
Reverse Engineering of Archer C7 V1 to Analyze and
Demonstrate Impactful CVE

Nicholas Cottrell
University of Central Florida

Orlando, FL
nick.cottrell@knights.ucf.edu

Anna Graterol
University of Central Florida

Orlando, FL
agraterolstefanelli@knights.ucf.edu

Mana Mostaani
University of Central Florida

Orlando, FL
mana.mostaani@knights.ucf.edu

ABSTRACT
Every IoT and tech device has firmware. Firmware gets updates
when new features come out or more often, when vulnerabilities are
discovered to fix them. The way that professionals discover these
vulnerabilities are commonly by reverse engineering the firmware
of the given device and following its code. When source code is
clearly readable, it can be obvious when a section can be taken
advantage of. Attackers take advantage of those vulnerabilities to
access personal data from other users. Accessing the network al-
lows them to install a series of malware in which they get benefits
to steal users’ privacy. Is vital to work on reverse engineering of a
firmware as it allows to keep data safe. Finding the vulnerabilities
before this can be a huge risk for any user. It understands why and
how the firmware is vulnerable and how to approach the solution
of it. We want to see exactly what code is running that allows us to
take advantage of this device then demonstrate it to support our
understanding of the device. In this project we work on understand-
ing how the firmware works, which OS is running, how the CVE
works and aspects of the router being vulnerable. We did our tests
on the TP Link Archer C7v1 firmware.

CCS CONCEPTS
• Security and privacy→ Reverse Engineering..

KEYWORDS
Reverse Engineering; Exploitation; IoT
ACM Reference Format:
Nicholas Cottrell, Anna Graterol, and Mana Mostaani. 2022. Reverse Engi-
neering of Archer C7 V1 to Analyze and Demonstrate Impactful CVE. In
Foundations of Computer Security and Privacy. ACM, New York, NY, USA,
6 pages.

1 INTRODUCTION
The goal our team faced was to find and analyze as many vulnerabil-
ities on the Archer C7 router as possible. This process has been done
many times by many different people. In fact, this whole process
is a paid industry where people will analyze IoT Devices and craft
exploits for a career. Our team followed a smaller standard model
than what is commonly practiced. Most industries would crack at
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CAP5150, December 2, 2022, Virtual Event
© 2022 Association for Computing Machinery.

as much source code as they while fuzzing all inputs to find errors.
We stayed small and decided to extract the firmware code and use
individual applications as a base to start looking for vulnerabilities.
From there, we would either search for the applications source code
or attempt to disassemble the binary ourselves. Once we had our
frame of vulnerability, we would work on crafting an exploit. The
final product would be our exploit module.

Our team ended of finding two exploits as well as a password
hash. The exploits were designated CVE-2011-0762 [3] and CVE-
2015-3035 [5] respectively. CVE-2011-0762 would end up being a
Denial of Service (DOS) attack on vsftpd while CVE 2015-3035 is a
directory traversal attack on Apache httpd.

2 RELATEDWORK
In this section, we show a comparison of other methods that analyze
and demonstrate impactful CVEs in firmware. Some of those related
research went through the first initial steps as we did on our own
research, such as utilizing binwalk for file extraction. One document
described ways of carving a bin file that is utilized by the same
router as our firmware [10].

The key difference is that the article utilizes a version of openwrt
firmware rather than the default firmware provided by the manufac-
turer. They also carve out extra data sections, such as the router’s
kernel, which we never do. Though our path ended up being wildly
different to the work done in embedded bits, they provided some
good initial insight and direction into how we would get our data.

3 APPROACH
Since our approach is similar to the standard model that most Vul-
nerability Researchers follow, we took our approach in the following
practice.

3.1 Firmware Extraction
We started at the very first stage which was scouting out our data.
We needed to know how the router worked inside and out in order
to find bugs within it and from there exploits.

Figure 1: Downloading the Archer C7_V1_141204_US

The firmware for the router can be found on TP-Links official
website. We decided to go with the earliest firmware version possi-
ble. The reason behind this was because we needed as many chances
to find bugs as possible. Since this was our teams first attempt at

Vulnerability Research, we need to give ourselves as many opportu-
nities as possible, including for vulnerabilities that already existed.
By using the oldest firmware that is offered, we allow for as many
unpatched vulnerabilities to be usable.

