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Abstract. Today botnets are still one of the most prevalent and devas-
tating attacking platforms that cyber criminals rely on to launch large
scale Internet attacks. Botmasters behind the scenes are becoming more
agile and discreet, and some new and sophisticated strategies are adopted
to recruit bots and schedule their activities to evade detection more ef-
fectively. In this paper, we conduct a measurement study of 23 active
botnet families to uncover some new botmaster strategies based on an
operational dataset collected over a period of seven months. Our analysis
shows that different from the common perception that bots are randomly
recruited in a best-effort manner, bots recruitment has strong geograph-
ical and organizational locality, offering defenses a direction and priority
when attempting to shut down these botnets. Furthermore, our study
to measure dynamics of botnet activity reveals that botmasters start to
deliberately schedule their bots to hibernate and alternate in attacks so
that the detection window becomes smaller and smaller.

1 Introduction

Botnets are collections of networks of infected machines (aka bots) that are
widely used to carry out a variety of malicious activities as instructed by a
botmaster. As a result, botnets are notoriously known as one of the primary
attack and threat vectors utilized against critical infrastructures and services in
activities that include distributed denial of service (DDoS), spam distribution,
phishing, scanning and network exploration, among others. Such malicious ac-
tivities utilize vulnerabilities in existing protocols, and capitalize on their power
to disturb large services.

The advent of botnets is often associated with vandalism. However, recent
years have witnessed the rise of other uses of botnets, including “hacktivism” [1]
and “botnet-as-a-service” [5]. Botnets have been used as a mean of promoting
political ends, such as targeting political and ideological opponents, stealing pre-
cious data from their networks, or for bringing their networks down. OpIsrael [2],
DarkSeoul [3], and OpUSA [4] are recent prominent examples of hacktivism,
where ideas and political beliefs influenced botnet-based cybersecurity events
and driven them. The rise of such a direction has facilitated a thriving ecosystem
guided by economical profit in what has been coined as botnet-as-a-service [5]. In
such a model, botnets are designed to be “rented” easily to underground users,
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where botmasters are reportedly making large sums of money in underground
marketplaces [6].

Understanding botnets through analyses and measurements has been a goal
in the research community since their arrival. Such analyses is geared towards
understanding attacks, guiding defenses, and helping with bots containment and
disinfection by chronologizing their lifecycle. The first and foremost step in the
lifecycle of botnets is to recruit and manage a dedicated pool of bots. Such
step is done by either recruiting a new group of bots via infection or by renting
a network of already infected machines in the botnet-as-a-service marketplace.
Once recruited, botmasters utilize their bots (in a given botnet) to launch at-
tacks. Considering them as valuable resources, botmasters want to maximize the
return on investment by launching as many attacks as possible without being
detected by a defender. To this end, bot scheduling is a critical aspect of bot-
net management, and further insights into how botmasters schedule their bots
could potentially unveil patterns in this ecosystem that could lead to 1) better
understanding of botnets, and 2) guide defenses.

In this paper, we advance the state-of-the-art by analyzing the botmasters
strategies in recruiting and managing bots based on a large workload collected
from more than 300 Internet vantage points across the globe covering 23 most
active botnets for a continuous 7 months. Our study reveals several interest-
ing and previously unreported recruitment strategies by botnets in the wild. A
highlight of the new sophisticated techniques adopted by modern botmasters
includes (c.f. §5 for implications):

– Our geographical analysis shows that most dedicated bots reside in a small
number of countries and organizations. This provides some helpful insights for
defenses. For example, pushback models [8–10] of defenses can be guided by
this insight in deploying routing-based monitoring closer to the sources of the
attack.

– Bots recruitments are not purely random but rather targeted with per-family
unique characteristics. Further analysis shows that different botnet families
have their unique per-family characteristics (i.e., affinity). This insight can
be utilized in postmortem host cleaning. For example, upon taking down a
botmaster, cleaning disconnected bots becomes a challenge, and knowing the
affinity would guide efforts of disinfection and cleaning.

– Bots are not always active. Instead, they are recruited and used with a clear
alternation pattern, and longer periods of hibernation in between. This can
effectively minimize the detection window of detection tools and thwart them.
This pattern and trend can be utilized to guide defenses: a defense that utilizes
the distribution of activity window of bots is more likely to detect an attack
earlier than one that uses a fixed (and potentially large) time window.

