
t =150 (Topology 2)

LI et. al.[15] (Topology 2)
Bill of original demand

P
m
t =50 (Topology 3)

P
m
t =100 (Topology 3)

P
m
t =150 (Topology 3)

LI et. al.[15] [11](Topology 3)

P
m
t =50 (Topology 4)

P
m
t =100 (Topology 4)

P
m
t =150 (Topology 4)

LI et. al.[15] (Topology 4)

Fig. 5: Average electricity bill in relation with the inter-arrival
time. The inter-arrival time captures the admission request
frequency/rate.

5 10 15 20

Inter Arrival Time

0

10

20

30

40

50

60

70

80

90

100

A
cc

ep
te

d
Io

T
 D

ev
ic

e
R

at
io

 (
%

)

P
m
t =50 (Topology 1)

P
m
t =100 (Topology 1)

P
m
t =150 (Topology 1)

LI et. al.[15] (Topology 1)

P
m
t =50 (Topology 2)

P
m
t =100 (Topology 2)

P
m
t =150 (Topology 2)

LI et. al.[15] (Topology 2)

P
m
t =50 (Topology 3)

P
m
t =100 (Topology 3)

P
m
t =150 (Topology 3)

LI et. al.[15] (Topology 3)

P
m
t =50 (Topology 4)

P
m
t =100 (Topology 4)

P
m
t =150 (Topology 4)

LI et. al.[15] (Topology 4)

Fig. 6: Accepted IoT device ratio versus inter-arrival time.

scheme does not significantly reduce the electricity bill as
much as the proposed scheme. The proposed scheme controls
the energy consumption by the threshold Pt

m. However, the
comparison scheme only conducts the load shifting, i.e., all
requests will be operated. Furthermore, the proposed scheme
efficiently reduces the electricity bill as the number of non-
interruptible devices decreases since they are not rescheduled.
Moreover, we can observe that the proposed scheme reduces
the electricity bill more efficiently if emergency data are
not frequently generated. This is due to the reason that the
emergency data have a higher priority than the threshold in
the proposed scheme. As well as, when the emergency data is
frequently generated, the proposed scheme provides a larger
reduction in electricity bill than the comparison scheme.

As presented in Fig. 6, the accepted IoT device ratio
according to the admission request frequencies was simulated
and evaluated. In this figure, the accepted IoT device ratio
increases when Pt

m increases. When a user sets Pt
m sufficiently

0 50 100 150
0

100

200

300

400

500

600

Timeslot (t)

E
le

ct
ric

ity
 (

w
)

Electricity consumption
Electricity demand

Load
shift

Ψ
t

1
= 425

Fig. 7: Electricity consumption over time, highlighting our
scheme’s capabilities in controlling peak consumption through
consumption control and load-balancing.

low, the accepted ratio will be very low even if requests are
not generated frequently. It is also noticeable that significant
number of service provisions is not available when Pt

m is
equal to 50. Therefore, Pt

m should be defined and set above a
certain value in order to provide the expected level of service.
The accepted ratio is over 90 % when the inter-arrival time is
set to 15 and Pt

m is set to 150. On the other hand, a lower
accepted IoT device ratio is observed when the inter arrival
rate increases. It is obvious that in order to provide the desired
level of service, Pt

m should increase according to the increase
in admission request generation. Therefore, it is necessary to
set appropriate Pt

m values according to the amount of request
generations. We can also observe an interesting result that the
accepted IoT device ratio increases if the amount of generated
emergency data increases, i.e., the accepted ratio of Topology 4
is greater than those of Topologies 1, 2, and 3. In the proposed
scheme, the IT and NIT type devices can be rejected, and
ED type devices have to be permitted. In Topology 4, the
number of ED is proportionally larger than the number of
IT and NIT . Therefore, increasing the number of ED does
not affect the number of rejection rather it only increases the
electricity bill in the proposed scheme.

Peak avoidance. Next, we evaluate the performance of our
scheme in terms of avoiding electricity peaks to reduce the
electricity bills. For this evaluation, the following settings are
used: M = 1, N1 = 20, and Pt

1 = 0.1. M is set to 1
(i.e., single) because it is difficult to observe the shifting of
the load since multiple electricity requests and consumptions
will be combined in the graph. Accordingly, Pt

1 is set to 0.1.
When Pt

1 is set to 0.1, Ψt
1 will be 450 watt, according to (4).