We needed to get the firmware file from the website [1]. The file
given is a zip file that we can unzip to get our bin file. If we wanted
to, we could flash the bin file onto our router by going through the
update process.

3.1.1 Binwalk. However, we want to go further than that. We want
to see what is on the filesystem. In order to do that, we need to
utilize the tool, binwalk. When running binwalk on the bin file, it
gives us information on the files and data that are currently present.

Figure 2: Running binwalk on the bin file

The two sections that seem interesting to investigate are the
TP-Link Firmware Headers at 0x0 and 0x20200, and the squashfs
filesystem at 0x120200. The squashfs server seems most interesting
since that could contain the linux filesystem that the router runs
on. In order to extract the filesystem to something useful, we just
need to run binwalk -e on the bin file. We tried to run this, but we
got an error on our distribution.

Figure 3: The error we faced running the binwalk

This is because sasquatch does not exist on the system. This
was consistent amongst all of the members. After some research,
it was apparent that there wasn’t a linux package that contained
the sasquatch binary, so we had to go to the GitHub and compile
and install the sasquatch binaries manually. In order to get the tool
working, we had to run the following commands.

Figure 4: Fixing the error

After this, binwalk was able to extract all the data out of our
binary without any trouble. We unfortunately still had trouble with
installing squashfs because the build script was failing to compile.
To fix this, we just installed from a different repo of the same tools.

Figure 5: Installing squashfs

3.1.2 Squashfs-root Filesystem. Afterwards, binwalk will extract
the binary and provide us with a squash-root folder. After some
investigation, this folder appears to be the system structure of the
router. With this, we have a perspective as if we were root within
the system, able to see all the configuration files and binaries at our
liesure.

Figure 6: Squashfs-root folder

During our search, one of the first places that we checked was
/etc/passwd and /etc/shadow. Looking at the directory, passwd was
a symbolic link to somewhere. Unfortunately, binwalk removed
any symbolic absolute links for safety, so we are unsure where the
real passwd file is on the root system. However, the shadow file
was not a link, but an actual file. And on further inspection, we
discovered that it had content.

This hash for the root password could potentially at minimal
give us a means of escalation if we manage to get a shell within
the system for further analysis. If we are exceptionally lucky, it
could provide us with a means of logging in directly as root onto
the system with minimal effort.

Looking in other corners of the filesystem, another advantageous
look is the wireless configs found at /etc/ath/wsc_config.txt. In /etc
were also able to find pre initialized keys for dhcpd, which could
give use a chance to impersonate the dhcpd server. This would
provide little benefit, but it is another potential avenue to look a in
terms of bugs and "vulnerabilities."

Figure 7

Figure 8: Contents of /web

When checking the /root folder it turns out to be empty. Same
with all the standard system device folders such as /sys, /proc, /mnt,
and /tmp. /usr only contained binaries which we will get to soon.
The folder that seemed to pop out the most was a /web folder.

On further inspection, the /web folder contains all the web source
code for the router. The website is HTML, so no potential is a
CrossSite Scripting (XSS) Attack or a break in the serverside code
since HTML is created on the clients computer. What does seem
interesting at first is /web/login/encrypt.js and /web/oem/model.conf.
On a first glance at encrypt.js, it becomes pretty clear that it does
its encryption using md5. This means that web could potentially
break the password using a md5 collision attack, or if we were to
sniff the actual password, we could bruteforce the hash really easily.
When looking at the model.conf file, it cant be opened normally
like a text file. Linux calls the file just data, and the data headers
do not point to anything obvious. This gave our team two theories.
The first one is that it is custom data that is meant to integrate into
a program similar to a database file. The second theory is that it is a
normal plain text file that has been encrypted and can only be read
when the data is decrypted with a private key stored somewhere
within the router. Without more information, we cannot pursue
either possibility.

3.2 Application versioning
After digging at the files that we found within our filesystem. It was
time to look at the individual applications within the system. The
first thing that our team wanted was the version kept within each
binary. Knowing the guaranteed versions of the applications helps
make exploit research easier as we’re not going off the guesses
that our scanners use on the router. It can also be beneficial to
potentially run a local exploit if we manage to get some form of
shell running in the system.

