
Measuring and Comparing Static Analysis Tools for Web Security
MIGUEL DIDEO and KYLE PEIMAN
ACM Reference Format:
Miguel DiDeo and Kyle Peiman. 2022. Measuring and Comparing Static
Analysis Tools for Web Security. 1, 1 (December 2022), 9 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 PROBLEM STATEMENT
Static analysis tools are very commonly used to analyze code to
identify any security vulnerabilities that could be exploited by ad-
versaries. However, not all static analysis tools are created equally,
and thus there needs to be a methodology to evaluate what static
analysis tools are the best for specific circumstances. We look to use
the OWASP Benchmark to analyze a series of static analysis tools
to determine which tools are best for which jobs.

2 RELATED WORK
Related Work has been done by Software Assurance Metrics and
Tool Evaluation (SAMATE) from NIST, by OWASP’s Benchmark for
Securtity Automation (BSA), and in Bench marking Static Analysis
Tools for Web Security by Paulo Nunes et.al [2018], a paper that was
published on the IEEE website and analyzes bench marking tools
and looks to improve them. NIST(National Institute of Standards and
Technology) and OWASP(Open Web Application Security Project)
are two well known organizations that look to make application
security easily accessible to everyone either via community projects
or research.

OWASP’s BSA [1] is relatively user friendly and generates fast
and intuitive results. BSA will run a tool over many different test
cases that OWASP has created and detect the amount of true pos-
itives and false positives that a static analysis tool will pick up
on. BSA then generates a score for the tool based on these results.
Unfortunately, BSA only comes with 5 tools built into it, and us-
ing a tool other than the built in ones is a difficult and involved
task. OWASP is best known for their top 10 list that they release
every few years that goes over the top 10 most critical security risks.

SAMATE [2] is a large database of tools generated by NIST. SA-
MATE looks to assist users in picking which tool is the proper tool
for their particular use case. They hold the Static Analysis Tool
Exposition (SATE), where tool makers can bring their tools and
run them against some test cases. The results are then shared at a
workshop, and a report is released to the public later on.

Authors’ address: Miguel DiDeo; Kyle Peiman.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The work done in Benchmarking Static Analysis Tools For Web
Security, an academic paper written by Paulo Nunes, et.al [2018]
relates to the work we look to do in our project. The team on this
project found the benchmarks by OWASP and NIST lacking and
sought to create their own benchmark specifically for static analysis
tools (SATs) for web security. The team uses five different static
analysis tools; phpSAFE, RIPS, WAP, WeVerca, and Pixy. To bench-
mark these tools they took 143 WordPress plugins from the WPScan
Vulnerability Database and analyzed the amount of true positives
and false positives received from their analysis tools, they did this
for both SQL injection (SQLi) and cross site scripting (XSS). They
also separated the files they analyzed by quality, since lower quality
plugins will have more vulnerabilities they found it useful to make
this divide when ranking the SATs [3].

There are many different ways in which this team could have
bench marked their tools, they chose to use the SAMATE method-
ology and OWASP’s benchmark. SAMATE metrics are Precision,
F-Score, Recall and Discrimination Rate, however, Discrimination
rate involves comparing a vulnerable plugin to a patched version of
the vulnerable plugin, which for most vulnerable plugins does not
exist, so they decided to not use Discrimination rate. BSA is Bench-
mark Accuracy Score, it is calculated as 𝐵𝑆𝐴 = (𝑇𝑃𝑅 − 𝐹𝑃𝑅) ∗ 100,
where TPR is the true positive rate and FPR is the false positive rate.

The main contribution this project proposes is their concept of a
"workload", that being, the criticality of the application being tested
(i.e, business-critical to lower-quality applications). This criticality
acts like a kind of weight, every missed bug in the highest critical
applications could be disastrous, whereas every false positive in
the lowest critical category is a waste of resources that could be
spent elsewhere. They wanted to find a tool that would catch all of
the vulnerabilities in the most critical software, regardless of how
many false positives there were, and the least amount amount of
false positives possible for the lowest critical software, while still
catching some potential risks.

3 APPROACH
We will take a similar approach to the work of Paulo Nunes et.al.
by evaluating the following series of Static Analysis Tools with the
OWASP Benchmark:

• FBwFindSecBugs (v1.4.0, v1.4.3, v1.4.4, v1.4.5, and v1.4.6)
• FindBugs (v3.0.1)
• OWASP ZAP (vD-2015-08-24 and vD-2016-09-05)
• PMD (v5.2.3)
• SonarQube Java Plugin (v3.14)
• VisualCodeGrepper (v2.2.0)
• ShiftLeft CORE’s NG SAST

We will compile the results for each tool and then begin our anal-
ysis considering true positive rate (TPR), false positive rate (FPR),

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Miguel DiDeo and Kyle Peiman

and using the BSA score for each tool. Speed is also an important
metric to consider when comparing different tools. If a tool takes
too long to complete its analysis then the tool is also not very usable.