Based on this setting, Fig. 7 shows the electricity demands
and electricity consumptions per time slot. As presented in
Fig. 7, the electricity demand exceeds Ψt

1 at t = 10, and
the proposed scheme efficiently shifts the electricity loads to
the spare time slot (i.e., t = 16 in Fig. 7). When electricity
is directly consumed at t = 10, the electricity bill will
increase. Therefore, the proposed scheme efficiently avoids

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

9

5 10 15 20

Inter Arrival Time

0

50

100

150

200

250

300
A

ve
ra

ge
 o

f E
le

ct
ric

ity
 B

ill
 (

C
en

ts
)

P
m
t =50 (Topology 1)

P
m
t =100 (Topology 1)

P
m
t =150 (Topology 1)

Caruso et. al.[13](Topology 1)

P
m
t =50 (Topology 2)

P
m
t =100 (Topology 2)

P
m
t =150 (Topology 2)

Caruso et. al.[13] (Topology 2)
Bill of original demand

P
m
t =50 (Topology 3)

P
m
t =100 (Topology 3)

P
m
t =150 (Topology 3)

Caruso et. al.[13](Topology 3)

P
m
t =50 (Topology 4)

P
m
t =100 (Topology 4)

P
m
t =150 (Topology 4)

Caruso et. al.[13] (Topology 4)

Fig. 8: Average electricity bill in relation with the inter-arrival
time in the energy harvesting environment. The scenario of
the energy harvesting [13] is applied.

5 10 15 20

Inter Arrival Time

0

10

20

30

40

50

60

70

80

90

100

A
cc

ep
te

d
Io

T
 D

ev
ic

e
R

at
io

 (
%

)

P
m
t =50 (Topology 1)

P
m
t =100 (Topology 1)

P
m
t =150 (Topology 1)

Caruso et. al.[13] (Topology 1)

P
m
t =50 (Topology 2)

P
m
t =100 (Topology 2)

P
m
t =150 (Topology 2)

Caruso et. al.[13] (Topology 2)

P
m
t =50 (Topology 3)

P
m
t =100 (Topology 3)

P
m
t =150 (Topology 3)

Caruso et. al.[13] (Topology 3)

P
m
t =50 (Topology 4)

P
m
t =100 (Topology 4)

P
m
t =150 (Topology 4)

Caruso et. al.[13] (Topology 4)

Fig. 9: Accepted IoT device ratio versus inter-arrival time in
the energy harvesting environment. The scenario of the energy
harvesting [13] is applied.

peaks in electricity consumption via load shifting (see the
black rectangles in Fig. 7).

Energy Harvesting Environment. As mentioned in Section
II, the proposed algorithm can be operated in energy harvest-
ing environments. For this evaluation, the energy harvesting
scenario, that is presented in [13], is applied. In addition, the
comparison schemes of [12], [13] are modified as follows.
In the original schemes of [12], [13], the device operates
with only the battery since the operation requests are gen-
erated intermittently. However, in this simulation, the device
operations occur frequently as shown in Table I. Therefore,
the schemes of [12], [13] were modified to buy insufficient
electricity from the power retailer. Fig. 8 and Fig. 9 show the
average electricity and the accepted IoT device ratio according
to the inter-arrival time, respectively. As shown in Fig. 8, the
proposed scheme efficiently controls the energy consumption

according to the threshold Pt
m. On the other hand, the com-

parison scheme schedules tasks based on their quality, under
the battery and energy harvesting constraints. As mentioned
above, the comparison scheme is modified that the insufficient
energy is bought from the power retailer. Therefore, when the
comparison scheme is applied, all generated requests will be
operated. In addition, the electricity bill is determined based
on the peak energy consumption in the proposed system.
Therefore, the comparison scheme does not sufficiently reduce
the electricity bill as much as the proposed scheme. In this
figure, we can observe that the electricity bill of [13] is not
affecting the topology. This is due to the reason that all request
are accepted and consumed the energy. On the other hand, the
proposed scheme rejects the operation requests according to
the device type. For example, in the topology 4, the electricity
bill is larger than others since the emergency devices are
distributed more than other topologies, i.e., more requests
are accepted. Moreover, the results show that the proposed
scheme’s electricity bill is similar to the scenarios, in which
the energy harvesting model is not applied. This is because the
electricity bill of the proposed scheme is managed according
to Pt

m. In other words, the energy harvesting does not affect
the electricity bill in the proposed scheme when the energy
consumption is significantly larger than the harvested energy.
However, the accepted ratio increases in the energy harvesting
model as shown in Fig. 9. Especially, for the inter arrival time
of 20, the accepted ratio of the energy harvesting scenario is
up to 20% greater than the ratio of the scenario, in which the
energy harvesting is not applied. This is because that Eon