Since we knew that our binaries were held in /bin, /sbin, /usr/bin,
and /usr/sbin, we just had to go down the list and look for binary
versions. The simplest and fastest approach with this would be to
strings the binaries. Most binaries will include some version of help
argument. Because of this, most binaries keep their version number
in string format for easy printing. Unfortunately strings prints all
the strings within the binary, including strings for other things, or
even bytes that could translate to ascii characters. In order to keep
our search small, we had to specify it with grep. We then needed a
regular expression to select lines that were in a standard version
format.

bin/busybox 1.01
bin/cat 0.9.9-pre

bin/chmod 0.9.9-pre
bin/date 0.9.9-pre
bin/df 0.9.9-pre

sbin/apstats v0.1
sbin/hostapd 2.0-devel
sbin/ip6tables 1.4.5

sbin/ip6tables-multi 1.4.5
sbin/ip6tables-restore 1.4.5
sbin/ip6tables-save 1.4.5

sbin/iptables 1.4.5
sbin/iptables-multi 1.4.5
sbin/iptables-restore 1.4.5
sbin/iptables-save 1.4.5

sbin/klogd 0.9.9-pre
sbin/logread 0.9.9-pre
sbin/lsmod 0.9.9-pre
sbin/reboot 0.9.9-pre
sbin/rmmod 0.9.9-pre
sbin/route 0.9.9-pre

sbin/ssdk_sh 2.6
sbin/syslogd 0.9.9-pre
sbin/tphotplug 1-1.1;1-1.2
sbin/udhcpc 0.9.9-pre
sbin/vconfig 0.9.9-pre
usr/bin/[0.9.9-pre

usr/bin/arping 0.9.9-pre
usr/bin/dropbear 2012.55

usr/bin/dropbearkey 2012.55
usr/bin/httpd 2.6.31;1.1.4
usr/bin/lld2d 1.2
usr/bin/logger 0.9.9-pre
usr/bin/test 0.9.9-pre
usr/bin/tftp 0.9.9-pre
usr/bin/top 0.9.9-pre

usr/bin/uclited 2.6.31;3.0.10
usr/bin/vsftpd 2.3.2

usr/sbin/bpalogin 2.0.2
usr/sbin/smbd 3.1a
usr/sbin/udhcpd 0.9.9-pre
usr/sbin/xl2tpd xl2tpd-1.1.12

Table 1: Binaries and their versions

[language=bash] for binary in /bin/*,/sbin/*,/usr/bin/*,/usr/sbin/*;
do echo $binary strings $binary | grep -E [0-9]+([̇0-9]+)+ done

After running that bash snippet, grabbing versions was easy.
After all of that, we were able to log all our application versions
in Table 1. This table would become helpful when it came to re-
searching for vulnerabilities since a majority of them only work on
specific versions.

3.2.1 Reversing engineering with Ghidra. Some applications were
not as easy to get a version out of them. Some simply kept their
version in a single or series of numbers. In order to find these, we

had to get access to the source code. Without the version, we could
not simply attempt to download the source code off the internet.
Because of this, we had to do things the hard way and reverse the
binaries.

There are multiple reverse engineering tools that we could have
used. Since this was our teams first time doing reverse engineering,
we decided to use Ghidra since it is a popular and rather simple
reverse engineering tool. Once we put ghidra through the selected
binaries, we had to do quite a bit of reading through the pseudo
source code generated in order to understand what the code was
doing and decipher what a particular variable was being used for.

This was a small part, but this would become useful after our
research for vulnerabilities. This is because we would use Ghidra
in order to dig further into the binaries and find detailed code
potentially describing how it failed.

3.3 Vulnerability Research
Looking at the table from Table 1, some binaries that popped out
at us were /usr/bin/httpd, /usr/bin/vsftpd, and /usr/bin/smbd. The
reason that these popped out at us was because all these versions
seemed low and they were all binaries that used internet connection.

The first place that we checked was metasploits library. The only
exploit we found of interest was in exploit/unix/ftp/vsftpd_234_backdoor [4].
The exploit depicts a potential backdoor found in version 2.3.4. It
seemed like a shot in the dark for us since it depicted a newer
version. We checked it anyway and unfortunately, the applica-
tion with our firmwares current version was not vulnerable. The
other vulerability that we found that seemed interesting was ex-
ploit/linux/misc/tplink_archer_a7_c7_lan_rce [6]. Unfortunately this
also ended up being a dud.

The next place we searched was the exploit database. There we
found a specific exploit of ID: 16270 [9]. Further reading into the
exploit, it mentions CVE-2011-0862 [3]. After trying this exploit
from the source file given, we found that the exploit worked as
intended.

