
Detecting and classifying method based
on similarity matching of Android malware
behavior with profile
Jae‑wook Jang1, Jaesung Yun1, Aziz Mohaisen2, Jiyoung Woo1 and Huy Kang Kim1*

Background
The explosive growth in the number of mobile devices running the Android platform
has attracted the attention of hackers for the wealth of sensitive information that are
usually stored on mobile devices, including phone numbers, short messages, confiden-
tial emails and correspondences, and banking information and credentials. The avail-
ability of this information in many mass-market mobile devices makes them a desirable
target for hackers, who excelled at developing a large number of mobile malicious soft-
ware (malware), making the security of mobile devices one of the most important and
challenging areas of research. For example, According to a report by McAfee, the total
number of mobile malware continued its linear climb as it broke 8 million in the second
quarter of 2015, and increased by 17 % over the first quarter of the same year (McAfee

Abstract

Mass‑market mobile security threats have increased recently due to the growth of
mobile technologies and the popularity of mobile devices. Accordingly, techniques
have been introduced for identifying, classifying, and defending against mobile threats
utilizing static, dynamic, on‑device, and off‑device techniques. Static techniques are
easy to evade, while dynamic techniques are expensive. On‑device techniques are
evasion, while off‑device techniques need being always online. To address some of
those shortcomings, we introduce Andro‑profiler, a hybrid behavior based analysis
and classification system for mobile malware. Andro‑profiler main goals are efficiency,
scalability, and accuracy. For that, Andro‑profiler classifies malware by exploiting the
behavior profiling extracted from the integrated system logs including system calls.
Andro‑profiler executes a malicious application on an emulator in order to generate
the integrated system logs, and creates human‑readable behavior profiles by analyzing
the integrated system logs. By comparing the behavior profile of malicious application
with representative behavior profile for each malware family using a weighted similar‑
ity matching technique, Andro‑profiler detects and classifies it into malware families.
The experiment results demonstrate that Andro‑profiler is scalable, performs well in
detecting and classifying malware with accuracy greater than 98 %, outperforms the
existing state‑of‑the‑art work, and is capable of identifying 0‑day mobile malware
samples.

Keywords: Behavior profiling, Similarity, System call, Android, Malware

Open Access

© 2016 Jang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

RESEARCH

Jang et al. SpringerPlus (2016) 5:273
DOI 10.1186/s40064-016-1861-x

*Correspondence:
cenda@korea.ac.kr
1 Graduate School
of Information Security, Korea
University, Seoul, Republic
of Korea
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1861-x&domain=pdf

Page 2 of 23Jang et al. SpringerPlus (2016) 5:273

2015). Moreover, new malware families and variants were reported to appear approxi-
mately 1 million times in the same quarter. To address this trend, antivirus (AV) vendors
analyze a large number of malware samples daily in order to prevent them from spread-
ing widely and to guide users on disinfection and risk management by classifying mal-
ware into broad families.

Mobile as well as traditional malware analysis for detection and classification falls into
two broad types: static and dynamic analysis. In static analysis, strings of bytes asso-
ciated with malware samples are discovered through reverse engineering and used as
a signature for identifying malicious software. Although fast and efficient, static tech-
niques are often prone to high false negative rates due to evolution in code basis and
code repacking. Furthermore, additional cost of those techniques is required for reverse
engineering to generate reliable and meaningful signatures.

On the other hand, dynamic and behavior based analysis aims to provide methods for
effectively and efficiently extracting unique patterns of each malware family based on
its behavior. Malware samples of the same family often use the same code base, provide
the same functionality using the same order of behavioral events (Mohaisen et al. 2014),
and so on. In analyzing mobile malware, unique behavior patterns can be represented
by various symbols (e.g., permission set, API call, and system call) and used to identify
malware families. To this end, researchers previously proposed various detection and
classification methods for malware analysis based on their behavior, including permis-
sion-based, API call-based and system call-based methods. Permission-based detection
methods are not efficient in classifying benign applications as benign, since relevant rule
sets only focus on detecting the malware. API call-based detection methods cannot gen-
erate distinct signatures until decompilation or disassembly process is completed, which
is often expensive. System call-based detection methods can more accurately detect
malicious behavior than other methods, since it is impossible to modify original func-
tionality of system calls: malware creators always attempt to disguise malicious behavior
as normal behavior. However, proposed methods in this category mainly deal with fre-
quency of system calls well presented in malware. The number of invoked system calls
is usually small, and most of the system calls used in malware (e.g., read(), write())
are also observed in both benign applications, affecting the accuracy of those methods.
To this end, one needs to consider more features, such as arguments in the system call
and network activities, to enhance malware detection and classification via behavior
profiling.

To overcome the drawbacks in previous methods, we propose a feature-rich anti-mal-
ware system based on behavior profiling called Andro-profiler. Our proposed behavior
profiling system comprises mobile devices and a remote server to facilitate profiling, and
adopts profiling method in the malware analysis domain. We exploit system calls, includ-
ing their arguments provided by Loadable Kernel Module (LKM) and system logs (e.g.,
SMS, call, and network I/O) provided by Droidbox (2011) as feature vectors for malware
characterization. We define system calls and system logs as integrated system logs from
which we directly infer behavior patterns representation using the concept of behavior
profiling of Bayer et al. (2009). We assume that: (a) malware samples have unique mali-
cious behavior patterns, (b) malicious behavior is determined by system calls, and (c)
such system call set has influence on the behavior of the program (malware). We prepare

Page 3 of 23Jang et al. SpringerPlus (2016) 5:273

representative behavior profile for each malware family represented by integrated sys-
tem logs including system calls, their arguments, and system logs of Droidbox—an anal-
ysis system we utilize in this work. We construct the behavior profile of each malware
sample through its integrated system logs by executing it on an emulator. Then, by com-
paring the behavior profiles across samples, we can detect and classify malware samples
into related families.

Contribution The main contributions of this paper are as follows:

1. We propose a novel anti-malware system based on behavior profiling called Andro-
profiler. We classify malware by exploiting the behavior profiling extracted from
integrated system logs. Our method captures the behavior profiling by converting
integrated system logs into human-readable contexts, which helps analysts analyze
malware intuitively.

2. Andro-profiler enables AV vendors to react to many species of malicious samples by
classifying and matching them with those previously detected quickly and efficiently.
Our system can help detect new malware including existing malware’s variants and
0-day exploits. This is further highlighted through in-depth experiments using real-
world malware samples.

3. Our proposed method is robust, and can be extended with additional features that
depict the unique behavior patterns of malware. Our method can easily employ static
analysis technique to capture malicious behavior, in combination of the dynamic
behavior, which is shown to outperform existing techniques in the literature. This
feature of our work is highlighted by a comparison with the prior literature, experi-
mentally.

The rest of this paper is organized as follows. Previous work is introduced in “Related
work”. Our profiling method is explained in “Behavior profiling” and our proposed archi-
tecture is introduced in “Andro-profiler: an anti-malware system”. The experimental
results are presented in “Performance evaluation”. And the limitation of our approach is
discussed in “Limitations”. In “Conclusion and future work”, we conclude the paper and
outline possible directions for future work.

Related work
Based on where the scan and monitoring of the mobile malware takes place, malware
analysis methods are classified into three types: detection methods on the mobile device,
detection methods outside the mobile device, and hybrid detection methods. We clas-
sify the literature based on the type of the malicious behavior into permission-based
and footprint-based methods. Footprint-based methods include system call-based, API
call-based, decompiled code-based, and XML information-based methods. The detec-
tion methods on mobile device scan malicious behavior patterns on the mobile device
and return the analysis results to the user. However, those approaches do not consider
the resource constraints on the mobile device: low computing power and limited battery
life, affect their usability and user experience. The detection methods outside mobile
device execute detection algorithms on an emulator or a real device running the tar-
geted applications, and conduct static or dynamic analysis for determining the nature of

Page 4 of 23Jang et al. SpringerPlus (2016) 5:273

those applications. Those approaches do not need to consider resource constraints, but
cannot respond to new malware families quickly. To overcome the drawbacks in both
approaches, hybrid approaches have been introduced in mobile malware analysis. Client
modules deployed on mobile devices collect information related to installed applications
on those devices and send the information to a remote server. The remote server then
analyzes log files using their detection algorithms of choice, while not impeding usability
and user experience. Table 1 summarizes the various malware detection or classification
methods in the literature. In the following, we elaborate on some of the related works in
each category.

