
DNS-Based Command and Control (C2) Server for Firewall and
Antivirus Evasion

Jeffrey DiVincent
University of Central Florida

Orlando, USA
divi@knights.ucf.edu

Christopher Fischer
University of Central Florida

Orlando, USA
fischer@knights.ucf.edu

Matthew McKeever
University of Central Florida

Orlando, USA
mmckeever@knights.ucf.edu

ABSTRACT
Advanced and sophisticated attackers, especially those funded by
nation-states, will use uncommon techniques to obfuscate their
activity on a network. This includes using esoteric communication
channels instead of more traditional channels like HTTP(S) to com-
municate with a command-and-control (C2) server for maintaining
persistence and executing post-exploitation tasks. However, these
atypical channels are seldom used in penetration tests, which leaves
gaps in an organization’s security posture that advanced attackers
can exploit. We will be developing a Python3-based command-
and-control agent and server and testing its effectiveness against
compromising residential networks, regardless of client operating
system and network speeds. To benefit the wider cybersecurity
industry, we will be open sourcing our code under a libre software
license to make it available to individual penetration testers and
smaller organizations.

KEYWORDS
command and control; malware; firewall; antivirus; antimalware
cybersecurity; python; dns
ACM Reference Format:
Jeffrey DiVincent, Christopher Fischer, and Matthew McKeever. 2022. DNS-
Based Command and Control (C2) Server for Firewall and Antivirus Evasion.
In Foundations of Computer Security and Privacy. ACM, New York, NY, USA,
7 pages. https://doi.org/not_applicable

1 INTRODUCTION
Advanced attackers, such as those financed by nation-states (a.k.a.
active persistent threats, or APTs), are known to use novel, rela-
tively unknown techniques to communicate back to a command-
and-control (C2) server they control to maintain persistence and
avoid detection. However, a lot of tooling that red-team security
researchers utilize do not utilize these novel communication tech-
niques, opting for traditional C2 communication channels such as
HTTP(S). This is especially true for smaller companies and govern-
ments who cannot afford premium solutions like Fortra’s Cobalt
Strike, which offers harder-to-detect DNS command-and-control
capabilities at a hefty premium. By only attacking with C2s that use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CAP5150, December 5, 2022, Virtual Event
© 2022 Association for Computing Machinery.
ACM ISBN 978-0-0000-0000-0/00/00. . . $0.00
https://doi.org/not_applicable

traditional communication channels, a gap in coverage is created,
leaving companies, governments, and individuals unknowingly vul-
nerable to data exfiltration and more sophisticated attacks. One
of these novel data exfiltration techniques involve utilizing DNS
queries to communicate between an attacker’s server and an in-
fected host. We wish to develop a DNS-based command and control
server and client that can be freely used by security professionals,
and then see if it is harder to automatically detect with residential-
grade antimalware products like Windows Defender compared to
traditional HTTP C2. We will also ensure that our solution is robust
on a variety of operating systems and networking conditions. We
desire to release our proof-of-concept C2 server as a free-to-use,
permissively licensed open-source project for individual security
researchers and smaller organizations to utilize.
Organization. The organization of this paper is as follows. In
section 3, we review the existing ecosystem of DNS-based command-
and-control servers. In section 4, we discuss the approach we took
for our C2 server and how the agent communicates with it. This
includes discussing the design of the protocol. In section 5, we talk
about licensing and distribution of our work, and our rationale
for releasing our proof of concept under a libre software license.
Section 6 describes our approach to test how covert our approach
is, and Section 7 describes how we quantified network performance.
We then report our findings in section 8, analyze them in section 9,
present our work distribution in section 10, and our final remarks
in section 11.

2 RATIONALE
Our rationale behind this research project was to develop a C2 that
can be used in collegiate cybersecurity competitions such as Col-
legiate Cyber Defense Competition (CCDC), Information Security
Talent Search (ISTS), and NSA’s Center of Academic Excellence
National Cyber Exercise (CAE-NCX), along with Attack & Defend
and King of The Hill (KoTH) -styled competitions, much like other
schools such as the Rochester Institute of Technology (RIT). We
also pursued this project to gain a deeper understanding of the
process and methodologies to developing a custom C2 framework
over an arbitrary protocol, and we chose DNS specifically due to its
ubiquity and the high likelihood that it is not blocked on a given
network.