We managed to lose how we found this CVE to begin with, but
the next CVE we were able to discover was CVE-2015-3035 [5].
Through mitres website, we found another website going into
greater detail on the vulnerability including a Proof of Concept
(PoC) of the exploit [11]. Nick tested this by bringing up Burpsuite
and sending a customized HTTP request for the /etc/passwd file.
The result was the contents of said file.

With at least two confirmed vulnerabilities, the next step was to
dig deeper into the applications these vulnerabilities affected and
discover what allows them to exist in the first place.

3.4 Digging deeper into the binaries
Using data gathered fromMITRE on CVE-2011-0762 [3] and Ghidra,
wewere able to look deeper into the binary at the vsf_filename_passes_filter
function. Unfortunately, a lot of the data within the binary was
stripped away which would have made guessing a really tough
time for us. Luckily, we were able to find an archive of the binary
online [2]. With that we had a means of explaining the vulnerability
later on.

3.5 Exploit Writing
Now that we had the vulnerabilities and we could pinpoint where
the vulns were coming from, it was time to write a Proof of Concept
for each of them. Because Nick knew ruby pretty well, our team
wrote the exploits to run on the Metasploit framework.

3.5.1 Writing exploits with Metasploit. After hours of writing and
using other exploits as templates, the exploits can be found on
Nicks fork of the framework or within the framework depending
on if rapid7 decided to merge the modules into the official repo.

4 EVALUATION
4.1 Binwalk loot
After looking through all the files, we found several points that
seemed worth noting. To clarify some findings, the router can be
confirmed to be using a linux filesystem. It does not appear to be
any flavor or distro of linux, but the router uses a mips architecture.
During our search, one of the first places that we checked was
/etc/passwd and /etc/shadow. Looking at the directory, passwd was
a symbolic link to somewhere. Unfortunately, binwalk removed
any symbolic absolute links for safety, so we are unsure where the
real passwd file is on the root system. However, the shadow file
was not a link, but an actual file. And on further inspection, we
discovered that it had content.

After running the hash through john with a wordlist starting
with the router’s known default password and rockyou, we discov-
ered that the password installed within the firmware was not the
router’s default password of admin, but rather sohoadmin. This is
interesting because it is not the reported default password for the
router, so potentially this can be utilized as long as it does not get
changed in the middle of an operation.

4.2 CVE-2011-0762
Our next step was to look at the binaries that are present on the sys-
tem. If we could get the versions of an interesting binary, we could
find potential exploits for the router. After a good amount of search-
ing, we found what we were looking for. The binary /usr/bin/vsftpd.
This one seemed interesting to us because there is a well-known
backdoor for vsftpd on version 2.3.4. If the binary was that version,
there was a very good chance that we had an easy backdoor that
we could use to get root. Unfortunately, on digging into the strings
in the binary, we found out that the vsftpd was version 2.3.2 on the
router. This meant that there most likely was no backdoor, but on
some digging into the version, we discovered that Exploit Database
had a dos exploit at EBDID: 16270 [9]. It wasn’t exactly what we
were looking for, but it was close enough to provide the scrutiny
that we were looking for.

4.2.1 Synopsis of CVE-2011-0762. CVE-2011-0762 is a Denial of
Service(DOS) attack against vsftpd server. It does affects versions
2.3.3 and below. It is a CVE that causes DOS by overusing CPU
consumption via specially crafted glob statements, wildcards "?" or

Figure 9

"*". It causes this overuse due to a memory leak. It affects mainly
legitimate users, devices and information systems from accessing
to a system.

4.2.2 Location of Bug. Once we started debugging and getting
more into the code, we have foundwhere the bug ormalware is com-
ing from. The failure comes specifically from vsf_filename_passes_filter
function inside of the ls.c. There is an excessive memory leak
present somewhere in between this function. One of the reasons of
this cause are glob expressions in STAT commands in multiple FTP
sessions. It has a very intrusive way with backporting the specific
kernel patch.

4.2.3 The Exploit Module. When using metasploit module, the
exploit can be found at auxiliary/dos/ftp/vstfpd_232 [8]. It has a
check to ensure that the target is actually vulnerable. Themain issue
with it is that it wont work unless multiple instances of the attack
are happening at once. Nick attempted to make it work with multi-
threading, but metasploit has very little documentation. Especially
in something more advanced as multithreading in a module. When
tested along with the PoC provided by Exploit Database [9], it
successfully DOSed the router.

