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Background
The explosive growth in the number of mobile devices running the Android platform 
has attracted the attention of hackers for the wealth of sensitive information that are 
usually stored on mobile devices, including phone numbers, short messages, confiden-
tial emails and correspondences, and banking information and credentials. The avail-
ability of this information in many mass-market mobile devices makes them a desirable 
target for hackers, who excelled at developing a large number of mobile malicious soft-
ware (malware), making the security of mobile devices one of the most important and 
challenging areas of research. For example, According to a report by McAfee, the total 
number of mobile malware continued its linear climb as it broke 8 million in the second 
quarter of 2015, and increased by 17 % over the first quarter of the same year (McAfee 
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2015). Moreover, new malware families and variants were reported to appear approxi-
mately 1 million times in the same quarter. To address this trend, antivirus (AV) vendors 
analyze a large number of malware samples daily in order to prevent them from spread-
ing widely and to guide users on disinfection and risk management by classifying mal-
ware into broad families.

Mobile as well as traditional malware analysis for detection and classification falls into 
two broad types: static and dynamic analysis. In static analysis, strings of bytes asso-
ciated with malware samples are discovered through reverse engineering and used as 
a signature for identifying malicious software. Although fast and efficient, static tech-
niques are often prone to high false negative rates due to evolution in code basis and 
code repacking. Furthermore, additional cost of those techniques is required for reverse 
engineering to generate reliable and meaningful signatures.

On the other hand, dynamic and behavior based analysis aims to provide methods for 
effectively and efficiently extracting unique patterns of each malware family based on 
its behavior. Malware samples of the same family often use the same code base, provide 
the same functionality using the same order of behavioral events (Mohaisen et al. 2014), 
and so on. In analyzing mobile malware, unique behavior patterns can be represented 
by various symbols (e.g., permission set, API call, and system call) and used to identify 
malware families. To this end, researchers previously proposed various detection and 
classification methods for malware analysis based on their behavior, including permis-
sion-based, API call-based and system call-based methods. Permission-based detection 
methods are not efficient in classifying benign applications as benign, since relevant rule 
sets only focus on detecting the malware. API call-based detection methods cannot gen-
erate distinct signatures until decompilation or disassembly process is completed, which 
is often expensive. System call-based detection methods can more accurately detect 
malicious behavior than other methods, since it is impossible to modify original func-
tionality of system calls: malware creators always attempt to disguise malicious behavior 
as normal behavior. However, proposed methods in this category mainly deal with fre-
quency of system calls well presented in malware. The number of invoked system calls 
is usually small, and most of the system calls used in malware (e.g., read(), write()) 
are also observed in both benign applications, affecting the accuracy of those methods. 
To this end, one needs to consider more features, such as arguments in the system call 
and network activities, to enhance malware detection and classification via behavior 
profiling.

To overcome the drawbacks in previous methods, we propose a feature-rich anti-mal-
ware system based on behavior profiling called Andro-profiler. Our proposed behavior 
profiling system comprises mobile devices and a remote server to facilitate profiling, and 
adopts profiling method in the malware analysis domain. We exploit system calls, includ-
ing their arguments provided by Loadable Kernel Module (LKM) and system logs (e.g., 
SMS, call, and network I/O) provided by Droidbox (2011) as feature vectors for malware 
characterization. We define system calls and system logs as integrated system logs from 
which we directly infer behavior patterns representation using the concept of behavior 
profiling of Bayer et al. (2009). We assume that: (a) malware samples have unique mali-
cious behavior patterns, (b) malicious behavior is determined by system calls, and (c) 
such system call set has influence on the behavior of the program (malware). We prepare 
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representative behavior profile for each malware family represented by integrated sys-
tem logs including system calls, their arguments, and system logs of Droidbox—an anal-
ysis system we utilize in this work. We construct the behavior profile of each malware 
sample through its integrated system logs by executing it on an emulator. Then, by com-
paring the behavior profiles across samples, we can detect and classify malware samples 
into related families.

Contribution The main contributions of this paper are as follows:

1. We propose a novel anti-malware system based on behavior profiling called Andro-
profiler. We classify malware by exploiting the behavior profiling extracted from 
integrated system logs. Our method captures the behavior profiling by converting 
integrated system logs into human-readable contexts, which helps analysts analyze 
malware intuitively.

2. Andro-profiler enables AV vendors to react to many species of malicious samples by 
classifying and matching them with those previously detected quickly and efficiently. 
Our system can help detect new malware including existing malware’s variants and 
0-day exploits. This is further highlighted through in-depth experiments using real-
world malware samples.

3. Our proposed method is robust, and can be extended with additional features that 
depict the unique behavior patterns of malware. Our method can easily employ static 
analysis technique to capture malicious behavior, in combination of the dynamic 
behavior, which is shown to outperform existing techniques in the literature. This 
feature of our work is highlighted by a comparison with the prior literature, experi-
mentally.

The rest of this paper is organized as follows. Previous work is introduced in “Related 
work”. Our profiling method is explained in “Behavior profiling” and our proposed archi-
tecture is introduced in “Andro-profiler: an anti-malware system”. The experimental 
results are presented in “Performance evaluation”. And the limitation of our approach is 
discussed in “Limitations”. In “Conclusion and future work”, we conclude the paper and 
outline possible directions for future work.

Related work
Based on where the scan and monitoring of the mobile malware takes place, malware 
analysis methods are classified into three types: detection methods on the mobile device, 
detection methods outside the mobile device, and hybrid detection methods. We clas-
sify the literature based on the type of the malicious behavior into permission-based 
and footprint-based methods. Footprint-based methods include system call-based, API 
call-based, decompiled code-based, and XML information-based methods. The detec-
tion methods on mobile device scan malicious behavior patterns on the mobile device 
and return the analysis results to the user. However, those approaches do not consider 
the resource constraints on the mobile device: low computing power and limited battery 
life, affect their usability and user experience. The detection methods outside mobile 
device execute detection algorithms on an emulator or a real device running the tar-
geted applications, and conduct static or dynamic analysis for determining the nature of 
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those applications. Those approaches do not need to consider resource constraints, but 
cannot respond to new malware families quickly. To overcome the drawbacks in both 
approaches, hybrid approaches have been introduced in mobile malware analysis. Client 
modules deployed on mobile devices collect information related to installed applications 
on those devices and send the information to a remote server. The remote server then 
analyzes log files using their detection algorithms of choice, while not impeding usability 
and user experience. Table  1 summarizes the various malware detection or classification 
methods in the literature. In the following, we elaborate on some of the related works in 
each category.