For each tool, all vulnerability categories that are tested in the
OWASP Benchmark will be considered when evaluating tools. This
includes command injection, insecure cookies, LDAP injection, path
traversals, SQLi, trust boundaries, weak encryption algorithms,
weak hashing algorithms, weak randomness, XPath injection, and
XSS. Alongside the previously mentioned categories, the benchmark
also calculates the run time for each tool which will also be taken
into consideration when evaluating static analysis tools.

4 EVALUATION
Most of the tables found in Appendix A (i.e., every table but Table 1),
show each tool being measured for each of the tested vulnerability
category in terms of its TPR, FPR and BSA score. Additionally, each
tool has an overall total for TPR, FPR, and BSA score calculated by
averaging the total scores in each category divided by the number
of categories tested.

The figures found in Appendix B, show a visual representation
of the scores shown in the aforementioned tables. Each figure (ex-
cluding Figure 1) charts each TPR, FPR, and to an extent BSA score
for every category, with larger BSA scores represented by larger
distances from the average red line and smaller scores being closer
to the red line. The aforementioned red line represents the hypo-
thetical results if each test case evaluated was randomly guessed
as a true positive or a false positive. The overall averages for each
static analysis tool are also plotted, represented by a large pink dot.

Figure 1, acts as a guide for how to read these scorecard results.
Through this, we can see the ideal vulnerability detection zone is
in the top left corner, with high TPR values and low FPR values.
Having a high TPR and high FPR correlates with a tool that reports
almost everything to be vulnerable. Any tool where the TPR and
FPR both fall around 50.00% seems to report on vulnerabilities at
random. Tools that have both a low TPR and FPR report that nearly
nothing is vulnerable, or do not work for that specific vulnerability
category. Finally, any time the BSA score is less than 0.00%, the tool
performs worse than it would have if it was guessing for every test
case.

To showcase how the scorecards work, let’s take a look at the
combination of all the overall BSA scores for the non-commercial

SATs (everything but ShiftLeft Core’s NG SAST).

Here, we can see the random guess line split the graph into two
halves. The top half is considered better than guessing whereas the
bottom half is considered worse than guessing. Higher TPR values
are indicated by being further up on the vertical axis and higher
FPR values are indicated by being further out on the horizontal
axis. Higher BSA scores are shown by being further away from the
random guess line. The good news is that most of the tools tested
have their overall BSA scores at or above the random guess line,
with those dipping below the line only dipping slightly below it.
The breakdown of how each overall BSA score is determined will
be better shown when each tool’s results are broken down in-depth
in the next section.

Table 1 in Appendix A covers the run times for each tool. Overall
no tool ran over 5 minutes and 30 seconds, which is decent consid-
ering the amount of test cases covered. PMD technically ran the
fastest in just 11 seconds, but considering that PMD doesn’t detect
any of the vulnerabilities tested for we wont count its result. FB-
wFindSecBugs actually ran the fastest, running in 1 minute and 50
seconds in total, just barely edging out FBwFindSecBugs v1.4.3 that
ran in 1 minute and 58 seconds. SonarQube Java Plugin v3.14 ran
the slowest in 5 minutes and 30 seconds just behind OWASP ZAP
vD-2015-08-24 that ran in 5 minutes flat. OWASP ZAP vD-2016-09-
05, ShiftLeft Core’s NG SAST and VisualCodeGrepper v2.2.0 have
Time not specified for their results, so they may fall somewhere in
between those results.

5 DISCUSSION
After running the OWASP Benchmark for each tool, each tool will
be elaborated upon with details about our findings for each tool

, Vol. 1, No. 1, Article . Publication date: December 2022.

Measuring and Comparing Static Analysis Tools for Web Security • 3

listed separately in the following subsections.

5.1 FBwFindSecBugs
5.1.1 FBwFindSecBugs v1.4.0. Using the data found in Table 6, from
Appendix A, we can see that FBwFindSecBugs v1.4.0 has the third
worst overall BSA score of any tool tested at 11.65%. However, this
comes with a caveat that the overall TPR is the seventh highest at
47.64%, which is higher than some tools with larger overall BSA
scores, such as SonarQube Java Plugin v3.14, and both OWASP ZAP
versions tested. The best performing category for FBwFindSecBugs
v1.4.0 is Weak Random Number with a BSA score of 100.00%, which
is the only category where this tool gets a perfect score. Insecure
Cookies and Trust Boundary Violations go undetected by this tool,
and XPath Injections seem to be always reported as vulnerable with
a TPR and FPR of 100.00%.