Detection methods on mobile devices

Previous work in this category has introduced malware detection methods that can
execute applications on devices, providing online detection. Enck et al. (2009) pro-
posed the Kirin security service, which performs lightweight certification of applications
to mitigate malware at installation time. Kirin examined the requested permissions of
applications, compared them with self-defined security rules, and determined whether
malicious activities were carried out or not. In order to do that, they relied on permis-
sions given in a manifest file, Androidmanifest.xml. However, application develop-
ers tend to excessively declare permissions in a manifest file, although the application
does not actually need all of the permissions. To that end, those methods produce low
accuracy. Pearce et al. (2012) introduced AdDroid, in which they separated advertising

Table 1 Various malware detection / classification methods in previous works

Approach Method Feature Previous works

Detection on mobile
device

Permission Permission Enck et al. (2009) and Pearce
et al. (2012)

Footprint System resources Shabtai and Elovici (2010)
and Bugiel et al. (2012)

Taint tracing Enck et al. (2010)

Event log, system call Bose et al. (2008)

Detection outside mobile
device

Permission Permission Peng et al. (2012)

Footprint System call, disassembled
code

Blasing et al. (2010)

System call, interaction log Reina et al. (2013)

System/API call, taint
tracing

Rastogi et al. (2013)

Permission + footprint Permission, API call Yang et al. (2012)

Permission, API call, XML
information

Grace et al. (2012), Wu et al.
(2012) and Arp et al. (2014)

Permission, API call, system
call, XML information,
disassembled code

Yan and Yin (2012), Zhou
et al. (2012), Spreitzen‑
barth et al. (2013), Weich‑
selbaum et al. (2014) and
Vidas et al. (2014)

Hybrid Footprint System call Burguera et al. (2011) and
Isohara et al. (2011)

Function call Schmidt et al. (2009)

Permission + footprint Certificate, permission,
disassembled code, XML
information

Jang et al. (2015) and Kang
et al. (2015)

Page 5 of 23Jang et al. SpringerPlus (2016) 5:273

permissions for the Android platform. In AdDroid, the host application and the core
advertising code ran in isolated environment, where applications using AdDroid did not
send sensitive information to advertisement server anymore. However, AdDroid did not
consider information leakage unrelated to advertisement, which is the case in the major-
ity of malware.

Shabtai and Elovici (2010) proposed Andromaly, a behavior-based detection frame-
work for Android-based mobile devices. Andromaly is a host-based intrusion detection
system that continuously monitored various resources and classified malicious applica-
tions using a machine learning algorithm. Bugiel et al. (2012) proposed Xmandroid, a
system-centric and policy-driven runtime monitoring system that regulates communica-
tions between applications. Based on heuristic analysis, the authors identified attack pat-
terns and classified malicious applications. These proposed methods, however, require a
significant hardware capacity (e.g., CPU, RAM, and battery life) in order to monitor all
resources comprehensively.

Enck et al. (2010) proposed Taintdroid, an extension to the Android mobile-phone
platform that tracks the flow of sensitive information through third-party applications.
If tainted data left the Android device, Taintdroid provided a report logging the leaked
data, where the data is sent and which application leaked it. Taintdroid focused on
information leakage, and then an emulator such as Droidbox embedded Taintdroid and
tracked information leakage.

Bose et al. (2008) proposed a signature-based detection method for the Symbian oper-
ating system. The method is a two-stage mapping technique consisting of extraction
process and representation process that constructed these signatures at run-time from
the monitored system events and system calls. The method used temporal logic to detect
malicious activity over time that matched a set of signatures represented as a sequence
of events. However, the method needed to obtain root privileges to access the kernel,
and required sufficient hardware capacity to extract system calls and convert related fea-
tures into signatures.

Detection methods outside mobile devices

Previous work in this category introduced malware detection methods that execute rele-
vant applications outside the device, providing offline detection. These methods execute
their detection algorithms on an emulator or a real device other than the host device.
Thus they are not constrained by constraints of real devices, and do not impede usability
and user experience.

Peng et al. (2012) used probabilistic generative models for risk scoring schemes,
ranging from the simple Naïve Bayes to advanced hierarchical mixture models. Their
proposed methods computed a real risk score of Android applications based on the
requested permissions, and differentiated between malware and benign applications.
However, application developers tend to excessively declare permissions in a manifest
file, requiring the method to rely on other criteria for higher detection and classification
accuracy.

Blasing et al. (2010) proposed an Android Application Sandbox (AASandbox), which
enables static and dynamic analysis on the Android platform. In the static analysis phase,
AASandbox decompressed installation files and disassembled intended executable files,

Page 6 of 23Jang et al. SpringerPlus (2016) 5:273

then compared them with pre-defined malicious patterns. In the dynamic analysis phase,
it hijacked system calls for logging and built a frequency table of system calls. However,
the dynamic analysis methods based on the frequency of system calls need a more elabo-
rate and redefined process in order to improve its detection or classification accuracy.
The function name of the system call as well as arguments used in the system call need
to be considered.

Yang et al. (2012) introduced a systematic approach, called Money-Guard, to detect
stealthy money-stealing applications in the Android market. Money-Guard checked for
API calls and billing-related permissions to detect stealthy money-stealing malware, but
could not identify various malicious behavioral patterns except for malware sending pre-
mium-rate SMS.

Yan and Yin (2012) proposed DroidScope built on top of QEMU and enabled to
reconstruct the OS-level and Java-level semantic views simultaneously. They analyzed
malware by collecting native and Dalvik instruction traces, API-level activity, and infor-
mation leakage. Reina et al. (2013) introduced CopperDroid, an approach built on top
of QEMU to automatically perform dynamic analysis of Android malware. Copper-
Droid conducted a unified analysis to characterize low-level OS-specific and high-level
Android-specific behaviors (e.g., information leakage, sending SMS) by observing and
analyzing system call invocations, IPC and RPC interactions. Rastogi et al. (2013) pro-
posed AppsPlayground, a framework for automatic dynamic analysis, which executes a
suspicious application on emulator built on top of QEMU. AppsPlayground determined
whether malicious activities were carried out or not by tracking information leakage and
monitoring sensitive API and system calls. These approaches conducted fine-grained
analysis, thus they may suffer from a high overhead. Moreover, they are needed to moni-
tor synchronized low-level and high-level events. Andro-profiler also monitors low-
level and high level events. Since our approach is implemented based on Droidbox, our
approach is more stable since it only requires adding functionality related to hooking for
low-level events.

Grace et al. (2012) proposed an anti-malware system, RiskRanker, to determine
whether or not an application conducts malicious behavior by measuring potential secu-
rity risk. RiskRanker classified an application into a high-risk application if it had exploit
code for vulnerabilities in the OS. RiskRanker reported an application as a medium-risk
application that enables to hijack sensitive information or subscribe premium service
without victim’s consent. Moreover, RiskRanker inspects malware embedding encryp-
tion and dynamic loading methods. However, RiskRanker mainly depends on signatures
of malicious code to detect malware and fails to react to malware embedding obfuscation
methods like Proguard. Wu et al. (2012) proposed DroidMat, which is a feature based
malware detection method. DroidMat chose the requested permissions, Intent message,
and API calls as feature vectors, extracted them from various resources such as mani-
fest file and bytecode. By leveraging a K-means clustering algorithm, DroidMat mod-
eled malware samples according to their characteristics, and then determine whether
or not an application is malicious by leveraging K-NN algorithm. Arp et al. (2014) pro-
posed DREBIN which utilizes the used permissions, suspicious API calls, and network
addresses as feature vectors for identifying applications. DREBIN extracted those fea-
tures from the manifest and dex bytecode files, and identified malware by leveraging

Page 7 of 23Jang et al. SpringerPlus (2016) 5:273

Support Vector Machine (SVM) algorithm. Zhou et al. (2012) proposed DroidRanger,
which identifies malicious behavior through both permission-based behavioral footprint
scheme for the detection of known malware and a heuristic-based filtering scheme for
detection of 0-day malware. Weichselbaum et al. (2014) introduced Andrubis, which is
an extension of Anubis (2011) for analyzing Android malware. Andrubis is an automatic
analysis system coupled with static and dynamic methods. Vidas et al. (2014) presented
A5, an automated anti-malware system based on static and dynamic analysis. Since
DroidMat, DREBIN, DroidRanger, Andrubis, and A5 leveraged permission information
of the manifest file as a feature, their accuracy is limited, just similar to other permission-
based approaches; Kirin and Peng et al. (2012)’s work. Furthermore, they are ineffective
in identifying benign applications because relevant rules only focus on detecting mal-
ware, thus produce large false alarms, despite other compensating rules being leveraged.