3 RELATEDWORK
While this technique is novel, it is not completely new in the Com-
mand and Control world. Past literature shows that both nation
state and commercial criminal entities have deployed botnets which
use DNS as a carrier for command and control. Feederbot, a com-
mercial botnet, was known to leverage DNS Command and Control

https://doi.org/not_applicable
https://doi.org/not_applicable

[2]. Similarly, APT-18 utilized DNS Command and Control in an
attack against a Commercial Entity in the United States, according
to Palo Alto Research [3]. APT-18 is commonly attributed to the
Chinese Government’s Offensive Cyber Capability.

DNS is also used as a command-and-control channel in both
commercial and open-source tools marketed towards security re-
searchers. The open-sourced command and control suite Sliver
implements C2 over DNS as one of its built-in agents [1]. How
Sliver designed its C2 is that its server is listed as a name-server of
an attacker-controlled domain. While this does allow for normal
DNS servers (including a company’s internal DNS servers) to be
called to communicate to the C2 server, it requires log entries that
all point towards a single attacker-controlled domain. This causes
the attacker’s domain to be a clear indicator of compromise (IoC),
allowing for easy blocking. While this is similar to tactics used
by adversaries, it discounts other approaches that may be taken,
including communication to a custom DNS server directly.

A more robust command and control suite is Fortra’s Cobalt
Strike. While Cobalt Strike does support Sliver’s approach to DNS,
it also is heavily customizable, also including the ability to listen
on multiple domains [5]. Using a large roster of domains, which
can be obtained from free-domain registrars like Freenom (which
offers .TK, .GA, and other top-level domain [TLD] names for free)
or using cheap TLDs like .XYZ, this can make it harder to be simply
filtered out. However, while Cobalt Strike is harder to detect, it is
also expensive; licenses start at $9,450 per user per year [4]. This
prices out most benign users, but does not prevent determined
cyber-criminals from purchasing a license, assuming they do not
just pirate it.

While our approach will be able to be used as a name-server
similar to other approaches, it will be designed to operate as a
standalone DNS server, which also grants us great powers over
how we send and receive packets.

4 APPROACH
We have designed a DNS-based protocol for communication be-
tween a “victim” computer and a server. By designing a concrete
protocol, we can ensure that the client and the server, no matter
what language either are written in, operate consistently. Data ex-
change is done as a domain name query/answer format; the victim
periodically will query the server if an action is to be done, and then
the response will determine whether a command should be run. To
ensure persistence, an agent will be deployed onto the victim host
that will run in the background on log-in.

Because DNS traffic is almost never blocked, especially on resi-
dential networks where deep-packet inspection is not being done
to check for malicious traffic, this allows for command-and-control
data transmission to be allowed through the firewall where it may
otherwise be detected. While it may be possible to detect non-
obfuscated DNS C2 traffic with packet inspection using high-end
anti-malware solutions like VMWare’s Carbon Black or Crowd-
Strike’s Falcon platform, we will not focus our study on this use
case due to a cost barrier to acquire these business-oriented prod-
ucts. Despite this, residential targets are still valuable for attackers,
as they can be used to create a botnet to later launch denial-of-
service attacks.

Figure 1: The data exchange format of DNS answers sent
from the C2 server.

Figure 2: Data exchange when no commands are being run.

Figure 3: Data exchange when a command is being executed.

It is also harder to manually detect C2 DNS traffic; while we
will not yet be obfuscating C2 traffic due to this being a proof-of-
concept, the commonality of DNS traffic makes it harder to spot
C2 traffic if analyzed by a dedicated security operations team.
Protocol. The protocol is designed to be simple to implement. Com-
mands are structured as domain queries and answers in the struc-
ture of <command>.<data>.<anything else>. The command section
is a valid command to send to the server, while the data section is
a base16-encoded string using a lowercase alphabet. The following
are valid commands that can be sent to the server:

• Sending the "update" command to the server will fetch if a
new command has been issued from the server operators.

• Sending the "resp" command to the serverwill send requested
data to the C2 server.

The following are valid responses sent from the server:
• "success" and "failure" are status codes for valid commands.
• “run” instructs the agent to run a command in a shell, and
then make a “resp” query with the response to the server.

• Everything else will be treated as a no-op. This is also used
for obfuscation of periodic traffic, including disguising our
traffic as normal web traffic to popular websites like Google,
Amazon, and Microsoft.