Where FBwFindSecBugs struggles is with Command Injections,
LDAP Injections, and SQLi, which all have FPR’s exceeding TPR’s,
resulting in negative BSA scores. The least negative of these scores
is SQLi, with a BSA score of -1.93% with the BSA score for Command
Injections ibeing slightly worse at -2.19%. But the worst by far is for
LDAP injections, with a BSA score of -13.31%, which is the worst
BSA score for any one category in the entire set of data. This overall
average performance is also shown in the scorecard for this tool,
displayed in Figure 2 with almost all of the scores falling close to the
random guess line, with the only decent performances being Weak
Hashing Algorithms, the aforementioned Weak Random Number,
and Weak Encryption Algorithms, which itself is marred by a de-
cently high FPR.

5.1.2 FBwFindSecBugs v1.4.3. Using the data found in Table 3, from
Appendix A, we can see that there is an improvement in the overall
BSA score, moving up to 32.39% which is the sixth highest of any
tool tested. This is shown with a massive improvement in overall
TPR which is now at 77.60%, but hampered by an also increasing
overall FPR of 45.21%. Compared to the previous version, there
are also improvements in most vulnerability categories. Insecure
cookies now have a BSA score of 100.00% and the scores for other
already decent categories got better such as Weak Hashing Algo-
rithms, Weak Random Number, and Weak Encryption Algorithms.

Additionally, the three categories in the negatives are now in the
positives, with the overall BSA scores for Command Injection, LDAP
Injection, and SQLi now sitting at 9.60%, 9.38%, and 8.62% respec-
tively. The one downgrade in the newer version of FBwFindSecBugs
comes with XSS, which was not a strong suit for v1.4.0 where it had a
BSA score of 1.22%. This score actually gets worse with v1.4.3 where
the BSA score now sits at 0.41%. This trend of higher TPRs and FPRs
is also shown in the scorecard for this tool, displayed in Figure 3 as
while scores are overall higher, more points trend more towards the
zone where everything is reported as a vulnerability, best shown
with Command Injection, LDAP Injection, SQLi and XPath Injection.

5.1.3 FBwFindSecBugs v1.4.4. Using the data found in Table 4, from
Appendix A, we again see general BSA score improvements across
the board. The overall BSA score has slightly increased to 34.13%,
the fourth highest of any tested tool. This gradual increase also
comes with a slightly higher overall TPR of 78.77% and a slightly
lower overall FPR of 44.64%. However, the worrying trend of more
categories reaching the "reporting everything" zone continues, as
shown in Figure 4, with Path Traversal now entering the same zone
as the previously mentioned four Injection categories (Command,
LDAP, SQL, and XPath) as while some of the FPRs for those cate-
gories did go down, it was not nearly enough to escape the top right
corner of the chart.

5.1.4 FBwFindSecBugs v1.4.5. Using the data found in Table 5, from
Appendix A, we can see that the overall TPR has increased to 95.20%
and the overall FPR has increased to 57.74%, giving us an overall
BSA score of 37.46%, now the third highest overall BSA score of
any tool tested. Trust Boundary Violations are now being detected,
though with a BSA score of 0.53%, and TPRs and FPRs in the low
80.00% range guesses are not exactly accurate. However, the bigger
jump comes with XSS, which now has a 100.00% TPR and a 62.68%
FPR for a BSA score of 37.32%, putting it closer to the top-right
corner seen in Figure 5, but not quite close enough to be considered
reporting everything yet. Finally, as seen in Table 1, run time has
made a significant improvement from v1.4.4

5.1.5 FBwFindSecBugs v1.4.6. Using the data found in Table 6, from
Appendix A, the most recent version of FBwFindSecBugs tested
with the OWASP Benchmark. In terms of overall numbers, v1.4.6 is
a distinct upgrade over v1.4.5 with a higher overall TPR of 96.84%
while retaining the same FPR as v1.4.5 for a new overall BSA score
of 39.10%, the second highest of any tool tested, and the highest of
any non-commercial tool tested.