Detection methods on mobile devices

Previous work in this category has introduced malware detection methods that can 
execute applications on devices, providing online detection. Enck et  al. (2009) pro-
posed the Kirin security service, which performs lightweight certification of applications 
to mitigate malware at installation time. Kirin examined the requested permissions of 
applications, compared them with self-defined security rules, and determined whether 
malicious activities were carried out or not. In order to do that, they relied on permis-
sions given in a manifest file, Androidmanifest.xml. However, application develop-
ers tend to excessively declare permissions in a manifest file, although the application 
does not actually need all of the permissions. To that end, those methods produce low 
accuracy. Pearce et al. (2012) introduced AdDroid, in which they separated advertising 

Table 1 Various malware detection / classification methods in previous works

Approach Method Feature Previous works

Detection on mobile 
device

Permission Permission Enck et al. (2009) and Pearce 
et al. (2012)

Footprint System resources Shabtai and Elovici (2010) 
and Bugiel et al. (2012)

Taint tracing Enck et al. (2010)

Event log, system call Bose et al. (2008)

Detection outside mobile 
device

Permission Permission Peng et al. (2012)

Footprint System call, disassembled 
code

Blasing et al. (2010)

System call, interaction log Reina et al. (2013)

System/API call, taint 
tracing

Rastogi et al. (2013)

Permission + footprint Permission, API call Yang et al. (2012)

Permission, API call, XML 
information

Grace et al. (2012), Wu et al. 
(2012) and Arp et al. (2014)

Permission, API call, system 
call, XML information, 
disassembled code

Yan and Yin (2012), Zhou 
et al. (2012), Spreitzen‑
barth et al. (2013), Weich‑
selbaum et al. (2014) and 
Vidas et al. (2014)

Hybrid Footprint System call Burguera et al. (2011) and 
Isohara et al. (2011)

Function call Schmidt et al. (2009)

Permission + footprint Certificate, permission, 
disassembled code, XML 
information

Jang et al. (2015) and Kang 
et al. (2015)
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permissions for the Android platform. In AdDroid, the host application and the core 
advertising code ran in isolated environment, where applications using AdDroid did not 
send sensitive information to advertisement server anymore. However, AdDroid did not 
consider information leakage unrelated to advertisement, which is the case in the major-
ity of malware.

Shabtai and Elovici (2010) proposed Andromaly, a behavior-based detection frame-
work for Android-based mobile devices. Andromaly is a host-based intrusion detection 
system that continuously monitored various resources and classified malicious applica-
tions using a machine learning algorithm. Bugiel et  al. (2012) proposed Xmandroid, a 
system-centric and policy-driven runtime monitoring system that regulates communica-
tions between applications. Based on heuristic analysis, the authors identified attack pat-
terns and classified malicious applications. These proposed methods, however, require a 
significant hardware capacity (e.g., CPU, RAM, and battery life) in order to monitor all 
resources comprehensively.

Enck et  al. (2010) proposed Taintdroid, an extension to the Android mobile-phone 
platform that tracks the flow of sensitive information through third-party applications. 
If tainted data left the Android device, Taintdroid provided a report logging the leaked 
data, where the data is sent and which application leaked it. Taintdroid focused on 
information leakage, and then an emulator such as Droidbox embedded Taintdroid and 
tracked information leakage.

Bose et al. (2008) proposed a signature-based detection method for the Symbian oper-
ating system. The method is a two-stage mapping technique consisting of extraction 
process and representation process that constructed these signatures at run-time from 
the monitored system events and system calls. The method used temporal logic to detect 
malicious activity over time that matched a set of signatures represented as a sequence 
of events. However, the method needed to obtain root privileges to access the kernel, 
and required sufficient hardware capacity to extract system calls and convert related fea-
tures into signatures.

Detection methods outside mobile devices

Previous work in this category introduced malware detection methods that execute rele-
vant applications outside the device, providing offline detection. These methods execute 
their detection algorithms on an emulator or a real device other than the host device. 
Thus they are not constrained by constraints of real devices, and do not impede usability 
and user experience.

Peng et  al. (2012) used probabilistic generative models for risk scoring schemes, 
ranging from the simple Naïve Bayes to advanced hierarchical mixture models. Their 
proposed methods computed a real risk score of Android applications based on the 
requested permissions, and differentiated between malware and benign applications. 
However, application developers tend to excessively declare permissions in a manifest 
file, requiring the method to rely on other criteria for higher detection and classification 
accuracy.

Blasing et al. (2010) proposed an Android Application Sandbox (AASandbox), which 
enables static and dynamic analysis on the Android platform. In the static analysis phase, 
AASandbox decompressed installation files and disassembled intended executable files, 
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then compared them with pre-defined malicious patterns. In the dynamic analysis phase, 
it hijacked system calls for logging and built a frequency table of system calls. However, 
the dynamic analysis methods based on the frequency of system calls need a more elabo-
rate and redefined process in order to improve its detection or classification accuracy. 
The function name of the system call as well as arguments used in the system call need 
to be considered.

Yang et  al. (2012) introduced a systematic approach, called Money-Guard, to detect 
stealthy money-stealing applications in the Android market. Money-Guard checked for 
API calls and billing-related permissions to detect stealthy money-stealing malware, but 
could not identify various malicious behavioral patterns except for malware sending pre-
mium-rate SMS.

Yan and Yin (2012) proposed DroidScope built on top of QEMU and enabled to 
reconstruct the OS-level and Java-level semantic views simultaneously. They analyzed 
malware by collecting native and Dalvik instruction traces, API-level activity, and infor-
mation leakage. Reina et al. (2013) introduced CopperDroid, an approach built on top 
of QEMU to automatically perform dynamic analysis of Android malware. Copper-
Droid conducted a unified analysis to characterize low-level OS-specific and high-level 
Android-specific behaviors (e.g., information leakage, sending SMS) by observing and 
analyzing system call invocations, IPC and RPC interactions. Rastogi et al. (2013) pro-
posed AppsPlayground, a framework for automatic dynamic analysis, which executes a 
suspicious application on emulator built on top of QEMU. AppsPlayground determined 
whether malicious activities were carried out or not by tracking information leakage and 
monitoring sensitive API and system calls. These approaches conducted fine-grained 
analysis, thus they may suffer from a high overhead. Moreover, they are needed to moni-
tor synchronized low-level and high-level events. Andro-profiler also monitors low-
level and high level events. Since our approach is implemented based on Droidbox, our 
approach is more stable since it only requires adding functionality related to hooking for 
low-level events.