To the best of our knowledge, many of the recruitment strategies uncovered in
this study are novel and not reported before, making them interesting in their own
right. As we are still unfolding the use of the recruitment strategies, we suggest
to leverage such insights to devise new defense and mitigation schemes. While
there has been a large body of literature on the problem (e.g., [11–20]; c.f. §6), all
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of the prior work draws conclusion on behavior of botnets by analyzing a single
botnet (or a limited number of them). To our knowledge, this is the first study
that tries to understand recruitment and scheduling patterns by performing a
meta-analysis over a large number of botnets and associated behavior.

2 Data and Collection Methodology

Prior work on botnet measurements have mainly focused on their taxonomy
and classification by analyzing botnet behavior and common characteristics, in-
cluding architecture, command and control (C2), communication protocols, and
evasion techniques [21,22]. Such efforts have mainly been done via passive mea-
surement or infiltration, and are usually focused on specific botnets. Different
from these approaches, our work relies on data provided by the monitoring and
attribution unit a DDoS mitigation company, with partnerships of traffic sharing
with a large number of major Internet service providers across the globe. The
dataset is previously utilized by Wang et al. [7] for analyzing trends in DDoS
attacks.

2.1 Collection Methodology

The unit constantly monitors Internet attacking traffic to aid the mitigation
efforts of its clients, using both active and passive measurement techniques. For
active measurements and attribution, malware families used in launching various
attacks are reverse engineered, and labeled to a known malware family using best
practices. A honeypot is then created to emulate the operation of the reverse-
engineered malware sample that belongs to a given botnet and to enumerate all
bots across the globe participating in that particular botnet.

As each botnet evolves over time, new generations are marked by their unique
(MD5 and SHA-1) hashes. Traces of traffic associated with various botnets are
then collected at various anchor points on the Internet, via the cooperation of
many ISPs all over the world, and analyzed to attribute and characterize attacks.
The collection of traffic is guided by two general principles: 1) that the source
of the traffic is an infected host participating in a botnet attack, and 2) the
destination of the traffic is a targeted client, as concluded from eavesdropping
on C2 of the campaign using a live sample.

2.2 Botnet Families

There are 23 known botnet families in the wild captured in our dataset. Those
botnet families are (using their publicly known names assigned by antivirus ven-
dors [7,23]) Aldibot, Armageddon, Asprox , Blackenergy, Colddeath, Conficker,
Darkcomet, Darkshell, Ddoser, Dirtjumper, Gumblar, Illusion, Myloader,
Nitol, Optima, Pandora, Redgirl, Storm, Tdss, Torpig, Waledac, Yzf and Zeus.
From the dataset multiple botnets are identified for each family, and each botnet
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is potentially owned by different botmasters. By tracking bots’ temporal activ-
ities,the monitors of the company generate a log dump every hour. There are
24 hourly reports per day for each botnet family. The set of bots or controllers
listed in each report are cumulative over past 24 hours. The 24-hour time span
is counted from time stamp of last known bot activity and time of log dump.
The log covers the period from 08/29/2012 to 03/24/2013, a total of 207 days.

2.3 Caveats and Comparisons

While the dataset we use in this paper is comparable in size to other dataset
previously used in the literature, it provides a timely insight into the recent state
of botnet operations, as opposed to the state of botnets many years ago. Fur-
thermore, the efforts of identifying malware that is used for operating a botnet
family provide high fidelity: the techniques involve a combination of dynamic
and static analysis utilizing deep understanding and reverse-engineering of the
studied families.

We note that some of the hosts infected by the studied malware families may
not be included in our data for a few reasons. For example, they may not be
included if they do not participate in an attack against a monitored resource, or
if they do not contact the C2 server of the studied family. However, we believe
that those hosts are of less interest, since they are isolated and do not contribute
to the potential attack activity of the botnet. They do not contribute to the
recruitment and scheduling aspects studied in this paper, and their disinfection
and cleaning is a secondary issue to this study.

3 Bots Recruitment

During about 7 months of our data collection and analysis, over 2 million unique
bots across 23 malware families are identified in our dataset. The purpose of
our botnet study is to gain insights into active botnets’ nature so that security
analysts and experts can effectively take down existing botnets by disinfection,
or prevent benign hosts from infections for suspicious sources (as previously done
in other work; e.g., Stone-Gross et al. [24] and Gu et al. [25]).

One of the primary properties of bots that interests us most is their physical
location and how the location shifts in regions across different phases of the
botnet’s life cycles. We are also interested in whether a certain subset of bots
play a more critical role than others in the bots recruitment. Our conjecture is
that bots recruitment as a process may not be purely random but rather targeted
with per-family unique characteristics, and the geographical distribution analysis
confirms our conjecture.