When idle, the protocol acts somewhat normal. The agent pe-
riodically sends obfuscated "update" commands to the server, and
the server responds with a no-op back. This is depicted in Figure 2.
However, when a command is requested by the server (i.e. the net-
work is not idle), the next time the "update" command is requested
by the agent, it will receive a command. This command is then run
and the response is sent to the server. When the server receives the
agent’s response, it returns an affirmative, and the agent is set to
idle. This is depicted in Figure 3.

Figure 4: Wireshark traffic between the command-and-
control server and the agent (client).

While the simplicity of the protocol makes it easier to decode,
since our primary goals are to make a stable proof-of-concept and
to test it with residential antimalware products, this is not of con-
cern. Despite this, we will be applying some basic obfuscation by
disguising traffic as subdomains of random domains.

While we did adopt base16 to store commands for this proof of
concept, we could reasonably adopt a modified base32 encoding,
or even a base64 encoding scheme; while DNS is a case-insensitive
protocol, during development we discovered that we can send and
receive with casing preserved. We deemed abusing this finding
in our C2 infrastructure would be seen as suspicious and did not
implement it.
Server. The command-and-control server is a Python3 application
using the dnslib library. Python3 itself provides memory safety
while having a syntax that allows for fast prototyping, but this
comes at the cost of performance. For a server, though, this is a wor-
thy trade-off. dnslib is an open-source PyPi library that allows for
DNS trafficmanipulation, including parsing incoming DNS requests
and crafting the outgoing response packets. It also has embedded ca-
pabilities to be used as a lightweight and customizable DNS server,
allowing us to easily implement our designed query protocol in
code. At the moment, the server has the ability to receive and reply
to DNS traffic with a basic command language implemented; it is a
functional proof-of-concept command-and-control server. Scapy, a
general packet manipulation library, was also considered, but was
not chosen due to dnslib’s server capabilities.
Client. The command-and-control agent is a Python3 application
using the dnslib, subprocess, and socket libraries. Currently, the
agent can perform the following actions: callback to server, poll
server periodically for commands to execute, periodically queries
legitimate domains, and data exfiltration. The agent uses dnslib’s
DNSRecord object to send DNS queries to the server and parses the
answer packet to read the instructions sent by the C2 server and
uses subprocess to execute commands on the infected host.

The initial design utilized Python 3’s struct and socket modules
to construct DNS query packets manually, but this was phased out
in favor of dnslib’s capabilities. Additionally, Python3 was chosen
over C or C++ due to certain Windows API calls being flagged as
suspicious by AV and Windows Defender and prompting a scan
of the binary. Moreover, the module support in Python3 makes
implementing and improving functionality more manageable in
our proof-of-concept.

Figure 5: A Python3 code snippet from the command-and-
control server showing the logic that implements the com-
mand transmission protocol.

Figure 6: A DNS answer sent by the agent to the command-
and-control, displayed in Wireshark.

Traffic Obfuscation. For our proof of concept, we disguised all
C2 traffic as legitimate-looking traffic to popular domains, includ-
ing google.com, microsoft.com, stackoverflow.com, and slack.com. Be-
cause we control the DNS server and it is exclusively used for
command and control, we can ’lie’ about the responses to disguise
our traffic; domains do not need to be valid to be sent. Command
names, stored in the leftmost subdomain, are not obfuscated at all
in our proof of concept, which can be improved in the future by
mapping commands with normal-looking subdomains like "www,"
"mail," and "help." Additionally, the C2 agent periodically queries
legitimate-looking domains to our C2 server to "drown" our ma-
licious traffic with seemingly normal DNS queries and responses
(see Figure 4).
Testing.We performed two types of tests on our C2 network. First,
we ran network degradation tests on our developed agent and its
server. This let us quantify the reliability of DNS as a command and
control protocol on different network conditions and lets us test
for potential faults like packet loss and network congestion. We
elaborate on our procedure for this in section 7. We also tested our
C2 network against common non-cloud-based intrusion preven-
tion systems, including SNORT IDS on Linux and a combination
of Windows Defender and Windows Firewall on Windows. We
elaborate on our procedure for this in section 6. These two tests let

us quantify both the reliability of our solution and how covert it is
on a network.