Spreitzenbarth et al. (2013) proposed Mobile-Sandbox, static and dynamic analyzer for
Android applications, like in AASandbox. In the static analysis phase, Mobile-Sandbox
parsed a manifest file, decompiled the application, and checked whether suspicious per-
missions are used or not. In the dynamic analysis phase, they executed the application
on Droidbox, logged every operation of the application, and recorded native library calls
executed by processes. They extracted native library calls by exploiting (ltrace 1997);
ltrace is executed after installation process is completed.

Hybrid methods

In hybrid detection methods, clients collect meta information on applications on the
device and send that information to a remote server. The remote server then analyzes
this information using a detection algorithm and makes a decision on whether an appli-
cation is benign or malicious. This approach compensates for the drawbacks of the
online and offline detection methods. However, users have to agree in advance on what
client module will send user information to the remote server.

Burguera et al. (2011) proposed a lightweight client called Crowdroid which moni-
tored system calls, made a frequency table using those system calls, and sent them to
a centralized server. The remote server then identified malicious behavior in a statisti-
cal manner and detected malware using a K-means clustering algorithm. Crowdroid
extracted system calls by exploiting Strace (1991), but Strace is executed after installa-
tion—Crowdroid cannot detect malicious behavior during the installation process, and
depends on the functionality of Strace. Isohara et al. (2011) proposed a kernel-based
behavior analysis system that consisted of a system call log collector on an Android
device and a log analyzer on a remote server. The client collected system calls gener-
ated at installation time and sent the logs to a remote server. The remote server then
compared patterns in the logs with 16 pre-defined patterns. Since pre-defined behavior
patterns mainly focused on malicious behaviors such as restricted information leakage,
jailbreak, and abuse of root privileges, their system could not detect malicious behavior
such as sending premium-rate SMS and calling premium-rate code. They also do not
guarantee sufficient scalability.

Schmidt et al. (2009) proposed a collaboration mechanism for Android platform security
comprising a log collector on the device and a remote analyzer. In their proposed system,
the client monitored the behavior of the malicious application at the installation time, ran

Page 8 of 23Jang et al. SpringerPlus (2016) 5:273

analysis based on the similarity of the function call set used, exchanged the result of analy-
sis with neighboring devices, and performed collaborative malware detection.

Kang et al. (2015) introduced a lightweight anti-malware system based on the serial
number of a certificate and code similarity in an application. Based on similarity algo-
rithm, they classified malware into the similar group, comparing the similarity of API
sequence, permission usage, and system command usage. Jang et al. (2015) proposed a
feature-rich anti-malware system based on based on similarity matching of malware-
centric and malware creator-centric information. Their system classified malware
samples into similar subgroups by exploiting the profiles extracted from integrated foot-
prints, which are implicitly equivalent to distinct behavior characteristics. Dissimilar to
our previous works (Kang et al. 2015; Jang et al. 2015), Andro-Profile analyzes malware
characterization based on dynamic behavior analysis, coupled with Droidbox.

Behavior profiling
In the literature of traditional malware research related to personal computers operating
Microsoft Windows, Bayer et al. (2009) proposed a method for scalable behavior-based
malware clustering. The method contributes to the theoretical foundations of malware
analysis by discussing the behavior-based profiling formally. Given the relevance of this
work to our work, we review definitions of behavior profiling from the aforementioned
work for the completeness of our presentation, and incorporate details specific to our
proposed system in the following.

Definition (behavior profiling) A behavior profiling P is defined by four tuples as
P = (O,OP,Ŵ,�), where O is the set of all objects and OP is the set of all opera-
tions, which is represented in nested dictionary form as {name : {target : attribute}}.
Ŵ ⊆ (O × OP) is a relation assigning more than one operation to each other, and
� ⊆ ((O × OP), (O × OP)) represents the sequence-unrelated set, which is equivalent
to integrated system logs.

Object An object represents an abstract functionality that malware samples need for
carrying out the malicious behavior. Tam et al. (2015) manually analyzed many malware
samples from various datasets such as contagion and Android malware Genome Pro-
ject. They classified malicious behaviors into six groups according to behavior patterns:
make call, send SMS, network access, access personal information, alter filesystem, and
execute external application. We also manually inspected malware samples we had, and
then defined malicious behavior as outlined by Tam et al. (2015); since some behavior
patterns are not found in our dataset, we leave them out. We define malicious behav-
ior as the sending of premium-rate SMS, the calling of premium-rate number, the send-
ing of sensitive information, and converting data for transmission. We do not consider
malicious behavior such as privilege escalation and Command and Control (C&C) attack
since dynamic analysis methods hardly detect malware executing malicious behavior
under given condition (e.g., SDK version, cellular network connection status, time, or
place). We formally define object as following:

Object ::= Object-type

Object-type ::= Telephony|Phone|Network

Page 9 of 23Jang et al. SpringerPlus (2016) 5:273

Operation An operation represents a concrete malicious behavior. Formally, an opera-
tion comprises of operation-name, operation-target, and operation-attribute. Oper-
ation-name is the identifier for malicious behavior. Operation-target is the attack
objective of malware, such as contents of external storage and system information.
Operation-attribute is a meaningful value that the malware wants to obtain; for example,
the attribute of country code (operation-target) is Korea, and operation-name is sending
sensitive information. We formally define operation as follows:

Table 2 shows an example of mapping of network object and the corresponding opera-
tions. In the case of malicious behavior for sending sensitive information, we represent
the profile of that behavior as follows: “{Network : {Sending sensitive information : {{IMEI
: 357242043237517}, {MCC : 310}, {MNC : 260}, {Location : GPS Coordinates } …, } } }”.

Andro‑profiler: an anti‑malware system
In the following we review the design and operation of Andro-profiler, a hybrid system
for malware analysis and classification that combines the on-device capabilities for pro-
filing and off-device capabilities for analysis and classification.

Overview

As illustrated in Fig. 1, we propose a hybrid anti-malware system that consists of a client
application on the mobile device and a profiling and analysis remote server. The client
application on the mobile device collects installed application information, and sends
that information to the remote server; the client application only sends application-spe-
cific information such as the hash digest of apk file and package name. If the remote
server cannot crawl that application, the client application sends the application package

Operation ::= {Operation-name : {Operation-target : Operation-attribute}}

Operation-name ::= Sending SMS|Calling|Sending sensitive information

|Converting data

Operation-target ::= Premium-rate SMS/number|deviceID|IMEI|IMSI|MCC|MNC|...|etc.