4.3 CVE-2015-3035
4.3.1 Synopsis of CVE-2015-3035. CVE-2015-3035 is a Directory
Traversal attack affecting TP-LINK Archer C5, C7, and C9 routers.
This vulnerability allows accessing all files in the filesystem as long
as you are aware of that file.

4.3.2 Location of Bug. Adversaries use /login/ directory to attack.
Attackers manipulate variables referencing files with dot dot slash
sequences. Finally, by using these sequences into the file name,
adversaries can backtrack up from directory. As a result, the location
of bugs is in the directory path.

4.3.3 The Exploit Module. When using metasploit module, the ex-
ploit can be found at auxiliary/scanner/http/archer_c7_traversal [7].
The module does not have a check, but that is mainly because
there’s no safe way to check besides going for it. We were able
to test it and it can consistently and successfully grab files from
within the file-system. An additional feature Nick attempted to add
to it was a means of supplying multiple files to be checked for a
dirbuster like attack, but there wasn’t any clean way of doing such
that could be found in given example modules.

5 DISCUSSION
While there was a lot that we were able to find, there was a good
portion that we could not find. Here, we thought we would go over
some of the examples of loot that we found but could not find a use
for.

5.1 Potential uses of found root password
Previously, we stated that the router has a hardcoded password for
root. After brutforcing the hash, we found it to be sohopassword.
From there, we could not find a use for it. The password was not
used for logging into the router through its HTTP interface. Though
the SSH port was enabled, we could not use our root credentials to
log into the SSH port.

The best solution that we could think that the password would
be useful will be privilege escalation. The problem with this is that
it might not be necessary since most routers run their applications
as root out of simplicity. However, if the router uses a second user
to prevent full access, these credentials could be used to elevate to
root.

5.2 Limitations and Future Work
On further inspection, the reader might have noticed that we dis-
cussed in depth exploration of the CVE-2011-0762 [3] vulnerability,
but we never discussed where the vulnerability for CVE-2015-3035
is located. That is because we do not know. We know that it exists
because our exploits work, but we have no idea what causes it. It
most likely is a bug with Apache httpd. We checked the binary, but
the problem is that apache has config files as well, and they can be
in layers. The bug may appear in a config file, or in a .htaccess file.
We cannot find it because they wouldnt be included in the firmware
file. We attempted to use the traversal exploit itself to attempt to
dig up its own configs, but that is a blind guessing game.

There was also the SMBD binary that we had. Looking at the
Exploit Database, there were some files that we could have checked
out. We just didnt. There was a lot that we could have done further.
The largest blocker was time. We only had a limited time do work
on this project along with other classes. Because of that, this was
what we were able to collect. This isn’t a complete loss however.
For who ever decides to dig further, we have theories on what could
cause the vulnerabilities and how to find out.

6 WORK DISTRIBUTION
Our group has distributed the workload in three different sections.
Nicholas has dedicated hours to three sections but focused mainly
in the extracting firmware area section. That been said, he explored
and extracted the files needed in order for us to understand and
get through it at the moment of finding the bugs that are causing
the vulnerabilities. Mana who has also dedicated time to three sec-
tions took more responsibility in the searching file-structure area.
She worked with Ghindra to understand the actual code behind
this files and been able to get through them. And lastly, Anna that
also dedicated time to the three sections took the responsibility
to researching vulnerabilities. When looking for routers that were
available to us to explore and examine if there had any vulnerabili-
ties, she digs into some research to see what CVEs were impactful
for the chosen router the group had decided to use. We all three
dedicated a significant number of hours that allowed and helped
for the contribution of the project.

7 CONCLUSION
To describe all that we have accomplished so far: We have managed
to extract the Linux Filesystem from the firmware binary that was
provided for us to update the router that we are pentesting. We ran
into problems while extracting the filesystem, but we managed to
fix it utilizing some online resources. From there, we took a look
at all common loot that pentesters search for once they manage to
access a filesystem, including the versions of programs installed
and passwords. We found out that the root password installed from

the firmware is not the same as the router’s default password, being
sohopassword.

Our teamwas ultimately able to find vulnerabilities on the Archer
C7 router. What vulnerabilities we had found, we wrote exploits
and submitted them to a public repo for others to use. There were
several vulnerabilities that we could not pursue to the fullest extent
due to time constraints; however, we left as much information as
possible for someone else to investigate further in the future.