5 SOFTWARE DISTRIBUTION
A goal of this project is to release our source code and findings
openly to security researchers and penetration testers to better
secure networks. We have publicly released source code on GitHub
under the MIT license, as it is a libre software license that gives
teams of all sizes the ability to benefit from our research without
having to worry about license compliance. However, this also comes
at the cost of malicious actors utilizing our findings as well. To
mitigate this, our agent will also be released as a Python script
instead of an executable, marginally heightening the barrier of entry
to utilize the software to deter illicit use. Python is an interpreted
language, so traditional distribution techniques require the source
code be stored on disk when run, allowing for easy detection if
used maliciously.

Additionally, the released C2 agent and server, while they can
be used for penetration tests and internal red-team engagements,
are not practical for mass data exfiltration. the C2 only supports
running, and returning the output of, commands. While exfiltration
of files is possible (i.e. by using cat and Unix shell piping) it is
limited by the maximum length of (sub)domains in DNS, the base16
encoding, and the intentional lack of any measure to circumvent
these shortcomings. This is fine for controlled offensive security
engagements, but impractical for real-world exfiltration.

Overall, we believe that the potential benefit of releasing our
code to the cybersecurity field outweighs the potential costs.

As all of our researchers are also members of the University
of Central Florida’s Collegiate Cybersecurity Competition (UCF
C3) team, we will also be trialing and expanding upon this tool in
offensive-security cybersecurity competitions and as a training tool
for defensive-security competitions, allowing the next generation of
cybersecurity professionals to be aware of how to identify esoteric
command-and-control channels.

6 INTRUSION PREVENTION TESTING
Testing Network and Host Based Intrusion systems is paramount
to ensuring our technique works. This testing will be performed
on a variety of systems. It should be noted that we are not con-
sidering endpoint detection and response systems with significant
cloud-based offerings in scope for our design and testing. Linux
network intrusion detection and prevention testing will be accom-
plished by utilizing off-the-shelf antivirus tooling for disk-based
signatures coupled with SNORT IDS running in the network for
network-based signature detection. Windows testing involves run-
ning our sample on multiple versions of the Windows Server and
Client based operating systems. These hosts will have all features
of Windows Defender enabled, except for such features that will
upload our implant to the cloud.

7 NETWORK DEGRADATION TESTING
Our network degradation testing technique relies on testing two
variables simultaneously. First, our testing strategy incorporates
the design of multiple Docker images with different operating sys-
tem baselines. This includes Linux distributions of Red Hat Linux
(CentOS), Debian, Ubuntu, and Alpine Linux. For our selection of

versions, we choose the two most recently released Long Term
Supported (LTS) versions. On distributions where no delineation
is made between releases for designations of support period, we
simply use the two most recent releases. Our reasoning is that we
want our implant to be supported on the most recent version of
the operating system, as opposed to historical releases which will
include larger technical debt to enable similar functions. By testing
across operating system types and releases, we force ourselves to
follow a programming convention where our code is portable to
different operating system versions and releases (and thus widely
supported).

The second variable which we will be testing is network con-
ditions (broadly). We will be testing differences. Broadly, we will
have three categories of network profiles. We will account for total
bandwidth (10mbps, 5mbps, and 1mbps), total speed (100ms latency,
500ms latency, and 1500ms (about 1 and a half seconds) latency),
and total packet loss (0%, 15%, and 30%). Each network profile will
be tested with the other profiles, leading to a total of 27 tests per
operating system version. Our network conditions will be applied
via the Linux utility tc. These changes will be implemented on the
same Docker image via an agent which coordinates with our testing
framework.

The test case will be a simulated command sent to the host. The
server will always be run on a consistent machine (in this case, an
Ubuntu 22 LTS release). The server will queue for the command
to be sent to a virtualized host. The agent on the machine which
applies network conditions will also be looking for this command
to be run. In our case, we will be adding a test command to create
an IPC call via the Linux kernel to alert our agent in the case of a
successful test. If no call is received 60 seconds after the testing has
started, the test is marked as a failure.

Each virtual machine and network profile will be run in parallel
10 times. The accuracy of the implant will be determined by a total
percentage (pass/fail). Our expectation is that, given DNS being
a lossy service (due to it being done over UDP), some tests will
fail due to bad timing. Our agent should be able to detect when
no result is received from the server, or when a connection is not
fully established; in this case, it should re-transmit the command
and execute the command before the time expires. However, the
presence of an unusually high failure rate may be indicative of a
logic error or programming issues related to networking.