The slight improvement comes in the form of the TPR for Trust
Boundary Violations increasing to 100.00% while retaining a FPR of
81.40%, giving a new BSA score for Trust Boundary Violations of
18.60%. While that does mean it enters the "reporting everything"
zone shown in Figure 6, it has the lowest FPR of any category in
that grouping. The run time, as seen in Table 1, also continues to
be good for v1.4.6, continuing the approach back towards the faster
run times of previous FBwFindSecBugs versions. Combining that
run time with some of the best performance in the group makes
this tool a very good overall choice.

5.2 FindBugs
From the best performing non-commercial tool, we move on to
FindBugs v3.0.1, whose results are found in Table 7 in Appendix A,
and Figure 7 in Appendix B. FindBugs v3.0.1 is notable for being the
worst performing static analysis tool of the bunch, only performing
above the random guess line for Path Traversal with a BSA score
of 0.77% and performing worse than guessing for SQLi with a BSA
score of -1.93%, though with a TPR of 53.68% and a FPR of 55.60%

, Vol. 1, No. 1, Article . Publication date: December 2022.

4 • Miguel DiDeo and Kyle Peiman

meaning that SQLi was being detected, but whether or not it was
accurately detected was worse than a random guess. All other vul-
nerability categories were not detected by the tool with TPRs, FPRs,
and BSA scores of 0.00%. As a result, FindBugs v3.0.1 was the only
static analysis tool tested with an overall BSA score less than 0.00%,
with an overall TPR of 5.12%, and an overall FPR of 5.19% giving
us an overall BSA score of -0.07%, the worst overall BSA score of
any tool tested. As a result, while the run time may be the second
lowest of any tool tested according to Table 1, that does not mean
the tool should be used for just about anything.

5.3 OWASP ZAP
5.3.1 OWASP ZAP vD-2015-08-24. Using the results found in Ta-
ble 8 in Appendix A, and Figure 8 in Appendix B. Beginning with
the overall results, vD-2015-08-24 has an overall TPR of 18.03% and
an overall FPR of 0.04% for an overall BSA of 17.99%, giving us the
fifth worst overall BSA score of any tested tool. Most of the reason
for this is that while FPRs are low, which is a very good thing, TPRs
are not all that high. Additionally, many categories are simply unde-
tected by the tool, including LDAP Injection, Path Traversal, Trust
Boundary Violations, Weak Encryption Algorithms, Weak Hashing
Algorithms, Weak Random Numbers, and XPath Injections.

Meanwhile for the categories that are detected, Insecure Cookie
gets a perfect 100.00% BSA score, but the Command Injection BSA
score of 34.92% is the next highest BSA score for any category. SQLi
has a BSA score of 34.13% and XSS has a BSA score of 28.86%, with
those categories being the only detected categories by the bench-
mark. This is all reflected in Figure 8, which shows that yes the FPRs
are good, but TPRs besides Insecure Cookie are nowhere near the
ideal zone. Additionally, the overall run time of this tool, seen in the
bottom left corner of Figure 8 and in Table 1 is the largest amount
of time reported for any tool in the selection, which could prove to
be a downside to some people.

5.3.2 OWASP ZAP vD-2016-09-05. As seen in the results found in
Table 9 in Appendix A, and Figure 9 in Appendix B, while there still
are not many categories detected, BSA scores across the board in
all detected categories have improved with little or no movement
in FPR values. This gives the 2016 version an overall BSA score of
19.84% which while it still gives it the sixth worst overall BSA score
of any tested tool, it is still an improvement. In terms of the detected
categories, it is a bit of a mixed bag in terms of improvements and
setbacks with the newer version as SQLi improved to a BSA score of
56.80%, however, XSS remained constant at 28.86% and Command
Injection got worse with a BSA score of 32.54% compared to the
34.92% of the previous version. Additionally, the run time, as seen
in Table 1 could continue to be an issue as this was one of three
tools that did not specify a tool run time.

5.4 PMD
Next is PMD v5.2.3, whose results are found in Table 10 in Appen-
dix A, and Figure 10 in Appendix B. PMD v5.2.3 is notable for not

detecting any of the vulnerability categories being tested for, with
TPRs, FPRs and BSA scores of 0.00% across the board. This allows
for PMD to serve as a control group to compare other tools to. As a
result, it also should not be surprising that PMD’s run time is the
fastest of any tool tested by a long shot, as seen in Table 1. Though,
all of that does not mean that PMD should be recommended by any
means.

5.5 SonarQube Java Plugin
We now move on to SonarQube Java Plugin v3.14, whose results are
found in Table 11 in Appendix A, and Figure 11 in Appendix B. As
best shown in Figure 11, the results for the SonarQube Java Plugin
really have a little bit of everything. To begin with, the tool has
undetected categories such as Path Traversal, SQLi, Trust Boundary,
XPath Injection, and XSS. Next, there is a negative BSA score in
Command Injection of -2.28%, one of two categories with a high
TPR and FPR, the other being LDAP Injection where it is fit squarely
in the "flag everything" range with a TPR and FPR of 100.00%.