Grace et  al. (2012) proposed an anti-malware system, RiskRanker, to determine 
whether or not an application conducts malicious behavior by measuring potential secu-
rity risk. RiskRanker classified an application into a high-risk application if it had exploit 
code for vulnerabilities in the OS. RiskRanker reported an application as a medium-risk 
application that enables to hijack sensitive information or subscribe premium service 
without victim’s consent. Moreover, RiskRanker inspects malware embedding encryp-
tion and dynamic loading methods. However, RiskRanker mainly depends on signatures 
of malicious code to detect malware and fails to react to malware embedding obfuscation 
methods like Proguard. Wu et al. (2012) proposed DroidMat, which is a feature based 
malware detection method. DroidMat chose the requested permissions, Intent message, 
and API calls as feature vectors, extracted them from various resources such as mani-
fest file and bytecode. By leveraging a K-means clustering algorithm, DroidMat mod-
eled malware samples according to their characteristics, and then determine whether 
or not an application is malicious by leveraging K-NN algorithm. Arp et al. (2014) pro-
posed DREBIN which utilizes the used permissions, suspicious API calls, and network 
addresses as feature vectors for identifying applications. DREBIN extracted those fea-
tures from the manifest and dex bytecode files, and identified malware by leveraging 
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Support Vector Machine (SVM) algorithm. Zhou et  al. (2012) proposed DroidRanger, 
which identifies malicious behavior through both permission-based behavioral footprint 
scheme for the detection of known malware and a heuristic-based filtering scheme for 
detection of 0-day malware. Weichselbaum et al. (2014) introduced Andrubis, which is 
an extension of Anubis (2011) for analyzing Android malware. Andrubis is an automatic 
analysis system coupled with static and dynamic methods. Vidas et al. (2014) presented 
A5, an automated anti-malware system based on static and dynamic analysis. Since 
DroidMat, DREBIN, DroidRanger, Andrubis, and A5 leveraged permission information 
of the manifest file as a feature, their accuracy is limited, just similar to other permission-
based approaches; Kirin and Peng et al. (2012)’s work. Furthermore, they are ineffective 
in identifying benign applications because relevant rules only focus on detecting mal-
ware, thus produce large false alarms, despite other compensating rules being leveraged.

Spreitzenbarth et al. (2013) proposed Mobile-Sandbox, static and dynamic analyzer for 
Android applications, like in AASandbox. In the static analysis phase, Mobile-Sandbox 
parsed a manifest file, decompiled the application, and checked whether suspicious per-
missions are used or not. In the dynamic analysis phase, they executed the application 
on Droidbox, logged every operation of the application, and recorded native library calls 
executed by processes. They extracted native library calls by exploiting (ltrace 1997); 
ltrace is executed after installation process is completed.

Hybrid methods

In hybrid detection methods, clients collect meta information on applications on the 
device and send that information to a remote server. The remote server then analyzes 
this information using a detection algorithm and makes a decision on whether an appli-
cation is benign or malicious. This approach compensates for the drawbacks of the 
online and offline detection methods. However, users have to agree in advance on what 
client module will send user information to the remote server.

Burguera et  al. (2011) proposed a lightweight client called Crowdroid which moni-
tored system calls, made a frequency table using those system calls, and sent them to 
a centralized server. The remote server then identified malicious behavior in a statisti-
cal manner and detected malware using a K-means clustering algorithm. Crowdroid 
extracted system calls by exploiting Strace (1991), but Strace is executed after installa-
tion—Crowdroid cannot detect malicious behavior during the installation process, and 
depends on the functionality of Strace. Isohara et  al. (2011) proposed a kernel-based 
behavior analysis system that consisted of a system call log collector on an Android 
device and a log analyzer on a remote server. The client collected system calls gener-
ated at installation time and sent the logs to a remote server. The remote server then 
compared patterns in the logs with 16 pre-defined patterns. Since pre-defined behavior 
patterns mainly focused on malicious behaviors such as restricted information leakage, 
jailbreak, and abuse of root privileges, their system could not detect malicious behavior 
such as sending premium-rate SMS and calling premium-rate code. They also do not 
guarantee sufficient scalability.

Schmidt et al. (2009) proposed a collaboration mechanism for Android platform security 
comprising a log collector on the device and a remote analyzer. In their proposed system, 
the client monitored the behavior of the malicious application at the installation time, ran 
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analysis based on the similarity of the function call set used, exchanged the result of analy-
sis with neighboring devices, and performed collaborative malware detection.

Kang et  al. (2015) introduced a lightweight anti-malware system based on the serial 
number of a certificate and code similarity in an application. Based on similarity algo-
rithm, they classified malware into the similar group, comparing the similarity of API 
sequence, permission usage, and system command usage. Jang et al. (2015) proposed a 
feature-rich anti-malware system based on based on similarity matching of malware-
centric and malware creator-centric information. Their system classified malware 
samples into similar subgroups by exploiting the profiles extracted from integrated foot-
prints, which are implicitly equivalent to distinct behavior characteristics. Dissimilar to 
our previous works (Kang et al. 2015; Jang et al. 2015), Andro-Profile analyzes malware 
characterization based on dynamic behavior analysis, coupled with Droidbox.

Behavior profiling
In the literature of traditional malware research related to personal computers operating 
Microsoft Windows, Bayer et al. (2009) proposed a method for scalable behavior-based 
malware clustering. The method contributes to the theoretical foundations of malware 
analysis by discussing the behavior-based profiling formally. Given the relevance of this 
work to our work, we review definitions of behavior profiling from the aforementioned 
work for the completeness of our presentation, and incorporate details specific to our 
proposed system in the following.

Definition (behavior profiling) A behavior profiling P is defined by four tuples as 
P = (O,OP,Ŵ,�), where O is the set of all objects and OP is the set of all opera-
tions, which is represented in nested dictionary form as {name : {target : attribute}}. 
Ŵ ⊆ (O × OP) is a relation assigning more than one operation to each other, and 
� ⊆ ((O × OP), (O × OP)) represents the sequence-unrelated set, which is equivalent 
to integrated system logs.