8 RESULTS
The technique when applied shows promise in making covert com-
munication harder to analyze. When tested on a network with a
SNORT IDS, our DNS command-and-control traffic did not trigger
any specific alerts. Additionally, when tested on an Windows 10
system with a fully enabled Windows Defender, neither the agent
or server was flagged as malicious or quarantined while at rest or
during execution. Furthermore, the Windows Firewall did not drop
any of the inbound or outbound DNS packets from our server and
agent. Moreover, viewing the network traffic on WireShark (see
Figure 4) illustrates that the DNS traffic by the C2 agent and server
looks mostly benign and that further packet analysis is required to
locate what commands are being transmitted (see Figure 6).

Table 1: Network degradation testing: Speed capped at 10
Mbps

Operating System Speed Passed Tests Reliability
CentOS Linux 7.0-1406 10mbps 10 100%
CentOS Linux 8.0-1905 10mbps 10 100%
Debian 10 10mbps 10 100%
Debian 11 10mbps 10 100%
Ubuntu 20.04 10mbps 10 100%
Ubuntu 22.04 10mbps 10 100%
Alpine 3.16 10mbps 10 100%
Alpine 3.17 10mbps 10 100%

Table 2: Network degradation testing: Speed capped at 5Mbps

Operating System Speed Passed Tests Reliability
CentOS Linux 7.0-1406 5mbps 10 100%
CentOS Linux 8.0-1905 5mbps 10 100%
Debian 10 5mbps 10 100%
Debian 11 5mbps 10 100%
Ubuntu 20.04 5mbps 10 100%
Ubuntu 22.04 5mbps 10 100%
Alpine 3.16 5mbps 10 100%
Alpine 3.17 5mbps 10 100%

Table 3: Network degradation testing: Speed capped at 1Mbps

Operating System Speed Passed Tests Reliability
CentOS Linux 7.0-1406 1mbps 10 100%
CentOS Linux 8.0-1905 1mbps 10 100%
Debian 10 1mbps 10 100%
Debian 11 1mbps 10 100%
Ubuntu 20.04 1mbps 10 100%
Ubuntu 22.04 1mbps 10 100%
Alpine 3.16 1mbps 10 100%
Alpine 3.17 1mbps 10 100%

Table 4: Network degradation testing: Latency set to 100ms

Operating System Latency Passed Tests Reliability
CentOS Linux 7.0-1406 100ms 10 100%
CentOS Linux 8.0-1905 100ms 10 100%
Debian 10 100ms 10 100%
Debian 11 100ms 10 100%
Ubuntu 20.04 100ms 10 100%
Ubuntu 22.04 100ms 10 100%
Alpine 3.16 100ms 10 100%
Alpine 3.17 100ms 10 100%

Network Degradation Testing - Speed.We did not see any degra-
dation or failure from changing speed as listed. This is likely because
the speed was sufficient as to not cause latency for our traffic and
not result in any drops. Data is shown in Tables 1, 2, and 3 for
speeds of 10 Mbps, 5 Mbps, and 1 Mbps respectively.
Network Degradation Testing - Latency. We did not see any
degradation or failures from changing latency as listed. Our C2
infrastructure had a 100% command execution attempt-to-success
rate regardless of latency. Data is shown in Tables 4, 5, and 6.

Table 5: Network degradation testing: Latency set to 500ms

Operating System Latency Passed Tests Reliability
CentOS Linux 7.0-1406 500ms 10 100%
CentOS Linux 8.0-1905 500ms 10 100%
Debian 10 500ms 10 100%
Debian 11 500ms 10 100%
Ubuntu 20.04 500ms 10 100%
Ubuntu 22.04 500ms 10 100%
Alpine 3.16 500ms 10 100%
Alpine 3.17 500ms 10 100%

Table 6: Network degradation testing: Latency set to 1500ms

Operating System Latency Passed Tests Reliability
CentOS Linux 7.0-1406 1500ms 10 100%
CentOS Linux 8.0-1905 1500ms 10 100%
Debian 10 1500ms 10 100%
Debian 11 1500ms 10 100%
Ubuntu 20.04 1500ms 10 100%
Ubuntu 22.04 1500ms 10 100%
Alpine 3.16 1500ms 10 100%
Alpine 3.17 1500ms 10 100%