But despite all of that, everything else is great. Insecure Cookies,
Weak Encryption Algorithms, and Weak Random Numbers all get
a BSA score of 100.00% and Weak Hashing Algorithm has a BSA
score of 68.99% with a FPR of 0.00%. But there is one more caveat to
using this tool and that is the run time, clocking in as the second
slowest reported tool tested, as seen in Table 1. All of this comes
together for an overall TPR of 50.36% and an overall FPR of 17.02%,
for an overall BSA score of 33.34%, which is the fifth best overall
BSA score of any tool tested, and the perfect definition of a tool that
works for specific things, but is nigh on hopeless for anything else.

5.6 VisualCodeGrepper
Next up is VisualCodeGrepper v2.2.0, whose results are found in
Table 12 in Appendix A, and Figure 12 in Appendix B. While Vi-
sualCodeGrepper does detect almost all of the categories, only not
detecting LDAP Injection,Weak Hashing Algorithms, and XSS, what
it does detect is not the best with no one category truly entering
the top-left corner of Figure 12, though Weak Random Numbers
and Weak Encryption Algorithms do get close. Moving over to the
top-right of Figure 12, Insecure Cookies and XPath Injections are
squarely in the "report everything" zone and Path Traversal is also
in that zone but to a lesser extent.

As for the rest, Trust Boundary Violations sit comfortably over
the random guess line, but with a TPR of 32.53% and a FPR of 18.60%
it’s not entirely ideal. However, it’s certainly more ideal than the
two categories with negative BSA scores, with Command Injection
having a BSA score of -1.16% with TPR and FPR in the mid 40%
range, and SQLi having an even worse BSA score of -2.54% with
TPR and FPR in the low-mid 50% range. This gives VisualCodeGrep-
per an overall BSA score of 14.78%, the fourth worst of any tool
tested. Combine all of that with a not specified run time according
to Table 1, and VisualCodeGrepper is hard to recommend, filling a

, Vol. 1, No. 1, Article . Publication date: December 2022.

Measuring and Comparing Static Analysis Tools for Web Security • 5

niche as a jack of all trades, but a master of none.

5.7 ShiftLeft CORE’s NG SAST
Last and most certainly not least is the only commercial tool of the
bunch: ShiftLeft CORE’s NG SAST, whose results are found in Ta-
ble 13 in Appendix A, and Figure 13 in Appendix B. The expectation
for a commercial tool you need to sign up to use is that performance
will generally be better than non-commercial alternatives and to put
it bluntly, ShiftLeft CORE’s NG SAST fills that expectation perfectly,
as with a 100.00% overall TPR, every vulnerability was accurately
detected. While there were some false positives, indicated by an
overall FPR of 25.27%, this still led to an overall BSA score of 74.43%,
the highest overall BSA score by a wide margin. Additionally, only
two individual categories had a BSA score of under 50.00%, with
SQLi (46.67%) and Weak Encryption Algorithms (44.19%). This is
further exemplified by looking at Figure 13, where the top-right
corner is pretty much barren and all of the categories are in the
middle-to-left side of the top row. The only downside is an unknown
run time according to Table 1, but when the results are this good
compared to the alternatives, run time is an afterthought if security
is the main priority.

6 WORK DISTRIBUTION
In terms of how work was divided up, our group initially was a
group of three people. When we were still planning on testing PHP
static analysis tools exclusively we came up with the idea that each
person in the group would pick one static analysis tool to analyze
two GitHub repositories to compare the scan results and then eval-
uate the effectiveness of each tool. However, a problem arose when
one of our group members withdrew from the class, leaving the
group with just two people.

As a result, we chose to change the scope of our project, instead
using OWASP Benchmark to evaluate static analysis tools that work
across a variety of languages, not just PHP. As a result, some of the
tools we were previously attempting to use from our initial project
milestone became obsolete due to lack of support for those tools in
the OWASP Benchmark such as RIPS and OWASP ASST which only
work on PHP code, in contrast to the OWASP Benchmark which
is described on its website as a Java test suite [1]. However, since
VisualCodeGrepper, a tool we initially wanted to use, supports mul-
tiple languages, including Java and PHP, we were able to use it with
the OWASP Benchmark.