Table 2 Example of mapping of network object

Type Name Target Attribute

Network Sending sensitive information Android Id 3531505c0b421c4d

Device type Android

IMEI 357242043237517

IMSI 310005123456789

MCC 310

MNC 260

OS version 10

SDK version 2.3.4

Carrier Android

Country code en

Location GPS coordinates

Converting data Cipher algorithm No, DES, AES, Blowfish

Destination URL http://my365image.com

Port 80

Encoding algorithm Gzip

http://my365image.com

Page 10 of 23Jang et al. SpringerPlus (2016) 5:273

file (apk) to the remote server. The remote server analyzes the malicious application and
decides whether it is malicious or not based on its behavior. The remote server consists
of three components: crawler, repository, and analyzer. The crawler component crawls
applications from repositories, such as official markets and alternative markets. The
crawled applications are then passed to the repository component which runs a dupli-
cation test by comparing the hash digest of the apk file to each other. If the crawled
application is a duplicate, it is discarded; otherwise, the repository component sends
that application to the analyzer component. After completing the analysis, the ana-
lyzer component sends the analysis results to both the repository component and the
client application. Upon receiving the analysis results from the remote server, the cli-
ent application displays the result on the screen to the user. The repository component
searches its database upon the repository component receiving an analysis request from
the client. If the repository component does not have analysis results to fulfill the client
application’s request, it fetches the crawler component. As illustrated in Fig. 2, the ana-
lyzer component has two processes: an extraction process of integrated system logs and
a decision process. The extraction process of integrated system logs is composed of a
behavior identification module, and the decision process is composed of three modules:
a behavior profiling module, a behavior categorization module, and a similarity match-
ing module. In the following, we review the extraction and decision processes.

Extraction process of integrated system logs

In following subsection, we review the extraction process of integrated footprints used
for our profiling phase.

Fig. 1 Overall procedure of andro‑profiler

Page 11 of 23Jang et al. SpringerPlus (2016) 5:273

Behavior identification module

Andro-profiler conducts malware characterization based on dynamic behavior analysis.
Our system extended Droidbox to embed the Loadable Kernel Module (LKM) for hijack-
ing system calls including their arguments. More specifically, the Behavior Identification
(BI) module in our system executes malware on an emulator and monitors malicious
behavior in an isolated environment. Whenever malware is executed on the emulator,
the BI fetches the integrated system logger. The integrated system logger parses system
calls including their arguments provided by LKM and system logs provided by Droidbox;
Droidbox monitors SMS, call, and network I/O. The parsed integrated system logs are
then passed to the decision process.

Decision process

As shown in Fig. 2, the decision process consists of three modules: behavior profiling,
behavior categorization, and similarity matching module. In the following we elaborate
on each of those modules.

Behavior profiling module

The Behavior Profiling (BP) module parses the integrated system logs of a given applica-
tion and makes the behavior profile. The BP module is implemented as described in pre-
vious section (Behavior Profiling). For example, the BP module makes a behavior profile
of GinMaster which steals sensitive information, as illustrated in Fig. 3. According to
the analysis report of F-Secure (F-Secure), GinMaster steals sensitive information,
such as International Mobile Equipment Identity (IMEI), International Mobile Sub-
scriber Identity (IMSI), User Identifier (UID), Subscriber Identification Module (SIM)
number, telephone number, and network type, to a remote server. The behavior profile
made by the BP module is similar to the analysis report of F-Secure, and it is simple and
relatively easy to understand.

Fig. 2 Overview of the analyzer component

Page 12 of 23Jang et al. SpringerPlus (2016) 5:273

Behavior categorization module

The behavior categorization (BC) module categorizes a given application according to its
behavior patterns. As we mentioned earlier, we define malicious behavior as the send-
ing of premium-rate SMS, the calling of premium-rate number, the sending of sensi-
tive information, and converting data for transmission. Since the numbers of malicious
behavior patterns which we define are four, the possible permutation sets of malicious
behavior patterns are 15 (=

∑4
i=1 4Ci). If an application does not behave in accordance

with a pre-defined malicious behavior, our system decides that the application is benign.

Similarity matching module

The different similarity metrics need to be applied to behavior factors since they have
different types of argument. Instead of using machine learning approaches that usually
use the same similarity metric for features, we design the appropriate similarity metrics
for behavior factors. The similarity matching (SM) module computes the similarity score
between the behavior profile of malicious application and representative behavior profile
of each malware family. The SM then classifies the malicious application into the group
with which it bears the most similarity based on its behavior. The representative behav-
ior profile of each malware family has to depict the unique and common behavior pat-
terns of each malware family, then SM module chooses one of the methods updating the
representative behavior profile as follows:

1. Method 1: The first update method is intersection. The representative behavior profile
for each malware family is updated by the intersection of behavior profiles of mem-
bers in each subgroup. In the method 1 (intersection), and as the number of members
of each malware family increases, the representative behavior profiles decrease.

2. Method 2: The second update method is union. The representative behavior profile
for each malware family is updated by the union of behavior profiles of members in

Fig. 3 Implementation of behavior profiling (e.g., GinMaster)

Page 13 of 23Jang et al. SpringerPlus (2016) 5:273

each subgroup. In the method 2 (union), as the number of members of each malware
family increases, the representative behavior profiles increase.

We define the similarity score as the intensity with which resources are accessed.
Access to resources includes hardware resources (e.g., Call, SMS, Bluetooth, and Cam-
era), system information, and private information (as detailed earlier); we define the sim-
ilarity score as the weighted sum of the similarity of four behavior factors. The similarity
score between the behavior profile of malicious application and a representative behav-
ior profile for each malware family is given by:

where BFSi and wi are the similarity and weight of behavior factor i, respectively. Simi-
larity of behavior factor (BFS) is composed of four parts: similarity of sending premium-
rate SMS (SS), calling premium-rate number (CS), sending sensitive information (SIS),
and converting data (CDS). We choose the weight (wi) to be 0.33 for SS, 0.33 for CS, 0.21
for SIS, and 0.13 for CDS—we determined that such settings for weight values are opti-
mal and provide best performance through experiments.

Table 3 shows similarity metric to apply to each behavior factor, and we compute the
similarity score for each behavior factor as follows:

1. We compute the similarity score for sending premium–rate SMS and calling pre-
mium-rate number, as comparing whether a relevant hardware resource is accessed
or not. String similarity (e.g., phone number, code number) is less meaningful as a
feature except for perfect matching since a difference of one bit yields the same result
as with the difference of all bits in this case. Therefore, we give a similarity score of
one if they have the same behavior; otherwise, we give a score of zero. Hence, the
value of similarity score for both SS and CS is binary.

2. We compute the similarity score for sending sensitive information by applying the
Jaccard index. We define the sensitive information as follows (highlighted in Table 2
by an example):

(a) System information IMEI, IMSI, device ID, MCC, MNC, carrier name, device
type, device model, OS version.

(b) Private information external storage contents, location, country code, language.

(1)S =
∑

i

wi · BFSi where

∑

i

wi = 1

Table 3 Similarity metric to apply to each behavior factor

Behavior factor Behavior target Similarity metric

Sending SMS Premium‑rate Binary (0 or 1)

Calling Premium‑rate Binary (0 or 1)

Sending sensitive information System information, private information Jaccard index [0, 1]

Converting data Destination URL Modified levenshtein distance [0, 1]

Cipher algorithm (DES, AES, Blowfish) Binary (0 or 1)

Encoding algorithm (Gzip or not) Binary (0 or 1)

Page 14 of 23Jang et al. SpringerPlus (2016) 5:273

We compute the similarity score for converting data (CDS), as the average of the simi-
larity for a destination URL, cipher algorithm, and encoding algorithm. In the case of
similarity of a destination URL, we first adopt the longest prefix matching. If a partial
matching occurs, we adopt the Levenshtein distance to the residual string except the
substring to which the longest prefix matching is used. For example, let A.B.C.D and
A.B.E.F be two URLs. In this case, we adopt Levenshtein distance to the residual URLs:
C.D and E.F. As for the cipher algorithm and encoding algorithm, we give a similarity
score of one if they have used the same algorithm; otherwise, we give a score of zero. The
value of similarity score for both SIS and CDS was [0, 1].

3. If a given application does not act maliciously (based on the defined criteria above)
except for CDS, we consider that application to be benign.

Performance evaluation
In the following we demonstrate the performance and accuracy of Andro-profiler by
highlighting aspects of implementation and testing it on various real-world mobile mal-
ware samples and families.