In this section we examine all known bots in our dataset by mapping their IP
addresses to a list of countries where they reside, and identifying organizations
that such IP addresses belong to. We perform the mapping of the IP addresses
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using a highly-accurate commercial grade geo-mapping dataset by Digital En-
voy (Digital Element services [26]), which provides—besides the country—the
individual city, and organization of each queried IP address.
Addressing NAT effect. Dynamic IP addresses and NAT constitute a signif-
icant portion of the Internet [24, 27], preventing a one-to-one mapping between
bot and IPs. Addressing NAT is a challenging problem, which falls out of the
scope of this work. However, we follow a similar approach to [28] to minimize its
impact on our findings. While the NAT effect leads to undercounting bots, such
undercounting is corrected by churns, resulting in overcounting, due to DHCP.
Thus, in preprocessing, and for each botnet, we aggregate the different bots with
unique IP addresses that have distinct patterns into unique bots. For passive IP
churn using DHCP at the ISP level, we aggregate the unique IP addresses over
shorter hourly time periods to minimize the potential of DHCP churn [28, 29].
A recent study [30] shows that the distribution of dynamic IP addresses is not
uniform but rather biased towards regions or ISPs. By analyzing IP addresses
at the country and organization level, we conclude that the estimated number
of bots should be considered as a lower bound, thus minimizing the impact on
our recruitment findings.

3.1 Bots Country Preference

Figure 1 shows the heat map of bots’ geographical distribution. The darker the
color of the country is, the more bots are found to be located in that country.
We can see that those two million bots are widely spread all over the world with
several harder-hit areas in the darker green regions.

Fig. 1. Geographical distribution of bots
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Table 1. Top 10 countries with most bots.

Country Name Number of bots

Israel 430,715
Switzerland 207,386

U.S.A 187,483
Vietnam 172,066

Brazil 163,983
India 121,949
China 66,742
Russia 59,158

Thailand 54,135
Argentina 48,760

In Table 1, we list the top 10 countries with most bots. These ten countries
together host 66.3% of all bots in our dataset (i.e., 1,512,377 out of 2,280,389).
One of the surprising findings in the table is that Israel and Switzerland lead the
rank of all countries, with a combined share of 28.0% of bots, despite that they
are neither far-flung countries in area nor large countries in population. A reason-
able explanation is that our data provider might parterner with major ISPs that
have dominant existence in Europe, or during 7-month collection period botnets
from aforementioned countries are involved in active campaigns. Drilling down
to the per-family bots distribution, some per-family unique characteristics of the
country preference are revealed:
Bots preferential attachment. We notice that for most families their bots
are concentrated in a few preferred regions, and those preferred regions tend
to vary significantly across different families. In general, the majority of botnet
families have tangible bots existence in the top countries we listed in Table 1.
Interestingly every family also has their own set of preferred countries. Take
the family Optima as an example, we find that the top 5 countries for Optima’s
343,524 bots are Israel (21.0%), India (14.5%), United States (12.6%), Switzer-
land (9.4%), and Brazil (6.1%). The first three countries in the list contain more
than 48% of the total bots for Optima, and all these 5 countries can also be
found on the top 10 overall list—although in different ordering.
Country preferential attachment unveils activity correlations. We ob-
serve that for some families bot’s geographical preference is somehow preserved
at different stages of botnet activities. For example, the activity curve of Optima
highlights three sudden spikes dated at 10/18/2012, 10/29/2012 and 11/10/2013,
respectively, which could be attributed to 3 active campaigns that were launched
around that time frame with a large number of bots participation. Thus, we
examine all bots involved in those spike events to expose their preferential at-
tachment. It is evident that 1st and 3rd spike events are correlated, because the
overwhelmingly majority of bots in these two spike events originate from Israel,
Switzerland, United States, Botswana, and Canada. The high resemblance of
bots distribution between the 1st and 3rd spikes implies that they are very likely
to be two stages of the same attack. On the contrary, by examining the bots from
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2nd spike we find that its bot distribution is significantly different: 37.8% bots
(23,499) originate from India and 16.1%(10,027) originate from United States.
This can be explained that the second spike is potentially another independent
campaign launched by a different botmaster.