From there, all of the work for the project was done jointly with
Kyle predominately focusing on the research aspect, learning about
the OWASP Benchmark and first suggesting it to the team, and
Miguel mostly focusing on getting the Benchmark to run, as well as
finding ShiftLeft CORE’s NG SAST and running the Benchmark on
that tool.

7 CONCLUSION
When looking at the data collected, we can clearly determine that
some static analysis tools work better in regards to specific vulnera-
bility categories than others, and that not all static analysis tools are
created equal. While the OWASP Benchmark may not be perfect,
as no benchmark truly is perfect, OWASP’s goal as stated on the
benchmark website is to make application security visible[1]. Our
purpose for evaluating this set of static analysis tools is for similar
reasons, to allow consumers and people who use static analysis
tools to make an informed choice as to which tools should be used,
either in general, or for specific use cases that may be more or less
important to other users.

REFERENCES
[1] OWASP, “Owasp benchmark.” https://owasp.org/www-project-benchmark/.
[2] NIST, “Samate.” https://www.nist.gov/itl/ssd/software-quality-group/samate.
[3] P. Nunes, I. Medeiros, J. C. Fonseca, N. Neves, M. Correia, and M. Vieira, “Bench-

marking static analysis tools for web security,” IEEE Transactions on Reliability,
vol. 67, no. 3, pp. 1159–1175, 2018.

A TABLES

Table 1. Static Analysis Tool Runtimes

Static Analysis Tool Runtime

FBwFindSecBugs v1.4.0 0:01:50
FBwFindSecBugs v1.4.3 0:01:58
FBwFindSecBugs v1.4.4 0:04:13
FBwFindSecBugs v1.4.5 0:02:09
FBwFindSecBugs v1.4.6 0:02:02
FindBugs v3.0.1 0:01:32
OWASP ZAP vD-2015-08-24 5:00:00
OWASP ZAP vD-2016-09-05 Time not specified
PMD v5.2.3 0:00:11
SonarQube Java Plugin v3.14 0:05:30
VisualCodeGrepper v2.2.0 Time not specified
ShiftLeft CORE’s NG SAST Unknown

Table 2. FBwFindSecBugs v1.4.0 Results

Category TPR FPR Score

Command Injection 73.81% 76.00% -2.19%
Insecure Cookie 0.00% 0.00% 0.00%
LDAP Injection 14.81% 28.12% -13.31%
Path Traversal 84.21% 79.26% 4.95%

SQLi 53.68% 55.60% -1.93%
Trust Boundary Violation 0.00% 0.00% 0.00%

Weak Encryption Algorithm 74.62% 56.90% 17.72%
Weak Hashing Algorithm 21.71% 0.00% 21.71%
Weak Random Number 100.00% 0.00% 100.00%

XPath Injection 100.00% 100.00% 0.00%
XSS 1.22% 0.00% 1.22%

Overall Results 47.64% 35.99% 11.65%

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://owasp.org/www-project-benchmark/
https://www.nist.gov/itl/ssd/software-quality-group/samate

6 • Miguel DiDeo and Kyle Peiman

Table 3. FBwFindSecBugs v1.4.3 Results

Category TPR FPR Score

Command Injection 100.00% 90.40% 9.60%
Insecure Cookie 100.00% 0.00% 100.00%
LDAP Injection 100.00% 90.62% 9.38%
Path Traversal 84.21% 79.26% 4.95%

SQLi 100.00% 91.38% 8.62%
Trust Boundary Violation 0.00% 0.00% 0.00%

Weak Encryption Algorithm 100.00% 45.69% 54.31%
Weak Hashing Algorithm 68.99% 0.00% 68.99%
Weak Random Number 100.00% 0.00% 100.00%

XPath Injection 100.00% 100.00% 0.00%
XSS 0.41% 0.00% 0.41%

Overall Results 77.60% 45.21% 32.39%

Table 4. FBwFindSecBugs v1.4.4 Results

Category TPR FPR Score

Command Injection 100.00% 88.80% 11.20%
Insecure Cookie 100.00% 0.00% 100.00%
LDAP Injection 100.00% 84.38% 15.62%
Path Traversal 96.24% 86.67% 9.57%

SQLi 100.00% 90.52% 9.48%
Trust Boundary Violation 0.00% 0.00% 0.00%

Weak Encryption Algorithm 100.00% 45.69% 54.31%
Weak Hashing Algorithm 68.99% 0.00% 68.99%
Weak Random Number 100.00% 0.00% 100.00%