Implementation

Our anti-malware system is composed of a mobile device and a remote server; the client
application is installed on the mobile device (SKY IM-A690S) running on the Android
2.3.3, and three components—a crawler, repository, and analyzer—were installed on the
remote server. The remote server has an Intel(R) Xeon(R) X5660 processor and 4GB of
RAM with 32-bit Ubuntu 12.04 LTS operating system; we performed all experiments
in a hypervisor-based virtualization environment—VMWare ESXi; http://www.vmware.
com/.

We implemented each component of our anti-malware system with Python high level
programming language (as scripts) as follows:

1. The client component on the mobile device is implemented in the form of an appli-
cation and communicated with the remote server. The crawler component sent the
package name to GooglePlay and downloaded target application. The repository
component stored the behavior profile of each application in a database.

2. The analyzer component is composed of the BI, BP, BC, and SM modules. In the fol-
lowing we provide details on each of those modules.

(a) The BI module is implemented as python script coupled with Droidbox. The
emulator is run on the Android 2.3.4 (level 10). In order to capture the malicious
behavior, the BI module executed each application for 60 s after the installation
process is completed. After capturing integrated system logs of malicious appli-
cation, the BI module passed those logs to the BP module and restored the emu-
lator to the initial state only for capturing malicious behavior.

(b) The BP module parsed integrated system logs to make the behavior profile of
each malware, and stored the behavior profile as a dictionary structure of the

http://www.vmware.com/
http://www.vmware.com/

Page 15 of 23Jang et al. SpringerPlus (2016) 5:273

Python language for efficient membership test. The parsing rule listed in Table 4
consists of system call and its arguments—only arguments provided by LKM,
and information provided by Droidbox. The parsed behavior profile is encoded
in a base-64 format and stored in database.

(c) The BC module categorized malicious application according to the behavioral
patterns, and the SM module computed similarity score between behavior pro-
file of malicious application and representative behavior profile for each fam-
ily. The SM module classified a malicious application into the group with high-
est similarity score, which is at least 0.85. Whenever a new malware sample is
queued into our anti-malware system for inspection, the SM module had con-
tinuously updated representative behavior profile according to the pre-chosen
update method.

Experiment setup

For performance evaluation, 643 malware samples consisting of 5 malware families
were collected from January 2013 to August 2013 through malware repositories such
as VirusShare (2011), Contagio (2011). For 8840 benign samples, we crawled a variety
of popular applications with high rankings (for the same periods) from GooglePlay. In

Table 4 Example of parsing rules for detecting malicious behavior

Behavior factor Parsing rule Comment
Sending SMS mms.transaction.SmsReceiverService SMS

Calling access(/system/app/Phone.apk ~)

writev(3, OutgoingCallBroadcaster ~) Calling

Sending sensitive information open(/proc/cpuinfo ~), write(1, Processor ~) CPU Spec.

open(/sdcard ~), stat64(/sdcard/~) Storage access

stat64(/system/app/MediaProvider.apk),

access(/data/~/com.android.providers.media/databases),

com.android.providers.media.MediaScannerService),

open(/data/dalvik‑cache/system@app @MediaProvider.
apk@classes.dex)

Media file

{stat64 | open | access}(/system/app/Contacts.apk),

{stat64 | open} (/data/~ @Contacts.apk@classes.dex) Contact information

 〈map〉 ∼ { NET_OP | mcc | mnc } ∼ �\map〉, 〈map〉 ∼ {
networkOperator | sim_operator } ∼ �\map〉

MCC, MNC

〈map〉 ∼ { affid | did | device_id | andide } ∼ �\map〉 Device ID

〈map〉 ∼ { osversion | device_type } ∼ �\map〉 OS version

〈map〉 ∼ { manufacturer | phoneModel | device_name |
model } ∼ �\map〉

Device

〈map〉 ∼ { network | wifi } ~ �\map〉 Wifi information

〈map〉 ∼ { carrier | device_carrier } ~ �\map〉 Carrier

〈map〉 ∼ { imei | imsi } ∼ �\map〉 IMEI, IMSI

〈map〉 ∼ { longitude | latitude } ∼ �\map〉 Location

〈map〉 ∼ { location | country_code | locale } ∼ �\map〉 Country code

〈map〉 ∼ { language } ∼ �\map〉 Language

Converting data {sendto | OpenNet | SendNet | DataLeak} (∼ Content‑
Encoding: gzip ∼)

Encoding algorithm

{sendto | OpenNet | SendNet | DataLeak}(∼ CryptoUsage:
{DES|AES|Blowfish} ∼)

Cipher algorithm

Page 16 of 23Jang et al. SpringerPlus (2016) 5:273

the real world, malware comprises a small fraction of all android apps, so it makes sense
to use a larger set of benign samples to mimic the realistic scenario. Duplicated samples
were eliminated according to SHA 256. We also excluded malware samples diagnosed
by fewer than 9 AV vendors included by the VirusTotal dataset (2004). We used textual
description of malware produced by F-Secure (1999). The description of the samples
is summarized in Table 5. In addition, the whole experimental results are available at
http://ocslab.hksecurity.net/andro-profiler.

For the validation of our work, we used fivefold cross-validation to evaluate the per-
formance in our experiments. The k-fold cross-validation is a widely used technique in
machine learning. In a nutshell, the method partitions the dataset into k equal size sub-
sets, where each subset is used only once for testing and validation of the training model,
and the k − 1 remaining subsets are used for training the model. This is, a model is built
using k − 1 subsets, and tested using the remaining subset. Then, the subset used in the
previous step for testing is used for training, and a subset in the k − 1 sets previously
not used for testing is used for testing. The process is repeated k times by alternating the
testing set, and the results are averaged over the runs.

Comparing different methods

To the best of our knowledge, the closest approaches in the literature to Andro-profiler
are Crowdroid (Burguera et al. 2011), CopperDroid (Reina et al. 2013), and AppsPlay-
ground (Rastogi et al. 2013). Crowdroid monitored invoked system calls and made fre-
quency table of system calls at the client side. Crowdroid identified malicious behavior
and detected malware utilizing the K-means algorithm at the server side. CopperDroid
conducted automatic dynamic analysis to characterize low and high level behaviors by
tracking system call invocation, IPC and RPC interactions. AppPlayground also con-
ducted automatic dynamic analysis, and determined whether malicious behaviors
were carried out by tracking information leakage and monitoring sensitive API and
system calls. For completeness of our approach, we need to compare ours with these
approaches. However, these approaches are not available for public use. Among them,
it is quite straightforward to implement Crowdroid hooking system calls; it is impos-
sible to implement other works because these approaches do not provide more detailed
explanation. To conduct more fair performance evaluation and comparison, we make
both systems work in a similar context and using similar settings: we modify Crowdroid
to hook all system calls invoked during the execution processes, including the installa-
tion phase.

Table 5 Malware samples and benign samples for experiments

Category Family Quantity Behavioral characteristics

Malware (643) AdWo 401 Collect the sensitive information

AirPush 60 Send SMS and collect the sensitive information

FakeBattScar 44 Collect the sensitive information

Boxer 42 Send SMS and collect the sensitive information

GinMaster 96 Collect the sensitive information

 Benign (8840) Application 7164 Normal application

Game 1676 Normal game application

http://ocslab.hksecurity.net/andro-profiler

Page 17 of 23Jang et al. SpringerPlus (2016) 5:273

Selection of weight for behavior factors

Andro-profiler needs to select appropriate weights (wi) in order to guarantee the best
performance. However, we cannot obtain a unique solution of Eq. (1) analytically,
because there are only two equations given in order to compute values of four varia-
bles, which means that we cannot obtain an optimal solution of Eq. (1). We might obtain
local optimum values of Eq. (1) through simple numerical approach (iterative method)
as follows. First, we setup initial values of weight by solving arithmetic mean of them.
We apply those values to the Eq. (1), then evaluate the classification capability. Next,
we increase the weight of SS and CS, and decrease the weight of SIS and CDS. We then
apply those values to the Eq. (1), and conduct the evaluation of classification capabil-
ity iteratively. The reason we determine that the weight of CDS is smaller than other
factors is as follows. First, if a client cannot connect to the remote server, a malware
sample does not need to convert format of data for transmitting sensitive information.
Second, benign applications also need an encoding algorithm for efficient transmission
and cipher algorithm for secure communication. We adjust the weight of SIS in order to
maximize the effect of calling and sending premium-rate SMS.