REFERENCES
[1] [n.d.]. Download for Archer C7: TP-link. https://www.tp-link.com/us/support/

download/archer-c7/v1/#Firmware
[2] [n.d.]. VSFTPD 2.3.4 Download. https://security.appspot.com/downloads/vsftpd-

2.3.2.tar.gz
[3] 2011. CVE-2011-0762. Retrieved December 3, 2022 from https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2011-0762

[4] 2011. Metasploit-Framework: VSFTPD v2.3.4 Backdoor Command Execu-
tion. https://github.com/rapid7/metasploit-framework/blob/master/modules/
exploits/unix/ftp/vsftpd_234_backdoor.rb

[5] 2015. CVE-2015-3035. Retrieved December 3, 2022 from https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-3035

[6] 2020. Metasploit-Framework: TP-Link Archer A7/C7 Unauthenticated LAN Remote
Code Execution. https://github.com/rapid7/metasploit-framework/blob/master/
modules/exploit/linux/misc/tplink_archer_a7_c7_lan_rce.rb

[7] 2022. Metasploit-Framework: Archer c7 directory traversal. Retrieved December
3, 2022 from https://github.com/rad10/metasploit-framework/blob/archer_c7_
traversal/modules/auxiliary/scanner/http/archer_c7_traversal.rb

[8] 2022. Metasploit-Framework: VSFTPD DOS attack. Retrieved December 3, 2022
from https://github.com/rad10/metasploit-framework/blob/vsftpd_232/modules/
auxiliary/dos/ftp/vstfpd_232.rb

[9] Maksymilian Arciemowicz. 2011. vsftpd 2.3.2 - Denial of Service. (Mar 2011).
Retrieved December 3, 2022 from https://www.exploit-db.com/exploits/16270

[10] Sergio Prado. 2021. Reverse engineering my Router’s firmware with binwalk.
(2021). https://embeddedbits.org/reverse-engineering-router-firmware-with-
binwalk/

[11] Stefan Viehbock. 2015. TP-LINK Local File Disclosure. (Apr 2015). https:
//packetstormsecurity.com/files/131378/TP-LINK-Local-File-Disclosure.html

https://www.tp-link.com/us/support/download/archer-c7/v1/#Firmware
https://www.tp-link.com/us/support/download/archer-c7/v1/#Firmware
https://security.appspot.com/downloads/vsftpd-2.3.2.tar.gz
https://security.appspot.com/downloads/vsftpd-2.3.2.tar.gz
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0762
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0762
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/unix/ftp/vsftpd_234_backdoor.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/unix/ftp/vsftpd_234_backdoor.rb
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3035
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3035
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploit/linux/misc/tplink_archer_a7_c7_lan_rce.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploit/linux/misc/tplink_archer_a7_c7_lan_rce.rb
https://github.com/rad10/metasploit-framework/blob/archer_c7_traversal/modules/auxiliary/scanner/http/archer_c7_traversal.rb
https://github.com/rad10/metasploit-framework/blob/archer_c7_traversal/modules/auxiliary/scanner/http/archer_c7_traversal.rb
https://github.com/rad10/metasploit-framework/blob/vsftpd_232/modules/auxiliary/dos/ftp/vstfpd_232.rb
https://github.com/rad10/metasploit-framework/blob/vsftpd_232/modules/auxiliary/dos/ftp/vstfpd_232.rb
https://www.exploit-db.com/exploits/16270
https://embeddedbits.org/reverse-engineering-router-firmware-with-binwalk/
https://embeddedbits.org/reverse-engineering-router-firmware-with-binwalk/
https://packetstormsecurity.com/files/131378/TP-LINK-Local-File-Disclosure.html
https://packetstormsecurity.com/files/131378/TP-LINK-Local-File-Disclosure.html

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Firmware Extraction
	3.2 Application versioning
	3.3 Vulnerability Research
	3.4 Digging deeper into the binaries
	3.5 Exploit Writing

	4 Evaluation
	4.1 Binwalk loot
	4.2 CVE-2011-0762
	4.3 CVE-2015-3035

	5 discussion
	5.1 Potential uses of found root password
	5.2 Limitations and Future Work

	6 WORK DISTRIBUTION
	7 Conclusion
	References