Another family shows strong activity correlation is Dirtjumper. The top 5
countries of Dirtjumper’s 818,452 bots are Israel (37.5%), Switzerland (15.2%),
United States (10.5%), Brazil (9.9%), India (4.4%). We find two correlated spike
events for this family because they both exhibit the same geographical distri-
bution patterns. The majority of bots in these two spikes originate from Israel,
Switzerland and the United States. The other two countries (Brazil and India)
in the top 5 list did not contribute much to the spike events.
Local botnets. The geographical distribution of Illusion does not conform
to the all bots distribution chart. Pakistan, which has an unnoticeable presence in
the overall country ranking of most bots, contributes a dominantly large number
of bots to Illusion. This finding strongly suggests that Illusion either prefers to
or gain privileges to recruit most of its bots from Pakistan. Similarly, bots that
belong to Pandora show a significantly biased existence in Mexico and Thailand.

Fig. 2. Bots shift patterns for Conficker

Mobility within preferred regions. We explore how bots of each family
shift over time. In this analysis we aim to identify whether the newly arrived bots
originate from the same country or from different countries. The results show
that the majority of bots only shift within their preferred regions. Left y-axis
in the Figure 2 represents the shift rate of Conficker within the same country,
while right y-axis represents the shift rate across countries. For Conficker the
arrival rate of bots from the same country is 20 to 40 times higher than that of
bots from a different country. This localized shift pattern can be further validated
by our bots alternation analysis in Section 4.2. The set of active bots controlled
by the same family has a strong location affinity.
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3.2 Bots Organization Preference

Using the IP mapping dataset, we are also able to identify the organizations
that own the IP addresses hosting the infections, which represent the bots we
studied in our dataset. Across all botnet families, with 2,280,389 unique IPs in
our dataset, we enumerated 9,633 different organizations. We sort the organiza-
tions in descending order of the number of associated bots and display them in
Figure 3. The x-axis represents 9,633 organizations, and the y-axis denotes the
logarithm number of unique IPs. We learn from the figure that the distribution
is heavy-tailed, and that the top 20% of organizations in our study contain more
than 90% of all bots. With the impact factor of different organization size con-
sidered, we can still draw the conclusion that bots organizational distribution is
not purely random, certain organizations become easy targets for bots recruit-
ment or at least are comparably tardy for the mitigation of botnet infection.
We list the top 10 organizations with most bots in Table 2. While some of the
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organizations are service providers, we notice that some of the organizations are
businesses that do not provide Internet services to customers–thus highlighting
an interesting dimension in such a distribution.

Table 2. Top 10 organizations with most infected hosts

Organization Name Bots

ilan ISP (Israel) 568,200
Switch Swiss Education and Research Network 224,810
Viettel Corporation (Vietnam) 80,872
The Corporation for Financing Promoting Tech. (Vietnam) 79,341
Telebahia (Brazil) 66,154
African Network Information Center (Uganda) 60,403
National Internet Backbone (India) 58,283
Cogent Communications 45,264
Independent Electricity System Operator (Canada) 44,599
China Telecom 37,119

Positive organization preference. Similar to the country-level analysis, we
explore organizations-preference. The result is shown in Table 3. We find that
14.3% of the bots of Aldibot are located in Canada-based organizations, for ex-
ample, Rogers Cable Communications inc. and Bell Canada. India’s “National
internet backbone (NIB)” is another favorite organizations for 4 botnet families:
Colddeath, Darkcomet, Darkshell and Yzf. For these 4 families, the number of
bots from NIB is in absolute dominance compared to other organizations. We
also find that the organization with most bots for Ddoser is telecom argentina
stet-france telecom s.a., and Nitol is found to have a tendency to recruit bots
from organization te-as. Similarly the Australia-based organization, Telstra Pty
Ltd, owns a large majority of bots for Torpig. Organizations with substantial
bots existence for Zeus are quite a few, and Zeus is the botnet family that is
discovered from most organizations in our study. The total number of organiza-
tions accounted for Zeus botnet activity is as high as 5,541—possibly because
Zeus is a mass-market credential stealing botnet.
Organization preferential attachment unveils activity correlations.
We choose 5 botnet families that were very active during the 7-month data col-
lection period as our analysis candidates. They are Blackenergy , Conficker,
Dirtjumper, Illusion and Optima. After a closer look, we realize that the
majority of bots that contribute to 4 of those 5 families come from the top
2 organizations we listed in Table 2, Conficker is the only exception due to
the multi-variants nature of the family. Bots owned by Conficker are widely
distributed over 3,522 different organizations and thus it has no clear culprit
organizations. To this end, we plot the activity curve of those 4 families con-
sidering only bots coming from these 2 organizations. As Figure 4 shows, the
bots from those 2 organizations stay hibernated most of the time during our
observation period. The timing of their sudden wake-up coincides with the peak
events of the botnet families. This evident behavior strongly suggests the bots
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Table 3. Organization-level bots preference
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Telefonica de Argentina 23,013