(m,n)

is reduced by the harvested energy, and thus more requests can
be accepted. In other words, the required electricity is reduced
but the threshold is keep the same.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we proposed a two-stage approach with
dynamic programming for IoT device scheduling in EI sys-
tems using optimization formulations and their corresponding
solver algorithms. The optimization framework for IoT device
scheduling was formulated using real-time pricing decision
models. Noting that the proposed optimization framework is
equivalent to a 0-1 Knapsack problem which considers the
delay tolerance and real-time pricing of all given IoT devices, a
two-stage algorithm was designed with dynamic programming
to solve the 0-1 Knapsack problem in pseudo-polynomial-
time. The first stage in our algorithm includes procedures
for determining the maximum electricity consumption in each
time slot, while the second stage provides tools for computing
the IoT device scheduling in each time slot. In order to
evaluate the performance of the proposed algorithm, intensive
simulations were conducted. As a result, it was shown that
the proposed algorithm efficiently reduces electricity bills with
appropriate parameter settings.

As a future research direction, the design and implementa-
tion of adaptive decision policies for key parameters such as
threshold based on IoT device usage patterns using machine
learning algorithms [27] will be pursued.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2923432, IEEE Internet of
Things Journal

10

REFERENCES

[1] T. Chiu, Y. Shih, A. Pang, and C. Pai, “Optimized Day-Ahead Pricing
With Renewable Energy Demand-Side Management for Smart Grids,”
IEEE IoT Journal, Vol. 4, No. 2, April 2017, pp. 374–383.

[2] P. Gope and B. Sikdar, “An Efficient Data Aggregation Scheme for
Privacy-Friendly Dynamic Pricing-Based Billing and Demand-Response
Management in Smart Grids,” IEEE IoT Journal, Vol. 5, No. 4, Aug.
2018, pp. 3126–3135.

[3] L. Yu, D. Xie, T. Jiang, Y. Zou, and K. Wang, “Distributed Real-Time
HVAC Control for Cost-Efficient Commercial Buildings Under Smart
Grid Environment,” IEEE IoT Journal, Vol. 5, No. 1, Feb. 2018, pp.
44–55.

[4] L. de M. B. A. Dib, V. Fernandes, M. de L. Filomeno and M. V. Ribeiro,
“Hybrid PLC/Wireless Communication for Smart Grids and Internet of
Things Applications,”IEEE IoT Journal, Vol. 5, No. 2, April 2018, pp.
655–667.

[5] H.Zhang, Y. Li, D. W. Gao, and J. Zhou, “Distributed Optimal Energy
Management for Energy Internet,” IEEE Transactions on Industrial
Informatics, Vol. 13, No. 6, December 2017, pp. 3081–3097.

[6] X. Li and J.-C. Lo, “Pricing and Peak Aware Scheduling Algorithm
for Cloud Computing,” in Proceedings of the IEEE Conference on
Innovative Smart Grid Technologies, January 2012, pp. 17.

[7] M. Muratori and G. Rizzoni, “Residential Demand Response: Dynamic
Energy Management and Time-Varying Electricity Pricing,” IEEE Trans-
actions on Power Systems, Vol. 31, No. 2, March 2016, pp. 1108–1117.

[8] D. T. Nguyen, H. T. Nguyen, and L. B. Le, “Dynamic Pricing Design for
Demand Response Integration in Power Distribution Networks,” IEEE
Transactions on Power Systems, Vol. 31, No. 5, September 2016, pp.
3457–3472.

[9] K. McKenna and A. Keane, “Residential Load Modeling of Price-Based
Demand Response for Network Impact Studies,” IEEE Transactions on
Smart Grid, Vol. 7, No. 5, September 2016, pp. 2285–2294.