Object An object represents an abstract functionality that malware samples need for 
carrying out the malicious behavior. Tam et al. (2015) manually analyzed many malware 
samples from various datasets such as contagion and Android malware Genome Pro-
ject. They classified malicious behaviors into six groups according to behavior patterns: 
make call, send SMS, network access, access personal information, alter filesystem, and 
execute external application. We also manually inspected malware samples we had, and 
then defined malicious behavior as outlined by Tam et al. (2015); since some behavior 
patterns are not found in our dataset, we leave them out. We define malicious behav-
ior as the sending of premium-rate SMS, the calling of premium-rate number, the send-
ing of sensitive information, and converting data for transmission. We do not consider 
malicious behavior such as privilege escalation and Command and Control (C&C) attack 
since dynamic analysis methods hardly detect malware executing malicious behavior 
under given condition (e.g., SDK version, cellular network connection status, time, or 
place). We formally define object as following:

Object ::= Object-type

Object-type ::= Telephony|Phone|Network
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Operation An operation represents a concrete malicious behavior. Formally, an opera-
tion comprises of operation-name, operation-target, and operation-attribute. Oper-
ation-name is the identifier for malicious behavior. Operation-target is the attack 
objective of malware, such as contents of external storage and system information. 
Operation-attribute is a meaningful value that the malware wants to obtain; for example, 
the attribute of country code (operation-target) is Korea, and operation-name is sending 
sensitive information. We formally define operation as follows:

Table 2 shows an example of mapping of network object and the corresponding opera-
tions. In the case of malicious behavior for sending sensitive information, we represent 
the profile of that behavior as follows: “{Network : {Sending sensitive information : {{IMEI 
: 357242043237517}, {MCC : 310}, {MNC : 260}, {Location : GPS Coordinates } …, } } }”.

Andro‑profiler: an anti‑malware system
In the following we review the design and operation of Andro-profiler, a hybrid system 
for malware analysis and classification that combines the on-device capabilities for pro-
filing and off-device capabilities for analysis and classification.

Overview

As illustrated in Fig. 1, we propose a hybrid anti-malware system that consists of a client 
application on the mobile device and a profiling and analysis remote server. The client 
application on the mobile device collects installed application information, and sends 
that information to the remote server; the client application only sends application-spe-
cific information such as the hash digest of apk file and package name. If the remote 
server cannot crawl that application, the client application sends the application package 

Operation ::= {Operation-name : {Operation-target : Operation-attribute}}

Operation-name ::= Sending SMS|Calling|Sending sensitive information

|Converting data

Operation-target ::= Premium-rate SMS/number|deviceID|IMEI|IMSI|MCC|MNC|...|etc.

Table 2 Example of mapping of network object

Type Name Target Attribute

Network Sending sensitive information Android Id 3531505c0b421c4d

Device type Android

IMEI 357242043237517

IMSI 310005123456789

MCC 310

MNC 260

OS version 10

SDK version 2.3.4

Carrier Android

Country code en

Location GPS coordinates

Converting data Cipher algorithm No, DES, AES, Blowfish

Destination URL http://my365image.com

Port 80

Encoding algorithm Gzip

http://my365image.com
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file (apk) to the remote server. The remote server analyzes the malicious application and 
decides whether it is malicious or not based on its behavior. The remote server consists 
of three components: crawler, repository, and analyzer. The crawler component crawls 
applications from repositories, such as official markets and alternative markets. The 
crawled applications are then passed to the repository component which runs a dupli-
cation test by comparing the hash digest of the apk file to each other. If the crawled 
application is a duplicate, it is discarded; otherwise, the repository component sends 
that application to the analyzer component. After completing the analysis, the ana-
lyzer component sends the analysis results to both the repository component and the 
client application. Upon receiving the analysis results from the remote server, the cli-
ent application displays the result on the screen to the user. The repository component 
searches its database upon the repository component receiving an analysis request from 
the client. If the repository component does not have analysis results to fulfill the client 
application’s request, it fetches the crawler component. As illustrated in Fig. 2, the ana-
lyzer component has two processes: an extraction process of integrated system logs and 
a decision process. The extraction process of integrated system logs is composed of a 
behavior identification module, and the decision process is composed of three modules: 
a behavior profiling module, a behavior categorization module, and a similarity match-
ing module. In the following, we review the extraction and decision processes.

Extraction process of integrated system logs

In following subsection, we review the extraction process of integrated footprints used 
for our profiling phase.

Fig. 1 Overall procedure of andro‑profiler
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Behavior identification module

Andro-profiler conducts malware characterization based on dynamic behavior analysis. 
Our system extended Droidbox to embed the Loadable Kernel Module (LKM) for hijack-
ing system calls including their arguments. More specifically, the Behavior Identification 
(BI) module in our system executes malware on an emulator and monitors malicious 
behavior in an isolated environment. Whenever malware is executed on the emulator, 
the BI fetches the integrated system logger. The integrated system logger parses system 
calls including their arguments provided by LKM and system logs provided by Droidbox; 
Droidbox monitors SMS, call, and network I/O. The parsed integrated system logs are 
then passed to the decision process.

Decision process

As shown in Fig. 2, the decision process consists of three modules: behavior profiling, 
behavior categorization, and similarity matching module. In the following we elaborate 
on each of those modules.

Behavior profiling module

The Behavior Profiling (BP) module parses the integrated system logs of a given applica-
tion and makes the behavior profile. The BP module is implemented as described in pre-
vious section (Behavior Profiling). For example, the BP module makes a behavior profile 
of GinMaster which steals sensitive information, as illustrated in Fig. 3. According to 
the analysis report of F-Secure (F-Secure), GinMaster steals sensitive information, 
such as International Mobile Equipment Identity (IMEI), International Mobile Sub-
scriber Identity (IMSI), User Identifier (UID), Subscriber Identification Module (SIM) 
number, telephone number, and network type, to a remote server. The behavior profile 
made by the BP module is similar to the analysis report of F-Secure, and it is simple and 
relatively easy to understand.

Fig. 2 Overview of the analyzer component
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Behavior categorization module

The behavior categorization (BC) module categorizes a given application according to its 
behavior patterns. As we mentioned earlier, we define malicious behavior as the send-
ing of premium-rate SMS, the calling of premium-rate number, the sending of sensi-
tive information, and converting data for transmission. Since the numbers of malicious 
behavior patterns which we define are four, the possible permutation sets of malicious 
behavior patterns are 15 (=

∑4
i=1 4Ci). If an application does not behave in accordance 

with a pre-defined malicious behavior, our system decides that the application is benign.