TM Net (Malaysia) 21,659
Telecom Italia 18,975
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Switch Swiss Education and Research Network 124,158
Telebahia (Brazil) 50,310

African Network Information Center (Uganda) 27,522
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ilan ISP (Israel) 7,731
Cyber Internet Services Ltd. (Pakistan) 5,778

Switch Swiss Education and Research Network 5,564
African Network Information Center (Uganda) 2,531

National Internet Backbone (India) 2,076
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Telecom Egypt 6,539
National Internet Backbone (India) 2,417

Tata Teleservices Ltd 533
China Telecom 319

China Networks Inter-exchange 304
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ilan ISP (Israel) 71,177
Switch Swiss Education and Research Network 31,750

National Internet Backbone (India) 22,003
African Network Information Center (Uganda) 16,582

VNPT corp (Vietnam) 7,476
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Uninet, S.a. de C.v. (Mexico) 1,284
Cyber Internet Services Ltd. (Pakistan) 1,241

African Network Information Center (Uganda) 1,041
National Internet Backbone (India) 991

San Paulo Research Foundation (Brazil) 522
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National Internet Backbone (India) 2,291
Nepal Telecommunications Corporation 462

African Network Information Center (Uganda) 415
Tata Teleservices Ltd 295
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Turk Telecommunications 8,833
Viettel Corporation (Vietnam) 8,663

Maroc Telecom (Morocco) 7,841
Cox Communications Inc. 7,142

The Corporation for Financing Promoting Technology (Vietnam) 6,903

from these two organizations are coordinated to perform attacks on purpose. It
is very likely bots in these two organizations are zombies, dedicated machines
controlled by remote attackers to conduct cyber attacks, which explains the fact
that they are infected by multiple instances of botnet families.

4 Bots Scheduling Strategies

In this section, we perform an in-depth study of botnets’ dynamics to expose
the latest bots scheduling strategies with three aims in mind. First, we closely
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monitor the bots dynamics in 7-month observation window and conduct a lifes-
pan analysis of all bots in our dataset to understand their involvement in bot-
net activity. Second, we dive deep into exposing unique activity patterns of
short-lived bots, which strongly implies a deliberate action of bots alternation
and re-occurrence when scheduling bots. Last but not the least, we find that a
substantial number of bots are recruited and reused by more than one botnet
families, and we are interested in behind-the-scenes reasons why those bots are
favored by botmasters in recruitment and scheduling.

4.1 Bot Lifespan Analysis

Fig. 5. Bots lifespan analysis

The lifespan of a bot is an important indicator of bots’ involvement in the
botnet activity. To this end, we conduct a weekly pattern analysis for every bot
in our dataset to understand their presence and evolvement. Given the confined
context of our dataset and the fact that mitigation techniques might have already
been in place to take down active bots, it is not far-fetched to speculate that
many bots in the dataset are short-lived, and this will be presented as those bots
active in week i become dormant in week i + 1. Our speculation is confirmed in
the analysis result that in general less bots are found with longer lifespan. The
number of bots with various lifespan is depicted in Figure 5 and the short-lived
statement is held true for all botnet families in our dataset.

Besides short-lived bots, our analysis reveals a small but steady group of bots
that stay active for an extended period of time, in many cases several weeks.
We call them “always-on” bots. For a subset of botnet families we observe,
there exist a very small set of “always-on” bots (i.e., single-digit) whose lifespan
cover the entire data collection period. One exception is Conficker, one of the
largest known computer worm infection [13]. The number of “always-on” bots for
Conficker is approximately 4,400 unique IP addresses, by far the largest among
all families we studied. The fact that Conficker is a very well-represented botnet
with multiple variants in existence, making it difficult to remove from end users’
computers as effectively as done for other families.
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The role played by bots with a longer lifespan is possibly different from that
played by bots with a shorter lifespan. A potential role such bots play include
a shadow botmaster (to mitigate failure) and to serve as a dedicated bot. From
a defense perspective, it takes precedence to shut down those long-lived bots
than others when mitigating large-scale botnet activity. Our bot’s lifespan anal-
ysis over the large-scale dataset provides a firsthand information of what bots
defenders should target to remove in priority. However, the assumption that
the consequence of mitigation is the sole reason for many bots’ short lifespan
is doubtful, because this does not explain the existence of in-negligible amount
of long-lived bots, and the number of bots for each family does not always de-
cline linearly as the lifespan increases in Figure 5. This raises suspicion that
those bots might be deliberately hibernated by the botmasters as a countermea-
sure to thwart detection efforts, thus we will further investigate whether bots
hibernation are scheduled purposely and how in following subsections.
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Fig. 6. Fast bot recruitment for Optima