[10] J. Yao and N. Ansari, “Caching in Energy Harvesting Aided Internet
of Things: A Game-Theoretic Approach,” to appear in IEEE Internet of
Things Journal, 2019.

[11] A. Shahini, A. Kiani, and N. Ansari, “Energy Efficient Resource
Allocation in EH-enabled CR Networks for IoT,” to appear in IEEE
Internet of Things Journal, 2019.

[12] S. Escolar, A. Caruso, S. Chessa, X. d. Toro, F. J. Villanueva, and J. C.
Lopez, “Statistical Energy Neutrality in IoT Hybrid Energy-Harvesting
Networks,” in proc. of ISCC 2018, June 2018, pp. 444–449.

[13] A. Caruso, S. Chessa, S. Escolar, X. d. Toro, and J. C. Lopez, “A
Dynamic Programming Algorithm for High-Level Task Scheduling in
Energy Harvesting IoT,” IEEE Internet of Things Journal, Vol. 5, No.
3, June 2018, pp. 2234–2248.

[14] M. Latifi, A. Khalili, A. Rastegarnia, and S. Sanei, “Fully Distributed
Demand Rsponse Using the Adaptive Diffusion-Stackelberg Algorithm,”
IEEE Transactions on Industrial Informatics, May 2017, pp.2291-2031.

[15] C. Li, X. Yu, W. Yu, G. Chen, and J. Wang, “Efficient Computation for
Sparse Load Shifting in Demand Side Management,” IEEE Transactions
on Smart Grid, Vol.8, No. 1, January 2017, pp. 250–261.

[16] P. Srikantha and D. Kundur, “Resilient Distributed Real-Time Demand
Response via Population Games,” IEEE Transactions on Smart Grid,
Vol. 8, No. 6, November 2017, pp. 2532–2543.

[17] C. Lee, L. Park, and S. Cho, “Light-Weight Stackelberg Game Theoretic
Demand Response Scheme for Massive Smart Manufacturing Systems,”
IEEE Access, Vol. 6, No. 1, April 2018, pp. 23316–23324.

[18] A. E. Shadare, M. N. O. Sadiku, and S. M. Musa, “Electromagnetic
compatibility issues in critical smart grid infrastructure,” IEEE Electro-
magnetic Compatibility Magazine, Vol. 6, No. 4, 2017, pp. 63–70.

[19] A. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A.
Leon-Garcia, “Autonomous Demand-Side Management Based on Game-
Theoretic Energy Consumption Scheduling for the Future Smart Grid,”
IEEE Transactions on Smart Grid, Vol. 1, No. 3, December 2010, pp.
320–331.

[20] F. Kamyab, M. Amini, S. Sheykhha, M. Hasanpour, and M. M. Jalali,
“Demand Response Program in Smart Grid using Supply Function
Bidding Mechanism,” IEEE Transactions on Smart Grid, Vol. 7, No.
3, May 2016, pp. 1277–1284.

[21] M. R. Dorostkar-Ghamsari, M. Fotuhi-Firuzabad, M. Lehtonen, and A.
Safdarian, “Value of Distribution Network Reconfiguration in Presence
of Renewable Energy Resources,” IEEE Transactions on Power Systems,
Vol. 31, NO. 3, May 2016, pp. 1879–1888.

[22] M. Silbernagl, M. Huber, and R. Brandenberg, “Improving Accuracy
and Efficiency of Start-Up Cost Formulations in MIP Unit Commitment

by Modeling Power Plant Temperatures,” IEEE Transactions on Power
Systems, Vol. 31, No. 4, July 2016, pp. 2578–2586.

[23] W. Yao, J. Zhao, F. Wen, Y. Xue, and G. Ledwich, “A Hierarchical
Decomposition Approach for Coordinated Dispatch of Plug-in Electric
Vehicles,” IEEE Transactions on Power Systems, Vol. 28, No. 3, August
2013, pp. 2768–2778.

[24] F. Ceja-Gomez, ,S. S. Qadri, and F. D. Galiana, “Under-Frequency
Load Shedding Via Integer Programming,” IEEE Transactions on Power
Systems, Vol. 27, No. 3, August 2012, pp. 1387–1394.

[25] J. Kleinberg and E. Tardos, Algorithm Design, Pearson, March 2005.
[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, MIT Press, 2009.
[27] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,

2006.