Table 7: Network degradation testing: 0% packet loss

Operating System Packet Loss Passed Tests Reliability
CentOS Linux 7.0-1406 0% 10 100%
CentOS Linux 8.0-1905 0% 10 100%
Debian 10 0% 10 100%
Debian 11 0% 10 100%
Ubuntu 20.04 0% 10 100%
Ubuntu 22.04 0% 10 100%
Alpine 3.16 0% 10 100%
Alpine 3.17 0% 10 100%

Table 8: Network degradation testing: 15% packet loss

Operating System Packet Loss Passed Tests Reliability
CentOS Linux 7.0-1406 15% 9 90%
CentOS Linux 8.0-1905 15% 7 70%
Debian 10 15% 9 90%
Debian 11 15% 7 70%
Ubuntu 20.04 15% 9 90%
Ubuntu 22.04 15% 8 80%
Alpine 3.16 15% 10 100%
Alpine 3.17 15% 8 80%

Network Degradation Testing - Packet Loss. Packet loss approx-
imately maps to a failing test; the more packets lost, the more our
C2 infrastructure fails. This is not surprising, as UDP-transmitted
data will be lost if the packet is dropped during transit. That is, if
the packet that sends the command is drop, the test will fail. Data
is shown in Tables 7, 8, and 9.

9 DISCUSSION
Limitations. At present, the command and file transfer length
is greatly limited by the DNS protocol and our encoding method;
the size of DNS packets and maximum length for domain names,
as described in the RFC, restricts the amount of data that can be

Table 9: Network degradation testing: 30% packet loss

Operating System Packet Loss Passed Tests Reliability
CentOS Linux 7.0-1406 30% 9 90%
CentOS Linux 8.0-1905 30% 8 80%
Debian 10 30% 8 80%
Debian 11 30% 7 70%
Ubuntu 20.04 30% 8 80%
Ubuntu 22.04 30% 5 50%
Alpine 3.16 30% 9 90%
Alpine 3.17 30% 5 50%

exfiltrated and length of commands to be executed in a single packet
[6]. Additionally, the UDP protocol is unreliable as it can drop or
lose packets during transmission, which reduces the effectiveness
of data exfiltration. Furthermore, detection of traffic generated by
the C2 framework is trivial for humans due to the encoding method
used in our framework.
Future Improvements. To further improve upon this C2 frame-
work, the first thing we can do is create a more robust, and modular,
command set. Currently, the server is only capable of sending com-
mands to all connected agents and collect their responses. While
this is immensely useful for persistence, it does not have the proper
ability to exfiltrate files or perform common post-exploitation ac-
tions such as privilege escalation or credential harvesting.While the
designed protocol allows for this, by reworking the command parser
to be more modular, we can make common tasks trivial, which is
especially useful for offensive security professionals performing
engagements.

Similarly, our C2 also does not have a proper user interface. All
commands are sent by a short-lived terminal-like UI that is not
run as an always-on daemon. By both splitting the server into an
always-running daemon and providing a more user-friendly UI,
our server can be used in more permanent installations, which is a
feature many other C2 solutions (including Sliver) already include.
This also can provide for improved management of multiple victim
computers, including the ability to self-destruct and clean itself up
after engagements.

Additionally, our framework should implement splitting data
and commands across multiple DNS queries and responses to cir-
cumvent the issue described previously in this section. Our current
design requires commands or data to be sent over a single packet;
this improvement will enable execution of longer commands and
exfiltration of larger files like a database dump or password hashes.
Furthermore, devising a better method for packet obfuscationwould
improve our evasion and detection efforts for our malicious C2 traf-
fic. The current obfuscation method can be trivially detectable by
most humans because of our base16 encoding in subdomains, so to
be used as a tool in offensive security, a better obfuscation method
is required.

Moreover, adding more robust error handling for both Python3
and the UDP protocol would improve efficiency and stability in
our framework. For Python3, an example would be better excep-
tion handling because a malformed packet could cause undefined
behavior or crash the server/agent entirely. For UDP, an example
would be implementing either reliable data transfer using UDP or

devising a custom packet redundancy strategy to minimize packet
loss.

10 WORK DISTRIBUTION
Jeffrey DiVincent served as the team lead and has developed a basic
DNS command-and-control server and data transfer protocol to be
used by the client. Developing the C2 server took approximately
five hours, with the data protocol being developed simultaneously
based on implementation. DNS testing was done using Windows’s
nslookup utility. He also handled the structure of the milestone
document and worked with Matthew McKeever on research for
how to implement the agent, which took two hours. Project man-
agement, in general, took approximately three additional hours
when summed together.