4.2 Bots Fast Recruitment and Active Bots Alternation

As shown earlier, the lifespan of most bots is usually short. Thus, to perform
large-scale attacks, botmasters need to recruit a large number of bots. In our
study, we observe that the majority of bots only appear once in our traces. The
fast bots recruitment for Optima is depicted in Figure 6, the dotted vertical
line in the figure marks whether corresponding bots from the left y-axis are
active or not at the given day, and the curve in the right y-axis represents the
total number of active bots at a given day. Note that the bots from the left
y-axis are sorted in the ascending order of their IP addresses. During those 3
peak events tens of thousands of bots suddenly become active and disappear
after the completion of a major campaign. Our bots organizational preference
analysis in Section 3.2 confirms that the abrupt surge of bots is primarily due to
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a temporary recruitment of bots from other botnets to launch a highly intensive
attack—including the borrowing of dedicated bots found at some organizations
with vulnerable defenses.

Diving deep into the composition of active bots we find a strong level of
bots alternation. We learn from our lifespan analysis that, for all families even
in their seemingly stable periods, in which the total number of simultaneously
live bots does not change much over one or several weeks, the majority of bots
still remain active for less than one week. Analysis results show that the new
bots activated by botmasters compensate the loss of old bots. It is unlikely this
unnatural harmony of bots alternation is merely due to the effectiveness of bots
mitigation, and we believe it is a side effect of countermeasures to defeat defense
that botmasters voluntarily utilize, which is to iterate bots from their pool of
slave bots to complicate the process of take-down mitigations.

4.3 Bots Re-occurrence Patterns

Excluding a small number of “always-on” bots, majority of bots are only ob-
served once except for a number of bots that consistently reoccur in the 29-week
observation window. To understand the root cause of those bots’ uncommon
behavior, we divide bots into groups by their occurrence count. Note that we
count the weekly occurrence for all bots, and if the same bot occurs in two or
more consecutive weeks, we only count it as one occurrence. As Figure 7 shows,
a common patten across all families is that the larger the occurrence count is,
the less number of bots there are. Another pattern is that a proportional rela-
tionship exists across families between bot count per occurrence group and total
bot count in their respective family. Given the current data in hand we’re still
investigating what are the criteria used by botmasters to select bots to occur
more than once in their lifecycle.

We also conduct a per-bot re-occurrence analysis to measure their re-
occurrence distance. The term “re-occurrence” in this context is used to de-
scribe bots that are active in week i, become dormant in week i + 1, but are
brought back to life in week i + j (where j > 1). In this sense, we define j as
the re-occurrence distance. Because our observation window is only 7 months
rather than years, the chance that the same bot is taken down through disinfec-
tion, but becomes re-infected by the same malware, is low. Therefore the impact
of false positives is negligible for this analysis. Bots with longer re-occurrence
distance could be attributed to either dedicated bots or zombie machines that
existing mitigation efforts fail to completely disinfect. As Figure 8 shows, as the
re-occurrence distance increases the number of bots declines near linearly except
for 2 families, Aldibot and Dirtjumper. A closer look at these 2 families in the
figure reveals that they both own a relatively large number of bots with long
re-occurrence distances compared to others. Dirtjumper has over 1000 bots with
the re-occurrence distance as high as 18 and 21, while Aldibot has a sudden
surge at the re-occurrence distance of 16. The re-occurrence pattern associated
with both families highlights the lack of response to active hosts in malicious
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activities, where resources utilized in botnets stay for long time infected—thus
reused after a relatively long time.