Similarity matching module

The different similarity metrics need to be applied to behavior factors since they have 
different types of argument. Instead of using machine learning approaches that usually 
use the same similarity metric for features, we design the appropriate similarity metrics 
for behavior factors. The similarity matching (SM) module computes the similarity score 
between the behavior profile of malicious application and representative behavior profile 
of each malware family. The SM then classifies the malicious application into the group 
with which it bears the most similarity based on its behavior. The representative behav-
ior profile of each malware family has to depict the unique and common behavior pat-
terns of each malware family, then SM module chooses one of the methods updating the 
representative behavior profile as follows:

1. Method 1: The first update method is intersection. The representative behavior profile 
for each malware family is updated by the intersection of behavior profiles of mem-
bers in each subgroup. In the method 1 (intersection), and as the number of members 
of each malware family increases, the representative behavior profiles decrease.

2. Method 2: The second update method is union. The representative behavior profile 
for each malware family is updated by the union of behavior profiles of members in 

Fig. 3 Implementation of behavior profiling (e.g., GinMaster)
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each subgroup. In the method 2 (union), as the number of members of each malware 
family increases, the representative behavior profiles increase.

We define the similarity score as the intensity with which resources are accessed. 
Access to resources includes hardware resources (e.g., Call, SMS, Bluetooth, and Cam-
era), system information, and private information (as detailed earlier); we define the sim-
ilarity score as the weighted sum of the similarity of four behavior factors. The similarity 
score between the behavior profile of malicious application and a representative behav-
ior profile for each malware family is given by:

where BFSi and wi are the similarity and weight of behavior factor i, respectively. Simi-
larity of behavior factor (BFS) is composed of four parts: similarity of sending premium-
rate SMS (SS), calling premium-rate number (CS), sending sensitive information (SIS), 
and converting data (CDS). We choose the weight (wi) to be 0.33 for SS, 0.33 for CS, 0.21 
for SIS, and 0.13 for CDS—we determined that such settings for weight values are opti-
mal and provide best performance through experiments.

Table 3 shows similarity metric to apply to each behavior factor, and we compute the 
similarity score for each behavior factor as follows:

1. We compute the similarity score for sending premium–rate SMS and calling pre-
mium-rate number, as comparing whether a relevant hardware resource is accessed 
or not. String similarity (e.g., phone number, code number) is less meaningful as a 
feature except for perfect matching since a difference of one bit yields the same result 
as with the difference of all bits in this case. Therefore, we give a similarity score of 
one if they have the same behavior; otherwise, we give a score of zero. Hence, the 
value of similarity score for both SS and CS is binary.

2. We compute the similarity score for sending sensitive information by applying the 
Jaccard index. We define the sensitive information as follows (highlighted in Table 2 
by an example):

(a) System information IMEI, IMSI, device ID, MCC, MNC, carrier name, device 
type, device model, OS version.

(b) Private information external storage contents, location, country code, language. 

(1)S =
∑

i

wi · BFSi where

∑

i

wi = 1

Table 3 Similarity metric to apply to each behavior factor

Behavior factor Behavior target Similarity metric

Sending SMS Premium‑rate Binary (0 or 1)

Calling Premium‑rate Binary (0 or 1)

Sending sensitive information System information, private information Jaccard index [0, 1]

Converting data Destination URL Modified levenshtein distance [0, 1]

Cipher algorithm (DES, AES, Blowfish) Binary (0 or 1)

Encoding algorithm (Gzip or not) Binary (0 or 1)
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We compute the similarity score for converting data (CDS), as the average of the simi-
larity for a destination URL, cipher algorithm, and encoding algorithm. In the case of 
similarity of a destination URL, we first adopt the longest prefix matching. If a partial 
matching occurs, we adopt the Levenshtein distance to the residual string except the 
substring to which the longest prefix matching is used. For example, let A.B.C.D and 
A.B.E.F be two URLs. In this case, we adopt Levenshtein distance to the residual URLs: 
C.D and E.F. As for the cipher algorithm and encoding algorithm, we give a similarity 
score of one if they have used the same algorithm; otherwise, we give a score of zero. The 
value of similarity score for both SIS and CDS was [0, 1].

3. If a given application does not act maliciously (based on the defined criteria above) 
except for CDS, we consider that application to be benign.

Performance evaluation
In the following we demonstrate the performance and accuracy of Andro-profiler by 
highlighting aspects of implementation and testing it on various real-world mobile mal-
ware samples and families.

Implementation

Our anti-malware system is composed of a mobile device and a remote server; the client 
application is installed on the mobile device (SKY IM-A690S) running on the Android 
2.3.3, and three components—a crawler, repository, and analyzer—were installed on the 
remote server. The remote server has an Intel(R) Xeon(R) X5660 processor and 4GB of 
RAM with 32-bit Ubuntu 12.04 LTS operating system; we performed all experiments 
in a hypervisor-based virtualization environment—VMWare ESXi; http://www.vmware.
com/.

We implemented each component of our anti-malware system with Python high level 
programming language (as scripts) as follows:

1. The client component on the mobile device is implemented in the form of an appli-
cation and communicated with the remote server. The crawler component sent the 
package name to GooglePlay and downloaded target application. The repository 
component stored the behavior profile of each application in a database.

2. The analyzer component is composed of the BI, BP, BC, and SM modules. In the fol-
lowing we provide details on each of those modules.

(a) The BI module is implemented as python script coupled with Droidbox. The 
emulator is run on the Android 2.3.4 (level 10). In order to capture the malicious 
behavior, the BI module executed each application for 60 s after the installation 
process is completed. After capturing integrated system logs of malicious appli-
cation, the BI module passed those logs to the BP module and restored the emu-
lator to the initial state only for capturing malicious behavior.

(b) The BP module parsed integrated system logs to make the behavior profile of 
each malware, and stored the behavior profile as a dictionary structure of the 

http://www.vmware.com/
http://www.vmware.com/
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Python language for efficient membership test. The parsing rule listed in Table 4 
consists of system call and its arguments—only arguments provided by LKM, 
and information provided by Droidbox. The parsed behavior profile is encoded 
in a base-64 format and stored in database.

(c) The BC module categorized malicious application according to the behavioral 
patterns, and the SM module computed similarity score between behavior pro-
file of malicious application and representative behavior profile for each fam-
ily. The SM module classified a malicious application into the group with high-
est similarity score, which is at least 0.85. Whenever a new malware sample is 
queued into our anti-malware system for inspection, the SM module had con-
tinuously updated representative behavior profile according to the pre-chosen 
update method.