XPath Injection 100.00% 95.00% 5.00%
XSS 1.22% 0.00% 1.22%

Overall Results 78.77% 44.64% 34.13%

Table 5. FBwFindSecBugs v1.4.5 Results

Category TPR FPR Score

Command Injection 100.00% 88.80% 11.20%
Insecure Cookie 100.00% 0.00% 100.00%
LDAP Injection 100.00% 84.38% 15.62%
Path Traversal 96.24% 86.67% 9.57%

SQLi 100.00% 90.52% 9.48%
Trust Boundary Violation 81.93% 81.40% 0.53%

Weak Encryption Algorithm 100.00% 45.69% 54.31%
Weak Hashing Algorithm 68.99% 0.00% 68.99%
Weak Random Number 100.00% 0.00% 100.00%

XPath Injection 100.00% 95.00% 5.00%
XSS 100.00% 62.68% 37.32%

Overall Results 95.20% 57.74% 37.46%

Table 6. FBwFindSecBugs v1.4.6 Results

Category TPR FPR Score

Command Injection 100.00% 88.80% 11.20%
Insecure Cookie 100.00% 0.00% 100.00%
LDAP Injection 100.00% 84.38% 15.62%
Path Traversal 96.24% 86.67% 9.57%

SQLi 100.00% 90.52% 9.48%
Trust Boundary Violation 100.00% 81.40% 18.60%

Weak Encryption Algorithm 100.00% 45.69% 54.31%
Weak Hashing Algorithm 68.99% 0.00% 68.99%
Weak Random Number 100.00% 0.00% 100.00%

XPath Injection 100.00% 95.00% 5.00%
XSS 100.00% 62.68% 37.32%

Overall Results 96.84% 57.74% 39.10%

Table 7. FindBugs v3.0.1 Results

Category TPR FPR Score

Command Injection 0.00% 0.00% 0.00%
Insecure Cookie 0.00% 0.00% 0.00%
LDAP Injection 0.00% 0.00% 0.00%
Path Traversal 2.26% 1.48% 0.77%

SQLi 53.68% 55.60% -1.93%
Trust Boundary Violation 0.00% 0.00% 0.00%

Weak Encryption Algorithm 0.00% 0.00% 0.00%
Weak Hashing Algorithm 0.00% 0.00% 0.00%
Weak Random Number 0.00% 0.00% 0.00%

XPath Injection 0.00% 0.00% 0.00%
XSS 0.41% 0.00% 0.41%

Overall Results 5.12% 5.19% -0.07%

Table 8. OWASP ZAP vD-2015-08-24 Results

Category TPR FPR Score

Command Injection 34.92% 0.00% 34.92%
Insecure Cookie 100.00% 0.00% 100.00%
LDAP Injection 0.00% 0.00% 0.00%
Path Traversal 0.00% 0.00% 0.00%

SQLi 34.56% 0.43% 34.13%
Trust Boundary Violation 0.00% 0.00% 0.00%

Weak Encryption Algorithm 0.00% 0.00% 0.00%
Weak Hashing Algorithm 0.00% 0.00% 0.00%
Weak Random Number 0.00% 0.00% 0.00%

XPath Injection 0.00% 0.00% 0.00%
XSS 28.86% 0.00% 28.86%

Overall Results 18.03% 0.04% 17.99%

, Vol. 1, No. 1, Article . Publication date: December 2022.

Measuring and Comparing Static Analysis Tools for Web Security • 7

Table 9. OWASP ZAP vD-2016-09-05 Results

Category TPR FPR Score

Command Injection 32.54% 0.00% 32.54%
Insecure Cookie 100.00% 0.00% 100.00%
LDAP Injection 0.00% 0.00% 0.00%
Path Traversal 0.00% 0.00% 0.00%

SQLi 58.09% 1.29% 56.80%
Trust Boundary Violation 0.00% 0.00% 0.00%

Weak Encryption Algorithm 0.00% 0.00% 0.00%
Weak Hashing Algorithm 0.00% 0.00% 0.00%
Weak Random Number 0.00% 0.00% 0.00%

XPath Injection 0.00% 0.00% 0.00%
XSS 28.86% 0.00% 28.86%

Overall Results 19.95% 0.12% 19.84%

Table 10. PMD v5.2.3 Results

Category TPR FPR Score

Command Injection 0.00% 0.00% 0.00%
Insecure Cookie 0.00% 0.00% 0.00%
LDAP Injection 0.00% 0.00% 0.00%
Path Traversal 0.00% 0.00% 0.00%

SQLi 0.00% 0.00% 0.00%
Trust Boundary Violation 0.00% 0.00% 0.00%

Weak Encryption Algorithm 0.00% 0.00% 0.00%
Weak Hashing Algorithm 0.00% 0.00% 0.00%
Weak Random Number 0.00% 0.00% 0.00%