Fig. 7. Number of occurrence for bots

Fig. 8. Bots re-occurrence distance

4.4 Reused Bots Analysis

Another interesting observation we revealed when examining the bots in our
dataset is the presence of a large amount of reused bots – the bots belonging
to multiple botnet families, which could be due to multiple infections or due to
using paid infrastructure (i.e., pay-per-install) [31]. In reality, while one would
expect normally a single host to be utilized for a single malicious activity of a
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certain type, we hypothesize that hosts with multiple infections are often uti-
lized by multiple botnets to perform various types of malicious activities and to
participate in many campaigns. This hypothesis, validated through our analysis
results below, is of particular interest to the security community for multiple
reasons. While the understanding of reuse may shed light on the genealogy of
malware and their associations, it most importantly highlights the differential
roles that various types of bots play in the cyber underground world, where
reusable bots may play much bigger roles in cyber attacks launched via botnets.
Host machines that serve as reused bots are more threatening, which means
they could be further leveraged to participate in other campaigns. Also, having
various infections may highlight those hosts tendency not to disinfect from a
compromise over a long period of time (honeypot is an exception). Such nature
of reused bots indicates that they are long-living and possibly a good candidate
to serve as nodes for botnet C&C channels, or “always-on” piece of the botnet
infrastructure. Thus, by correctly identifying those bots, cyber defenders may
leverage such information to effectively defend against cyber attacks by guiding
efforts of disinfection in a feasible way.
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Fig. 9. Reused Bots. (An illustration using the case of Blackenergy and Dirtjumper
botnet families.)

4.4.1 Reused bots scheduling strategies Among the 2,280,389 unique IPs
identified as infected hosts, 320,340 IPs, accounting for roughly 14.0% of total
bots, are confirmed to be reused by at least two families during the 7 months. The
average reuse ratio across different families varies significantly, where statistics
of reuse unveil that some families tend to have a higher reuse ratio of its bots
than other families. The number of reused bots and their shift pattern are an
important metric to measure the collaboration efforts among different botnet
families. It would be crucial to recognize the correlation between the magnitude
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of reused bots and the overall activity level of individual families. Thus, in this
subsection we inspect the interactions and collaborations via reused bots between
two specific families over time.

We choose the Blackenergy and Dirjumper since they are two of the most
active families in our dataset. In our data pre-processing step we aggregate the
/24 subnets to group various IP addresses, thus reducing the total number of
addresses in our analysis. Figure 9 shows how the activity level of those two
families correlates with their collaboration. The x-axis and the left y-axis mark
the date and the subnet index, respectively. The right y-axis represents the
total number of active subnet in log scale. The dotted horizontal line represents
whether the corresponding subnet from left y-axis is reused by both families
across time. From the figure it is evident that tens of different subnets are reused
by these two families. The three curves represent the number of active bots for
Blackenergy, Dirtjumper, and the reused subnets, respectively. We observe
that when there’re no spike events, the number of active bots for Blackenergy

and Dirtjumper is in the same order of magnitude, and the number of reused
subnets fluctuates roughly in the same pace as that of those two families. Even
when the spike events of either families occur, there are no noticeable surges
of reused subnet count. These similar behaviors between these two families are
less likely to be only coincidental, therefore we infer that the huge number of
new bots in spike events is recruited for one-time use of specific campaigns,
while reused subnets are treated as backbone of botnet activities. This subtle
relationship implies that a master-slave relationship might exist between them.

5 Insights to botnet detection and defense

In previous sections our in-depth analysis of a large botnet dataset expose some
new bot recruitment patterns and various sophisticated botnet scheduling strate-
gies. By understanding the trending techniques adopted by bot-masters, security
researchers could devise more effective defense mechanisms to detect and miti-
gate botnet attacks.
Prediction of bots origins based on their family. In Section 3 county pref-
erence study, we learn that many different bot families have their own per-family
unique characteristics regarding recruitment preference. For example, some bot
families tend to concentrate in a few preferred countries, and some bot families
only exist in one or two dedicated countries. These recruitment preference pat-
terns persist during our 7-month data collection period, thus with confidence
we could predict participating bots’ origins for a campaign launched via certain
bot family. This new capability will definitely boost defense to effectively iden-
tify attacking traffics from normal ones. For example, when the host machine
detects itself under DDoS attacks from bots in Illusion, one defense mecha-
nism is to activate a specific firewall rule to block all connections from Pakistan
to alleviate the system burden, since we know Illusion family exhibits local
botnet characteristic. Also, as noted earlier, pushback models, such as the work
of Ioannidis et al. [8], Chen et al. [9] and Kang et al. [10], can benefit from this
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insight in determining where pushback and filtering (at the Internet-level) are
done.
Vulnerable organizations. Our organization preference analysis shows that
bots distribution is not purely random, but rather targeted. Some organizations
contain significantly more bots than others, for perhaps having more vulnerable
machines, which makes them easy targets for bot recruitments, or for being
backbone network service providers. With the list of vulnerable organizations,
security researchers can perform a more thorough security audit of host network
environment, and even urge third party organizations to improve their security
guarantees. This insight can be useful in postmortem host cleaning: upon the
take-down of C&C channels, it would be useful to clean hosts. Knowing the
affinity of botnets and certain malware families to certain organization would
guide such cleaning efforts.
Bots ordering of severity. In Section 4 we discussed the latest bots schedul-
ing strategies we identified from the dataset. In addition to static attributes such
as bots’ geographic information, these dynamic attributes of bots increased the
complexity of dis-infection efforts. Due to the limited resources and time-sensitive
defense requirements to recover from attacks, it calls for a meaningful ordering
of bots per their severity. We believe long-lived bots could potentially serve as
shadow botmasters (to mitigate failure) or command and control channels for
botnets. Thus when mitigating a large-scale botnet activity, it takes precedence
to shut down long-lived bots. We also learnt that some short-lived bots are bots
shared in a dedicated pool and coordinated by bot-masters to participate in
botnet activities.