Experiment setup

For performance evaluation, 643 malware samples consisting of 5 malware families 
were collected from January 2013 to August 2013 through malware repositories such 
as VirusShare (2011), Contagio (2011). For 8840 benign samples, we crawled a variety 
of popular applications with high rankings (for the same periods) from GooglePlay. In 

Table 4 Example of parsing rules for detecting malicious behavior

Behavior factor Parsing rule Comment
Sending SMS mms.transaction.SmsReceiverService SMS

Calling access(/system/app/Phone.apk ~ )

writev(3, OutgoingCallBroadcaster ~) Calling

Sending sensitive information open(/proc/cpuinfo ~ ), write(1, Processor ~) CPU Spec.

open(/sdcard ~ ), stat64(/sdcard/~ ) Storage access

stat64(/system/app/MediaProvider.apk),

access(/data/~/com.android.providers.media/databases),

com.android.providers.media.MediaScannerService),

open(/data/dalvik‑cache/system@app @MediaProvider.
apk@classes.dex)

Media file

{stat64 | open | access}(/system/app/Contacts.apk),

{stat64 | open} (/data/~ @Contacts.apk@classes.dex) Contact information

 〈map〉 ∼ { NET_OP | mcc | mnc } ∼ �\map〉, 〈map〉 ∼ { 
networkOperator | sim_operator } ∼ �\map〉

MCC, MNC

〈map〉 ∼ { affid | did | device_id | andide } ∼ �\map〉 Device ID

〈map〉 ∼ { osversion | device_type } ∼ �\map〉 OS version

〈map〉 ∼ { manufacturer | phoneModel | device_name | 
model } ∼ �\map〉

Device

〈map〉 ∼ { network | wifi } ~ �\map〉 Wifi information

〈map〉 ∼ { carrier | device_carrier } ~ �\map〉 Carrier

〈map〉 ∼ { imei | imsi } ∼ �\map〉 IMEI, IMSI

〈map〉 ∼ { longitude | latitude } ∼ �\map〉 Location

〈map〉 ∼ { location | country_code | locale } ∼ �\map〉 Country code

〈map〉 ∼ { language } ∼ �\map〉 Language

Converting data {sendto | OpenNet | SendNet | DataLeak} ( ∼ Content‑
Encoding: gzip ∼ )

Encoding algorithm

{sendto | OpenNet | SendNet | DataLeak}( ∼ CryptoUsage:  
{DES|AES|Blowfish} ∼ )

Cipher algorithm
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the real world, malware comprises a small fraction of all android apps, so it makes sense 
to use a larger set of benign samples to mimic the realistic scenario. Duplicated samples 
were eliminated according to SHA 256. We also excluded malware samples diagnosed 
by fewer than 9 AV vendors included by the VirusTotal dataset (2004). We used textual 
description of malware produced by F-Secure (1999). The description of the samples 
is summarized in Table  5. In addition, the whole experimental results are available at 
http://ocslab.hksecurity.net/andro-profiler.

For the validation of our work, we used fivefold cross-validation to evaluate the per-
formance in our experiments. The k-fold cross-validation is a widely used technique in 
machine learning. In a nutshell, the method partitions the dataset into k equal size sub-
sets, where each subset is used only once for testing and validation of the training model, 
and the k − 1 remaining subsets are used for training the model. This is, a model is built 
using k − 1 subsets, and tested using the remaining subset. Then, the subset used in the 
previous step for testing is used for training, and a subset in the k − 1 sets previously 
not used for testing is used for testing. The process is repeated k times by alternating the 
testing set, and the results are averaged over the runs.

Comparing different methods

To the best of our knowledge, the closest approaches in the literature to Andro-profiler 
are Crowdroid (Burguera et al. 2011), CopperDroid (Reina et al. 2013), and AppsPlay-
ground (Rastogi et al. 2013). Crowdroid monitored invoked system calls and made fre-
quency table of system calls at the client side. Crowdroid identified malicious behavior 
and detected malware utilizing the K-means algorithm at the server side. CopperDroid 
conducted automatic dynamic analysis to characterize low and high level behaviors by 
tracking system call invocation, IPC and RPC interactions. AppPlayground also con-
ducted automatic dynamic analysis, and determined whether malicious behaviors 
were carried out by tracking information leakage and monitoring sensitive API and 
system calls. For completeness of our approach, we need to compare ours with these 
approaches. However, these approaches are not available for public use. Among them, 
it is quite straightforward to implement Crowdroid hooking system calls; it is impos-
sible to implement other works because these approaches do not provide more detailed 
explanation. To conduct more fair performance evaluation and comparison, we make 
both systems work in a similar context and using similar settings: we modify Crowdroid 
to hook all system calls invoked during the execution processes, including the installa-
tion phase.

Table 5 Malware samples and benign samples for experiments

Category Family Quantity Behavioral characteristics

Malware (643) AdWo 401 Collect the sensitive information

AirPush 60 Send SMS and collect the sensitive information

FakeBattScar 44 Collect the sensitive information

Boxer 42 Send SMS and collect the sensitive information

GinMaster 96 Collect the sensitive information

 Benign (8840) Application 7164 Normal application

Game 1676 Normal game application

http://ocslab.hksecurity.net/andro-profiler
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Selection of weight for behavior factors

Andro-profiler needs to select appropriate weights (wi) in order to guarantee the best 
performance. However, we cannot obtain a unique solution of Eq.  (1) analytically, 
because there are only two equations given in order to compute values of four varia-
bles, which means that we cannot obtain an optimal solution of Eq. (1). We might obtain 
local optimum values of Eq. (1) through simple numerical approach (iterative method) 
as follows. First, we setup initial values of weight by solving arithmetic mean of them. 
We apply those values to the Eq.  (1), then evaluate the classification capability. Next, 
we increase the weight of SS and CS, and decrease the weight of SIS and CDS. We then 
apply those values to the Eq.  (1), and conduct the evaluation of classification capabil-
ity iteratively. The reason we determine that the weight of CDS is smaller than other 
factors is as follows. First, if a client cannot connect to the remote server, a malware 
sample does not need to convert format of data for transmitting sensitive information. 
Second, benign applications also need an encoding algorithm for efficient transmission 
and cipher algorithm for secure communication. We adjust the weight of SIS in order to 
maximize the effect of calling and sending premium-rate SMS.

We proceed with the iterative steps until the tendency of classification accuracy 
is changed. We believe that our system reaches a local optimum at that point. Table 6 
shows that the results of simple numerical approach according to weight change. We 
choose the value of the weight (wi) to be 0.33 for SS, 0.33 for CS, 0.21 for SIS, and 0.13 
for CDS, since it provides a good performance that matches close to the ground truth.