Christopher Fischer served as a technical researcher and ad-
visor. He has coordinated how to best apply the technique and
obfuscation method for the traffic itself based on both experience,
tests performed in a lab environment, and research based on past
malware samples known to contain DNS Command and Control
components.

Matthew McKeever served as C2 agent developer and collabo-
rated with Jeffrey DiVincent on server development. He also has
coordinated with Jeffrey on the implementation of DNS log sup-
pression and domain and traffic obfuscation in the server and agent.
Agent testing was performed with the server to verify functionality
of the initialization/callback, polling, command execution, and data
exfiltration. The development of the agent PoC took approximately
four hours and the additional server features took two hours.

Since the proposal, we unfortunately had team-member Nathan
Nau drop the class, so he is no longer involved in this project.

11 CONCLUSION
We developed a novel, custom C2 framework that communicates
over the DNS protocol using domain queries and A-record re-
sponses. Our C2 server poses as a fake, legitimate DNS resolver
and sends command as an A-record response to the agent’s update
query. Additionally, we found that our C2 could successfully evaded
detection by residential-grade antimalware products like Microsoft
Windows Defender and Intrusion Detection/Prevention Systems
(IDS/IPS) like Snort. We also found that our C2 communication
traffic had negligible impact on overall network performance and
minimal packet loss without implementing any form of reliable
data transfer.
Next Steps. To further our project, the next steps would be to re-
search other protocols and techniques that could be used for persis-
tent command-and-control servers and testing in a more ’realistic’
environment. For example, some protocols and techniques would
be MQTT - a messaging protocol used by IoT devices, DNSSEC,
kernel modules (Linux) and drivers (Windows), process injection,
and polymorphic or metamorphic malware. Additionally, testing
in collegiate cybersecurity competitions would provide a safe and
realistic environment to evaluate our C2’s effectiveness in evading
detection against blue-teamers and advanced Intrusion Detection
Systems (IDS) and stateful firewalls.

Acknowledgement. This work was written for CAP 5150 at the
University of Central Florida and will be adopted by the University
of Central Florida Collegiate Cybersecurity Competition (C3) Team.

REFERENCES
[1] Joe . 2019. DNS C2 · BishopFox/sliver Wiki. https://github.com/BishopFox/sliver/

wiki/DNS-C2
[2] 2011 Seventh European Conference on Computer Network Defense 2011. On Bot-

nets That Use DNS for Command and Control. 2011 Seventh European Conference

on Computer Network Defense. https://doi.org/10.1109/ec2nd.2011.16
[3] Josh Grunzweig. 2016. New Wekby Attacks Use DNS Requests as Command and

Control Mechanism. https://unit42.paloaltonetworks.com/unit42-new-wekby-
attacks-use-dns-requests-as-command-and-control-mechanism/

[4] Fortra LLC. [n.d.]. Cobalt Strike Pricing - Cobalt Strike Research and Development.
https://www.cobaltstrike.com/pricing-plans/

[5] Fortra LLC. [n.d.]. DNS Beacon. https://hstechdocs.helpsystems.com/manuals/
cobaltstrike/current/userguide/content/topics/listener-infrastructue_beacon-
dns.htm

[6] P. V. Mockapetris. 1987. RFC1035: Domain names - Implementation and Specifica-
tion. Internet Requests for Comments. https://doi.org/10.17487/RFC1035

https://github.com/BishopFox/sliver/wiki/DNS-C2
https://github.com/BishopFox/sliver/wiki/DNS-C2
https://doi.org/10.1109/ec2nd.2011.16
https://unit42.paloaltonetworks.com/unit42-new-wekby-attacks-use-dns-requests-as-command-and-control-mechanism/
https://unit42.paloaltonetworks.com/unit42-new-wekby-attacks-use-dns-requests-as-command-and-control-mechanism/
https://www.cobaltstrike.com/pricing-plans/
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/listener-infrastructue_beacon-dns.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/listener-infrastructue_beacon-dns.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/listener-infrastructue_beacon-dns.htm
https://doi.org/10.17487/RFC1035

	Abstract
	1 Introduction
	2 Rationale
	3 Related Work
	4 Approach
	5 Software Distribution
	6 Intrusion Prevention Testing
	7 Network Degradation Testing
	8 Results
	9 Discussion
	10 Work Distribution
	11 Conclusion
	References