We proceed with the iterative steps until the tendency of classification accuracy
is changed. We believe that our system reaches a local optimum at that point. Table 6
shows that the results of simple numerical approach according to weight change. We
choose the value of the weight (wi) to be 0.33 for SS, 0.33 for CS, 0.21 for SIS, and 0.13
for CDS, since it provides a good performance that matches close to the ground truth.

Experiment results and analysis

Our performance evaluation focuses on the effectiveness of malware classification,
discriminatory ability between malware and benign applications, and the efficiency of
malware classification. We demonstrate that our system performs well in detecting and
classifying malware families. We used the accuracy, false positive, and false negative as
the performance metric, since the metric for performance evaluation must focus on the
predictive capability of the model. We measured the accuracy as the total number of the
hits of the classifier divided by the number of instances in the whole dataset. The per-
formance of malware classification model is determined by how well the model detects
and classifies various pieces of malware. Moreover we used the Receiver Operating

Table 6 The classification accuracy and the number of cluster according to changes
of weight (e.g., Method 1)

The number of clusters means that the number of groups that malware/benign samples are classified into. Italic text means
that the tendency of classification accuracy is changed. At this point, we believe, our system reaches a local optimum for the
best performance

No Weight of behavior factor Number of clusters Accuracy

SS CS SIS CDS Malware Benign

1 0.25 0.25 0.25 0.25 8 4 0.98

2 0.27 0.27 0.24 0.22 6 2 0.98

3 0.29 0.29 0.23 0.19 6 2 0.98

4 0.31 0.31 0.22 0.16 6 2 0.98

5 0.33 0.33 0.21 0.13 6 1 0.98

6 0.35 0.35 0.20 0.10 6 1 0.98

Page 18 of 23Jang et al. SpringerPlus (2016) 5:273

Characteristic (ROC) curve as the method for comparing classification models. To com-
pare the ROC performance of classifiers intuitively, we calculated the area under the
curve (AUC; also known as the integral) of each classifier, since the AUC represents the
ROC performance in a single scalar value (Fawcett 2006).

Effectiveness of malware classification

First, we demonstrate that our proposed method provides effective metric to detect
and classify malware families. Table 7 presents the result of similarity comparison with
the representative profile of each malware family and benign applications. Despite that
Boxer sends premium-rate SMS according to anti-virus (AV) analysis report, our
emulator-based approach fails to capture sending premium-rate SMS due to connec-
tion error; our method only captures sending sensitive information. However, our sys-
tem performs well in classifying all malware including Boxer. Since the difference of
similarity score among all malware is smaller than the threshold (0.85), that can be good
metric for detecting and classifying malware. The difference of similarity score for Air-
Push is much larger than the others, because AirPush sends premium-rate SMS and
sends sensitive information while the other malware families send sensitive information.
Since benign applications do not act maliciously, it is natural that the difference of simi-
larity score between malware and benign applications is large based on the metrics and
features utilized for computing the behavior profile.

Next, Table 8 shows that Andro-profiler performs well in classifying malware families
with 100 % classification accuracy on average, regardless of the update method. Further-
more, Andro-profiler is shown to outperform Crowdroid, which gives an average classifi-
cation accuracy of 49 %. Some factors may have affected that Crowdroid underperforms

Table 7 The similarity comparison with representative behavior profile of each malware
family and benign

Similarity AdWo AirPush Boxer FakeBattScar GinMaster

AdWo – 0.37 0.70 0.70 0.70

AirPush 0.37 – 0.46 0.46 0.50

Boxer 0.70 0.46 – 0.79 0.79

FakeBattScar 0.70 0.46 0.79 – 0.79

GinMaster 0.70 0.50 0.79 0.79 –

Benign 0.04 0.13 0.13 0.13 0.13

Table 8 Classification performance for 643 malware

Italic text means that Andro-profiler outperforms Crowdroid in classifying malware families

Category Accuracy AUC

Method 1 Method 2 Crowdroid Method 1 Method 2 Crowdroid

Malware

 AdWo 1.00 1.00 0.83 1.00 1.00 0.73

 AirPush 1.00 1.00 0.02 1.00 1.00 0.51

 Boxer 1.00 1.00 0.37 1.00 1.00 0.63

 FakeBattScar 1.00 1.00 1.00 1.00 1.00 1.00

 GinMaster 1.00 1.00 0.22 1.00 1.00 0.54

Average 1.00 1.00 0.49 1.00 1.00 0.68

Page 19 of 23Jang et al. SpringerPlus (2016) 5:273

the Andro-profiler. Since invoked system calls among malware families are similar to
each other, Crowdroid limits to classify malware families; malware families mainly call
out system calls (e.g., read(), close(), open(), write(), recvmsg()). Since FakeBattScar calls
out more system calls (e.g., open(), close()) than others and Adwo calls out system call
of read() constantly, two malware families can be classified well. Furthermore, Andro-
profiler gives 47 % performance improvement advantage over Crowdroid in terms of the
AUC. In the case of method 1, our system clusters Airpush samples into two groups.
We conducted a deep analysis to understand the reason method 1 of our system clus-
tered such samples into two groups, and found that almost half of Airpush samples sent
premium-rate SMS and collected sensitive information (e.g., IMEI, Android version,
location information, and carrier), whereas the other half only collected sensitive infor-
mation. To this end, we found that our system identified malicious behavior and classi-
fied malware according to behavior patterns of malware families.

Discriminatory ability between malware and benign

When designing an anti-malware system, one important factor which we should also
consider is its discriminatory ability between malware and benign applications. Anti-
malware systems must detect malware with small errors in terms of false positive and
false negative. We believe that it is more important for an anti-malware system to
detect malware with small false negative than false positive. However, for commercial
reasons, one may think the opposite: users can be bothered if their benign applica-
tions are misclassified as malware. Table 9 shows that Andro-profiler performs well in
detecting and classifying malware families with 98 % classification accuracy on aver-
age, regardless of the update method, while Crowdroid detects malware families with
90 % classification accuracy on average. Some factors may have affected that Crow-
droid underperforms the Andro-profiler. Since invoked system calls between malware
and benign samples are similar to each other, Crowdroid limits to detect and classify
malware families; all samples mainly call out system calls (e.g., read(), close(), open(),
write(), recvmsg()). Among these, FakeBattScar calls out more system calls (e.g., open(),
close()) than others and other malware families have similar call frequencies to benign

Table 9 Classification performance for 643 malware and 8840 benign samples

Italic text means that Andro-profiler outperforms Crowdroid in detecting malware and classifying malware families

Category Accuracy AUC

Method 1 Method 2 Crowdroid Method 1 Method 2 Crowdroid

Malware

 AdWo 1.00 1.00 0.01 1.00 1.00 0.49

 AirPush 1.00 1.00 0.00 1.00 1.00 0.50

 Boxer 1.00 1.00 0.00 1.00 1.00 0.50

 FakeBattScar 1.00 1.00 1.00 1.00 1.00 1.00

 GinMaster 1.00 1.00 0.00 1.00 1.00 0.49

Benign 0.97 0.97 0.96 0.99 0.99 0.52

Average 0.98 0.98 0.90 0.99 0.99 0.52

Page 20 of 23Jang et al. SpringerPlus (2016) 5:273

samples, then malware families except for FakeBattScar cannot be detected and classi-
fied well. Our proposed methods also outperform Crowdroid by improving its AUC by
about 90 %. Table 10 shows that our system performs well in detecting and classifying
malware families with about 3 false positives and 38 false negatives, while Crowdroid
detects and classifies malware families with over 100 false positives and false negatives.
All malware families except Airpush were classified with low false positives rate and
false negative rate.