Experiment results and analysis

Our performance evaluation focuses on the effectiveness of malware classification, 
discriminatory ability between malware and benign applications, and the efficiency of 
malware classification. We demonstrate that our system performs well in detecting and 
classifying malware families. We used the accuracy, false positive, and false negative as 
the performance metric, since the metric for performance evaluation must focus on the 
predictive capability of the model. We measured the accuracy as the total number of the 
hits of the classifier divided by the number of instances in the whole dataset. The per-
formance of malware classification model is determined by how well the model detects 
and classifies various pieces of malware. Moreover we used the Receiver Operating 

Table 6 The classification accuracy and  the number of  cluster according to  changes 
of weight (e.g., Method 1)

The number of clusters means that the number of groups that malware/benign samples are classified into. Italic text means 
that the tendency of classification accuracy is changed. At this point, we believe, our system reaches a local optimum for the 
best performance

No Weight of behavior factor Number of clusters Accuracy

SS CS SIS CDS Malware Benign

1 0.25 0.25 0.25 0.25 8 4 0.98

2 0.27 0.27 0.24 0.22 6 2 0.98

3 0.29 0.29 0.23 0.19 6 2 0.98

4 0.31 0.31 0.22 0.16 6 2 0.98

5 0.33 0.33 0.21 0.13 6 1 0.98

6 0.35 0.35 0.20 0.10 6 1 0.98
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Characteristic (ROC) curve as the method for comparing classification models. To com-
pare the ROC performance of classifiers intuitively, we calculated the area under the 
curve (AUC; also known as the integral) of each classifier, since the AUC represents the 
ROC performance in a single scalar value (Fawcett 2006).

Effectiveness of malware classification

First, we demonstrate that our proposed method provides effective metric to detect 
and classify malware families. Table 7 presents the result of similarity comparison with 
the representative profile of each malware family and benign applications. Despite that 
Boxer sends premium-rate SMS according to anti-virus (AV) analysis report, our 
emulator-based approach fails to capture sending premium-rate SMS due to connec-
tion error; our method only captures sending sensitive information. However, our sys-
tem performs well in classifying all malware including Boxer. Since the difference of 
similarity score among all malware is smaller than the threshold (0.85), that can be good 
metric for detecting and classifying malware. The difference of similarity score for Air-
Push is much larger than the others, because AirPush sends premium-rate SMS and 
sends sensitive information while the other malware families send sensitive information. 
Since benign applications do not act maliciously, it is natural that the difference of simi-
larity score between malware and benign applications is large based on the metrics and 
features utilized for computing the behavior profile.

Next, Table 8 shows that Andro-profiler performs well in classifying malware families 
with 100 % classification accuracy on average, regardless of the update method. Further-
more, Andro-profiler is shown to outperform Crowdroid, which gives an average classifi-
cation accuracy of 49 %. Some factors may have affected that Crowdroid underperforms 

Table 7 The similarity comparison with  representative behavior profile of  each malware 
family and benign

Similarity AdWo AirPush Boxer FakeBattScar GinMaster

AdWo – 0.37 0.70 0.70 0.70

AirPush 0.37 – 0.46 0.46 0.50

Boxer 0.70 0.46 – 0.79 0.79

FakeBattScar 0.70 0.46 0.79 – 0.79

GinMaster 0.70 0.50 0.79 0.79 –

Benign 0.04 0.13 0.13 0.13 0.13

Table 8 Classification performance for 643 malware

Italic text means that Andro-profiler outperforms Crowdroid in classifying malware families

Category Accuracy AUC

Method 1 Method 2 Crowdroid Method 1 Method 2 Crowdroid

Malware

 AdWo 1.00 1.00 0.83 1.00 1.00 0.73

 AirPush 1.00 1.00 0.02 1.00 1.00 0.51

 Boxer 1.00 1.00 0.37 1.00 1.00 0.63

 FakeBattScar 1.00 1.00 1.00 1.00 1.00 1.00

 GinMaster 1.00 1.00 0.22 1.00 1.00 0.54

Average 1.00 1.00 0.49 1.00 1.00 0.68
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the Andro-profiler. Since invoked system calls among malware families are similar to 
each other, Crowdroid limits to classify malware families; malware families mainly call 
out system calls (e.g., read(), close(), open(), write(), recvmsg()). Since FakeBattScar calls 
out more system calls (e.g., open(), close()) than others and Adwo calls out system call 
of read() constantly, two malware families can be classified well. Furthermore, Andro-
profiler gives 47 % performance improvement advantage over Crowdroid in terms of the 
AUC. In the case of method 1, our system clusters Airpush samples into two groups. 
We conducted a deep analysis to understand the reason method 1 of our system clus-
tered such samples into two groups, and found that almost half of Airpush samples sent 
premium-rate SMS and collected sensitive information (e.g., IMEI, Android version, 
location information, and carrier), whereas the other half only collected sensitive infor-
mation. To this end, we found that our system identified malicious behavior and classi-
fied malware according to behavior patterns of malware families.

Discriminatory ability between malware and benign

When designing an anti-malware system, one important factor which we should also 
consider is its discriminatory ability between malware and benign applications. Anti-
malware systems must detect malware with small errors in terms of false positive and 
false negative. We believe that it is more important for an anti-malware system to 
detect malware with small false negative than false positive. However, for commercial 
reasons, one may think the opposite: users can be bothered if their benign applica-
tions are misclassified as malware. Table 9 shows that Andro-profiler performs well in 
detecting and classifying malware families with 98  % classification accuracy on aver-
age, regardless of the update method, while Crowdroid detects malware families with 
90  % classification accuracy on average. Some factors may have affected that Crow-
droid underperforms the Andro-profiler. Since invoked system calls between malware 
and benign samples are similar to each other, Crowdroid limits to detect and classify 
malware families; all samples mainly call out system calls (e.g., read(), close(), open(), 
write(), recvmsg()). Among these, FakeBattScar calls out more system calls (e.g., open(), 
close()) than others and other malware families have similar call frequencies to benign 

Table 9 Classification performance for 643 malware and 8840 benign samples

Italic text means that Andro-profiler outperforms Crowdroid in detecting malware and classifying malware families

Category Accuracy AUC

Method 1 Method 2 Crowdroid Method 1 Method 2 Crowdroid

Malware

 AdWo 1.00 1.00 0.01 1.00 1.00 0.49

 AirPush 1.00 1.00 0.00 1.00 1.00 0.50

 Boxer 1.00 1.00 0.00 1.00 1.00 0.50

 FakeBattScar 1.00 1.00 1.00 1.00 1.00 1.00

 GinMaster 1.00 1.00 0.00 1.00 1.00 0.49

Benign 0.97 0.97 0.96 0.99 0.99 0.52

Average 0.98 0.98 0.90 0.99 0.99 0.52
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samples, then malware families except for FakeBattScar cannot be detected and classi-
fied well. Our proposed methods also outperform Crowdroid by improving its AUC by 
about 90 %. Table 10 shows that our system performs well in detecting and classifying 
malware families with about 3 false positives and 38 false negatives, while Crowdroid 
detects and classifies malware families with over 100 false positives and false negatives. 
All malware families except Airpush were classified with low false positives rate and 
false negative rate.