It is essential to enumerate all short-lived bots in the pool and shut down
them all in once, if possible. Those short-lived bots with apparent alternation or
re-concurrence patterns will need to be assigned higher level of severity. Reused
bots are another important and interesting finding in our study. Different botnets
collaborate to some extent to perform malicious actions via reused bots. Taking
down one reused bot would mitigate threats from multiple botnets, thus reused
bots should be given higher level of severity as well when cyber defenders plan
their dis-infection efforts.

6 Related Work

Previous research efforts on botnet measurements have mainly focused on the
taxonomy and classification of botnets by analyzing botnet behavior and com-
mon characteristics, such as architecture, command and control channels, com-
munication protocols, and evasion techniques. These efforts have mainly been
done via infiltration [18], as done by Bacher et al. [32, 33] or passive measure-
ment, as done by Rajab et al. [34]. Many early studies looked at the most com-
mon IRC-based bots relying on a centralized control, as shown by karasaridis
et al. [35] and Barford et al. [36]. Later on numerous new botnets began to use
http-based C&C channels and leverage the more stable P2P based communica-
tion architecture, per Wang et al. [17] and Holz et al. [37], to mitigate failure
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due to centralization. Other work focused on in-depth case study of individual
botnet families, as done by Binsalleeh et al. [19], Andrade et al. [14] and Shin et
al. [38].

Recent work focused on Internet or large scale measurement study of net-
work traffic to develop methods for revealing more properties of botnets, such
as their size [29] and activeness [24,38]. In our work, we analyze the bots’ static
properties and dynamic behaviors from a different angle, focusing on botmaster
strategies behind the scenes. By conducting a large-scale measurement study of
bots activity from multiple well-known botnet families, we uncover several new
bot recruitment and scheduling strategies. To the best of our knowledge, some
of our findings, such as bot recruitment preferences and bot resources schedul-
ing, are not reported before. Similar to our study, Chang et al. [39] conducted
a measurement study of a commercial dataset to reveal the latest botmasters’
strategies. While both works share a common theme of understanding botnets
utilized by DDoS attacks, the focus of each work is different. In particular, Chang
et al. outlined measurement highlights collectively, focusing on botnet collabora-
tion observations. On the other hand, we study the bot recruitment at both the
country and organization levels, and bot scheduling – fast recruitment, bot al-
ternation, bot recurrence – from where we can infer the strategies of botmasters.
Furthermore, our work focuses on bot dynamics, which is a topic of independent
interest.

Although we utilize the same dataset used by Wang et al. [7], our approach of
data analysis is completely different from theirs: the findings and contributions
of our work do not share any common ground with theirs. Wang et al. utilized
the dataset to understand state-of-the-art of DDoS attacks, while we utilize
it to understand the source and tool used for the attacks; botnets. For this
purpose they analyzed the geo-distribution of attack sources for many DDoS
attacks, the temporal patterns and collaboration trends between botnet families
to launch attacks, etc. On the other hand, whereas we focus on a meta-study of
various botnets, our goal is to reveal both static attributes and dynamic patterns
of all botnets from 23 known families to understand the constantly advancing
strategies adopted by botmasters.

7 Conclusion

Botnets today are responsible for most large-scale attacks on the Internet. Thus,
it is essential to understand their latest behavioral traits for insight into defenses.
In this paper, we have performed a measurement study of bots activity from 23
known botnet families for about 7 months. By conducting a series of in-depth
analysis of bots’ static properties and dynamic behaviors, we have uncovered that
today botmasters have adopted several new strategies to recruit and schedule
bots. As we still investigate the potential consequence of those strategies in
bots recruitment, we suggest to leverage such insights to devise new defense and
mitigation schemes.
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