Andro-profiler misclassified 225 benign samples as malware. We conducted a deep
analysis to understand the high false positives with Andro-profiler. Interestingly, we
found that some benign samples collected user’s sensitive information, which we defined
as a trigger for classifying malicious applications (e.g., IMEI, device ID, UUID, latitude,
and longitude). To understand whether other anti-malware systems and scanners con-
sidered those benign applications as malware or not, we uploaded those suspected
GooglePlay samples to VirusTotal and checked scanning results of various anti-virus
vendors. As a result, we found that 110 out of the suspicious benign samples (accounting
for about 49 %) were diagnosed as malware. The high rate of misclassification of benign
applications is, however, understandable given various potential reasons for such infil-
tration of gray area applications into the market place (Krebs 2013).

Effectiveness of detecting 0‑day malware

We demonstrate the effectiveness of detecting 0-day malware detection. We define an
application as a 0-day malware if it has malicious behavior and it cannot be detected
by AV vendors. In order to verify that we had appropriately detected 0-day malware,
we made 91 variant samples consisting of Adwo and AirPush families by leveraging
ADAM (Zheng et al. 2013). All samples used as the base application for the vari-
ants are among the ones which are used in the previous experiments, and detected
by VirusTotal as malware samples. After creating the variants, we uploaded them (as
samples) to the VirusTotal, and checked scanning results of various anti-virus (AV)
vendors such as F-Secure, Kaspersky, ClamAV, and Avast. We noted that none of the
submitted samples is reported as a malware when we carried out our experiment. As
a result of our experiment using Andro-profiler, we found that it performed well in

Table 10 Classification performance for 643 malware and 8840 benign samples

FPs and FNs refer to false positives and false negatives

Category Method 1 Method 2 Crowdroid

FPs FNs FPs FNs FPs FNs

Malware

 AdWo 0 0 0 0 229 397

 AirPush 17 0 17 0 0 60

 Boxer 0 0 0 0 0 42

 FakeBattScar 0 0 0 0 2 0

 GinMaster 0 0 0 0 0 96

Benign 0 225 0 225 589 461

Average 2.83 37.50 2.83 37.50 136.67 176

Page 21 of 23Jang et al. SpringerPlus (2016) 5:273

detecting all of the variant malware samples with 100 % classification accuracy on
average, regardless of the update method.

Efficiency of malware classification

Our proposed system only takes 55 s/MB for classifying each malware; we exclude setup
time for analysis such as booting time of emulator. The majority of this time is spent in
making the behavior profile; it takes only 0.2 s on average to classify malware into each
family.

While the performance of our system is operationally reasonable, our system is scal-
able both horizontally and vertically by design. Horizontally, and given that our server
side components are run in a virtual environment, one can fork multiple servers by uti-
lizing multiple virtual machines that exploit the multi-core nature of today’s commod-
ity computers. Vertically, our system can benefit from being developed in a lower level
language, such as the C language, which would make the classification process run faster.

Limitations
Andro-profiler has a few limitations for detecting and classifying malware, since our
proposed method uses integrated system logs as a feature vector and employs dynamic
analysis techniques to capture malware’s behavior. First, it is difficult for our system to
analyze malware that are executed only under given conditions (e.g., SDK version, cellu-
lar network connection status, time, or place). However, this shortcoming is addressable
by having various platforms tailored with various settings, as used for traditional mal-
ware in Mohaisen et al. (2013). It is also impossible for our system to analyze malware
embedding anti-malware analysis techniques. Second, our emulator-based anti-malware
system is dependent on SDK version of emulator, so our approach has limitation on
analyzing malicious behavior related to privilege escalation. However, those are com-
mon drawbacks of dynamic analysis method or emulator-based detection method and
addressed in the literature at some expense.

Finally, our approach analyzes malware on an emulator without interaction between
human and device: autonomous installation and execution. When a malware behave
upon an update or by utilizing a drive-by download attack (Zhou and Jiang 2012), our
approach is limited in reacting to such malware. However, autonomous installation and
execution is an inevitable procedure for automation of dynamic analysis. Depending on
the number of malware samples to be analyzed, one can adopt manual human interac-
tions to analyze malware samples and vet the outcomes of the automatic classification
procedure, as used in Mohaisen et al. (2013).

Conclusion and future work
In this paper, we have presented Andro-profiler, an anti-malware system based on
behavior profiling. Using Andro-profiler, we classified malware by exploiting the behav-
ior profiling extracted from integrated system logs, which are implicitly equivalent to
distinct behavior characteristics. Our behavior profiling is simple and relatively easy to
understand, whereas Andro-profiler is capable of distinguishing benign and malicious
applications, and malicious applications into families. Furthermore, Andro-profiler is
capable of detecting 0-day threats, which are missed by antivirus scanners.

Page 22 of 23Jang et al. SpringerPlus (2016) 5:273

Our experiments demonstrate that Andro-profiler performs well in detecting and clas-
sifying malware families with over 98 % classification accuracy on average regardless of
update method while Crowdroid, a closely related work from the literature, performs
under 90 % classification accuracy on average. Our experiment results indicate that it
takes 55 s/MB to analyze a malware on average, with a lot of opportunities for improve-
ments on scalability. Our system hence enables AV vendors to react to many species of
malicious samples by classifying and matching these with previous ones effectively and
efficiently.

There are several directions that we will pursue in the future. First, we would like to
augment our system to not only rely on dynamic and behavioral features, but also static
features that are easy to obtain from the applications at scale. Furthermore, we will
explore scalability issues associated with our system by implementing some of the guide-
lines noted in section “Efficiency of malware classification”.
Authors’ contributions
JJ carried out conception generation and experimental design, acquisition of data, analysis and interpretation of data,
and drafting the manuscript. JY carried out acquisition of data and experimental design, and implementation of our
prototype. AM, JW, and HKK carried out the concept generation and interpretation of data, revising the manuscript. All
authors read and approved the final manuscript.

Author details
1 Graduate School of Information Security, Korea University, Seoul, Republic of Korea. 2 Computer Science and Engineer‑
ing Department, State University of New York at Buffalo (SUNY Buffalo), Buffalo, NY, USA.

Acknowledgements
This work was supported by the ICT R&D Program of MSIP/IITP. [14‑912‑06‑002, The Development of Script‑based Cyber
Attack Protection Technology]. A two‑page abstract on this work appeared in Jang et al. (2014). The work proposed in
this paper significantly enhances the prior work, technically and content‑wise, including the motivation, related‑work,
design, and evaluation.

Competing interests
The authors declare that they have no competing interests.

Received: 5 November 2015 Accepted: 16 February 2016

References
Anubis (2011) Anubis—malware analysis for unknown binaries. https://anubis.iseclab.org/
Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K, Siemens C (2014) Drebin: effective and explainable detection

of Android malware in your pocket. In: Proceedings of the 21th annual network and distributed system security
symposium (NDSS’14)

Bayer U, Comparetti P, Hlauschek C, Kruegel C, Kirda E (2009) Scalable, behavior‑based malware clustering. In: Proceed‑
ings of the 16th annual network and distributed system security symposium (NDSS’09)

Blasing T, Batyuk L, Schmidt AD, Camtepe S, Albayrak S (2010) An Android application sandbox system for suspicious soft‑
ware detection. In: 2010 5th international conference on malicious and unwanted software (MALWARE), pp 55–62

Bose A, Hu X, Shin KG, Park T (2008) Behavioral detection of malware on mobile handsets. In: Proceedings of the 6th
international conference on mobile systems, applications, and services, MobiSys’08, pp 225–238

Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi AR, Shastry B (2012) Towards taming privilege‑escalation attacks on
Android. In: Proceedings of the 19th annual symposium on network and distributed system security

Burguera I, Zurutuza U, Nadjm‑Tehrani S (2011) Crowdroid: behavior‑based malware detection system for Android. In:
Proceedings of the 1st ACM workshop on security and privacy in smartphones and mobile devices, SPSM’11, pp
15–26

Contagio (2011) Contagio mobile–mobile malware mini dump. http://contagiominidump.blogspot.kr/. Accessed 28 Oct
2015

Droidbox (2011) Droidbox—Android application sandbox—Google project hosting. https://code.google.com/archive/p/
droidbox/. Accessed 28 Oct 2015

Enck W, Gilbert P, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2010) TaintDroid: an information‑flow tracking system
for realtime privacy monitoring on smartphones. In: Proceedings of the 9th USENIX conference on operating
systems design and implementation, OSDI’10, pp 1–6

Enck W, Ongtang M, McDaniel P (2009) On lightweight mobile phone application certification. In: Proceedings of the
16th ACM conference on computer and communications Security, CCS’09, pp 235–245

F‑Secure. https://www.f‑secure.com/v‑descs/trojan_android_ginmaster.shtml. Accessed 28 Oct 2015

https://anubis.iseclab.org/
http://contagiominidump.blogspot.kr/
https://code.google.com/archive/p/droidbox/
https://code.google.com/archive/p/droidbox/
https://www.f-secure.com/v-descs/trojan_android_ginmaster.shtml

Page 23 of 23Jang et al. SpringerPlus (2016) 5:273

F‑Secure (1999) F‑secure, 25 years of the best protection in the world. https://www.f‑secure.com/en/welcome. Accessed
28 Oct 2015

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874
Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012) Riskranker: scalable and accurate zero‑day Android malware detection.