Andro-profiler misclassified 225 benign samples as malware. We conducted a deep 
analysis to understand the high false positives with Andro-profiler. Interestingly, we 
found that some benign samples collected user’s sensitive information, which we defined 
as a trigger for classifying malicious applications (e.g., IMEI, device ID, UUID, latitude, 
and longitude). To understand whether other anti-malware systems and scanners con-
sidered those benign applications as malware or not, we uploaded those suspected 
GooglePlay samples to VirusTotal and checked scanning results of various anti-virus 
vendors. As a result, we found that 110 out of the suspicious benign samples (accounting 
for about 49 %) were diagnosed as malware. The high rate of misclassification of benign 
applications is, however, understandable given various potential reasons for such infil-
tration of gray area applications into the market place (Krebs 2013).

Effectiveness of detecting 0‑day malware

We demonstrate the effectiveness of detecting 0-day malware detection. We define an 
application as a 0-day malware if it has malicious behavior and it cannot be detected 
by AV vendors. In order to verify that we had appropriately detected 0-day malware, 
we made 91 variant samples consisting of Adwo and AirPush families by leveraging 
ADAM (Zheng et  al. 2013). All samples used as the base application for the vari-
ants are among the ones which are used in the previous experiments, and detected 
by VirusTotal as malware samples. After creating the variants, we uploaded them (as 
samples) to the VirusTotal, and checked scanning results of various anti-virus (AV) 
vendors such as F-Secure, Kaspersky, ClamAV, and Avast. We noted that none of the 
submitted samples is reported as a malware when we carried out our experiment. As 
a result of our experiment using Andro-profiler, we found that it performed well in 

Table 10 Classification performance for 643 malware and 8840 benign samples

FPs and FNs refer to false positives and false negatives

Category Method 1 Method 2 Crowdroid

FPs FNs FPs FNs FPs FNs

Malware

 AdWo 0 0 0 0 229 397

 AirPush 17 0 17 0 0 60

 Boxer 0 0 0 0 0 42

 FakeBattScar 0 0 0 0 2 0

 GinMaster 0 0 0 0 0 96

Benign 0 225 0 225 589 461

Average 2.83 37.50 2.83 37.50 136.67 176
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detecting all of the variant malware samples with 100  % classification accuracy on 
average, regardless of the update method.

Efficiency of malware classification

Our proposed system only takes 55 s/MB for classifying each malware; we exclude setup 
time for analysis such as booting time of emulator. The majority of this time is spent in 
making the behavior profile; it takes only 0.2 s on average to classify malware into each 
family.

While the performance of our system is operationally reasonable, our system is scal-
able both horizontally and vertically by design. Horizontally, and given that our server 
side components are run in a virtual environment, one can fork multiple servers by uti-
lizing multiple virtual machines that exploit the multi-core nature of today’s commod-
ity computers. Vertically, our system can benefit from being developed in a lower level 
language, such as the C language, which would make the classification process run faster.

Limitations
Andro-profiler has a few limitations for detecting and classifying malware, since our 
proposed method uses integrated system logs as a feature vector and employs dynamic 
analysis techniques to capture malware’s behavior. First, it is difficult for our system to 
analyze malware that are executed only under given conditions (e.g., SDK version, cellu-
lar network connection status, time, or place). However, this shortcoming is addressable 
by having various platforms tailored with various settings, as used for traditional mal-
ware in Mohaisen et al. (2013). It is also impossible for our system to analyze malware 
embedding anti-malware analysis techniques. Second, our emulator-based anti-malware 
system is dependent on SDK version of emulator, so our approach has limitation on 
analyzing malicious behavior related to privilege escalation. However, those are com-
mon drawbacks of dynamic analysis method or emulator-based detection method and 
addressed in the literature at some expense.

Finally, our approach analyzes malware on an emulator without interaction between 
human and device: autonomous installation and execution. When a malware behave 
upon an update or by utilizing a drive-by download attack (Zhou and Jiang 2012), our 
approach is limited in reacting to such malware. However, autonomous installation and 
execution is an inevitable procedure for automation of dynamic analysis. Depending on 
the number of malware samples to be analyzed, one can adopt manual human interac-
tions to analyze malware samples and vet the outcomes of the automatic classification 
procedure, as used in Mohaisen et al. (2013).

Conclusion and future work
In this paper, we have presented Andro-profiler, an anti-malware system based on 
behavior profiling. Using Andro-profiler, we classified malware by exploiting the behav-
ior profiling extracted from integrated system logs, which are implicitly equivalent to 
distinct behavior characteristics. Our behavior profiling is simple and relatively easy to 
understand, whereas Andro-profiler is capable of distinguishing benign and malicious 
applications, and malicious applications into families. Furthermore, Andro-profiler is 
capable of detecting 0-day threats, which are missed by antivirus scanners.
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Our experiments demonstrate that Andro-profiler performs well in detecting and clas-
sifying malware families with over 98 % classification accuracy on average regardless of 
update method while Crowdroid, a closely related work from the literature, performs 
under 90  % classification accuracy on average. Our experiment results indicate that it 
takes 55 s/MB to analyze a malware on average, with a lot of opportunities for improve-
ments on scalability. Our system hence enables AV vendors to react to many species of 
malicious samples by classifying and matching these with previous ones effectively and 
efficiently.

There are several directions that we will pursue in the future. First, we would like to 
augment our system to not only rely on dynamic and behavioral features, but also static 
features that are easy to obtain from the applications at scale. Furthermore, we will 
explore scalability issues associated with our system by implementing some of the guide-
lines noted in section “Efficiency of malware classification”.
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