XPath Injection 0.00% 0.00% 0.00%
XSS 0.00% 0.00% 0.00%

Overall Results 0.00% 0.00% 0.00%

Table 11. SonarQube Java Plugin v3.14 Results

Category TPR FPR Score

Command Injection 84.92% 87.20% -2.28%
Insecure Cookie 100.00% 0.00% 100.00%
LDAP Injection 100.00% 100.00% 0.00%
Path Traversal 0.00% 0.00% 0.00%

SQLi 0.00% 0.00% 0.00%
Trust Boundary Violation 0.00% 0.00% 0.00%

Weak Encryption Algorithm 100.00% 0.00% 100.00%
Weak Hashing Algorithm 68.99% 0.00% 68.99%
Weak Random Number 100.00% 0.00% 100.00%

XPath Injection 0.00% 0.00% 0.00%
XSS 0.00% 0.00% 0.00%

Overall Results 50.36% 17.02% 33.34%

Table 12. VisualCodeGrepper v2.2.0 Results

Category TPR FPR Score

Command Injection 44.44% 45.60% -1.16%
Insecure Cookie 100.00% 100.00% 0.00%
LDAP Injection 0.00% 0.00% 0.00%
Path Traversal 96.24% 88.15% 8.09%

SQLi 52.21% 54.74% -2.54%
Trust Boundary Violation 32.53% 18.60% 13.93%

Weak Encryption Algorithm 74.62% 0.00% 74.62%
Weak Hashing Algorithm 0.00% 0.00% 0.00%
Weak Random Number 88.53% 18.91% 69.62%

XPath Injection 100.00% 100.00% 0.00%
XSS 0.00% 0.00% 0.00%

Overall Results 53.51% 38.73% 14.78%

Table 13. ShiftLeft CORE’s NG SAST Results

Category TPR FPR Score

Command Injection 100.00% 36.00% 64.00%
Insecure Cookie 100.00% 22.97% 77.03%
LDAP Injection 100.00% 0.00% 100.00%
Path Traversal 100.00% 40.62% 59.38%

SQLi 100.00% 53.33% 46.67%
Trust Boundary Violation 100.00% 37.50% 62.50%

Weak Encryption Algorithm 100.00% 55.81% 44.19%
Weak Hashing Algorithm 100.00% 0.00% 100.00%
Weak Random Number 100.00% 0.00% 100.00%

XPath Injection 100.00% 0.00% 100.00%
XSS 100.00% 35.00% 65.00%

Overall Results 100.0% 25.57% 74.43%

B FIGURES

Fig. 1. Provided guide that shows what scorecard graph results mean

, Vol. 1, No. 1, Article . Publication date: December 2022.

8 • Miguel DiDeo and Kyle Peiman

Fig. 2. OWASP Benchmark Scorecard for FBwFindSecBugs v1.4.0

Fig. 3. OWASP Benchmark Scorecard for FBwFindSecBugs v1.4.3

Fig. 4. OWASP Benchmark Scorecard for FBwFindSecBugs v1.4.4

Fig. 5. OWASP Benchmark Scorecard for FBwFindSecBugs v1.4.5

Fig. 6. OWASP Benchmark Scorecard for FBwFindSecBugs v1.4.6

Fig. 7. OWASP Benchmark Scorecard for FindBugs v3.0.1

, Vol. 1, No. 1, Article . Publication date: December 2022.

Measuring and Comparing Static Analysis Tools for Web Security • 9

Fig. 8. OWASP Benchmark Scorecard for OWASP ZAP vD-2015-08-24

Fig. 9. OWASP Benchmark Scorecard for OWASP ZAP vD-2016-09-05

Fig. 10. OWASP Benchmark Scorecard for PMD v5.2.3

Fig. 11. OWASP Benchmark Scorecard for SonarQube Java Plugin v3.14

Fig. 12. OWASP Benchmark Scorecard for VisualCodeGrepper v2.2.0

Fig. 13. OWASP Benchmark Scorecard for ShiftLeft CORE’s NG SAST

, Vol. 1, No. 1, Article . Publication date: December 2022.

	1 Problem Statement
	2 Related Work
	3 Approach
	4 Evaluation
	5 Discussion
	5.1 FBwFindSecBugs
	5.2 FindBugs
	5.3 OWASP ZAP
	5.4 PMD
	5.5 SonarQube Java Plugin
	5.6 VisualCodeGrepper
	5.7 ShiftLeft CORE's NG SAST

	6 Work Distribution
	7 Conclusion
	References
	A Tables
	B Figures