In: Proceedings of the 10th international conference on mobile systems, applications, and services, MobiSys’12, pp
281–294

Isohara T, Takemori K, Kubota A (2011) Kernel‑based behavior analysis for Android malware detection. In: 2011 seventh
international conference on computational intelligence and security (CIS), pp 1011–1015

Jang J, Yun J, Woo J, Kim HK (2014) Andro‑profiler: anti‑malware system based on behavior profiling of mobile malware.
In: 23rd international World Wide Web conference, WWW’14, Seoul, Republic of Korea, April 7–11, 2014, companion
volume, pp 737–738. doi:10.1145/2567948.2579366

Jang JW, Kang H, Woo J, Mohaisen A, Kim HK (2015) Andro‑AutoPsy: anti‑malware system based on similarity matching
of malware and malware creator‑centric information. Digit Invest 14:17–35

Kang H, Jang JW, Mohaisen A, Kim HK (2015) Detecting and classifying Android malware using static analysis along with
creator information. Int J Distrib Sens Netw 2015. doi:10.1155/2015/479174. Article ID 479174

Krebs B (2013) Mobile malcoders pay to (Google) Play. Krebs on security. http://bit.ly/1kranE5
ltrace (1997) ltrace. http://ltrace.org/. Accessed 28 Oct 2015
McAfee (2015) McAfee labs threat s report, August 2015. http://www.mcafee.com/us/resources/reports/rp‑quarterly‑

threats‑aug‑2015.pdf. Accessed 28 Oct 2015
Mohaisen A, Alrawi O, Larson M (2013) Amal: highfidelity, behavior‑based automated malware analysis and classification.

Tech. rep., Verisign Labs, Tech. Rep
Mohaisen A, West AG, Mankin A, Alrawi O (2014) Chatter: classifying malware families using system event ordering. In:

IEEE conference on communications and network security, CNS 2014, San Francisco, CA, USA, October 29–31, 2014,
pp 283–291. doi:10.1109/CNS.2014.6997496

Pearce P, Felt AP, Nunez G, Wagner D (2012) AdDroid: privilege separation for applications and advertisers in Android. In:
Proceedings of the 7th ACM symposium on information, computer and communications security, ASIACCS’12, pp
71–72

Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, Nita‑Rotaru C, Molloy I (2012) Using probabilistic generative models
for ranking risks of Android apps. In: Proceedings of the 2012 ACM conference on computer and communications
security, CCS’12, pp 241–252

Rastogi V, Chen Y, Enck W (2013) AppsPlayground: automatic security analysis of smartphone applications. In: Proceed‑
ings of the third ACM conference on data and application security and privacy, CODASPY’13, pp 209–220

Reina A, Fattori A, Cavallaro L (2013) A system call‑centric analysis and stimulation technique to automatically reconstruct
Android malware behaviors. In: Proceedings of the 6th European workshop on system security (EUROSEC). Prague,
Czech Republic

Schmidt AD, Bye R, Schmidt HG, Clausen J, Kiraz O, Yuksel K, Camtepe S, Albayrak S (2009) Static analysis of executables
for collaborative malware detection on Android. In: IEEE international conference on communications, 2009. ICC’09,
pp 1–5

Shabtai A, Elovici Y (2010) Applying behavioral detection on Android‑based devices, pp 235–249
Spreitzenbarth M, Freiling F, Echtler F, Schreck T, Hoffmann J (2013) Mobile‑sandbox: having a deeper look into Android

applications. In: Proceedings of the 28th annual ACM symposium on applied computing, SAC’13, pp 1808–1815
Strace (1991) Strace—useful diagnostic, instructional, and debugging tool. http://sourceforge.net/projects/strace/.

Accessed 28 Oct 2015
Tam K, Khan SJ, Fattori A, Cavallaro L (2015) CopperDroid: automatic reconstruction of Android malware behaviors. In:

22nd annual network and distributed system security symposium, NDSS 2015, San Diego, California, USA, February
8–11, 2015

Vidas T, Tan J, Nahata J, Tan CL, Christin N, Tague P (2014) A5: automated analysis of adversarial android applications. In:
Proceedings of the 4th ACM workshop on security and privacy in smartphones and mobile devices. ACM, pp 39–50

VirusShare (2011) VirusShare.com‑Because Sharing is caring. http://virusshare.com/. Accessed 28 Oct 2015
VirusTotal (2004) VirusTotal—free online virus, malware and URL scanner. https://www.virustotal.com/en/. Accessed 28

Oct 2015
Weichselbaum L, Neugschwandtner M, Lindorfer M, Fratantonio Y, van der Veen V, Platzer C (2014) Andrubis: Android

malware under the magnifying glass. Tech. Rep. TRISECLAB‑0414‑001, Vienna University of Technology
Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat: Android malware detection through manifest and api calls trac‑

ing. In: Proceedings of the 2012 seventh Asia joint conference on information security, ASIAJCIS’12, pp 62–69
Yan LK, Yin H (2012) DroidScope: seamlessly reconstructing the OS and Dalvik semantic views for dynamic Android mal‑

ware analysis. In: Proceedings of the 21st USENIX conference on security symposium, Security’12, pp 29–29
Yang C, Yegneswaran V, Porras P, Gu G (2012) Detecting Money‑stealing apps in alternative Android markets. In: Proceed‑

ings of the 2012 ACM conference on computer and communications security, CCS’12, pp 1034–1036
Zheng M, Lee PPC, Lui JCS (2013) ADAM: an automatic and extensible platform to stress test Android anti‑virus systems.

In: Proceedings of the 9th international conference on detection of intrusions and malware, and vulnerability
assessment, DIMVA’12, pp 82–101

Zhou Y, Jiang X (2012) Dissecting Android malware: characterization and evolution. In: 2012 IEEE symposium on security
and privacy (SP), pp 95–109

Zhou Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my market: detecting malicious apps in official and alterna‑
tive android markets. In: Proceedings of the 19th annual network and distributed system security symposium

https://www.f-secure.com/en/welcome
http://dx.doi.org/10.1145/2567948.2579366
http://dx.doi.org/10.1155/2015/479174
http://bit.ly/1kranE5
http://ltrace.org/
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-2015.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-2015.pdf
http://dx.doi.org/10.1109/CNS.2014.6997496
http://sourceforge.net/projects/strace/
http://virusshare.com/
https://www.virustotal.com/en/

	Detecting and classifying method based on similarity matching of Android malware behavior with profile
	Abstract
	Background
	Related work
	Detection methods on mobile devices
	Detection methods outside mobile devices
	Hybrid methods

	Behavior profiling
	Andro-profiler: an anti-malware system
	Overview
	Extraction process of integrated system logs
	Behavior identification module

	Decision process
	Behavior profiling module
	Behavior categorization module
	Similarity matching module

	Performance evaluation
	Implementation
	Experiment setup
	Comparing different methods
	Selection of weight for behavior factors
	Experiment results and analysis
	Effectiveness of malware classification
	Discriminatory ability between malware and benign
	Effectiveness of detecting 0-day malware
	Efficiency of malware classification

	Limitations
	Conclusion and future work
	Authors’ contributions
	References

