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Private Over-threshold Aggregation Protocols
over Distributed Databases

Myungsun Kim, Aziz Mohaisen, Jung Hee Cheon, and Yongdae Kim

Abstract—In this paper, we revisit the private over-threshold data aggregation problem. We formally define the problem’s security
requirements as both data and user privacy goals. To achieve both goals, and to strike a balance between efficiency and
functionality, we devise an efficient cryptographic construction and its proxy-based variant. Both schemes are provably secure in
the semi-honest model. Our key idea for the constructions and their malicious variants is to compose two encryption functions
tightly coupled in a way that the two functions are commutative and one public-key encryption has an additive homomorphism.
We call that double encryption. We analyze the computational and communication complexities of our construction, and show that
it is much more efficient than the existing protocols in the literature. Specifically, our protocol has linear complexity in computation
and communication with respect to the number of users. Its round complexity is also linear in the number of users. Finally, we
show that our basic protocol is efficiently transformed into a stronger protocol secure in the presence of malicious adversaries,
and provide the resulting protocol’s performance and security analysis.

Index Terms—Network traffic distribution, data aggregation, privacy preservation, malicious security
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1 INTRODUCTION

The problem of computing the over-threshold elements,
elements whose count is greater than a given value,
in a private manner is of particular interest in many
applications. A typical application that involves such
primitive is network traffic distribution, where n net-
work sensors need to jointly analyze the security
alert broadcasted by different sources in order to
find potential suspect sites. In such application, and
without losing generality, each of such sensors has
a set of suspects and would like to collaboratively
compute the most frequent elements on each of these
sets (e.g., the count greater than κ, referred to as κ+)
without revealing the set of suspects to other sensors
with whom she collaborates.

Formally, let there be n users denoted by ui, 1 ≤
i ≤ n, and each of them has a private multiset Xi of
cardinality k. For simplicity, assume that each of the
multisets has the same cardinality.

Private κ+ Aggregation Problem.
Let ζ, κ ∈ N, and for a set X and α ∈ X, let F (α)

denote the number of frequencies (or occurrences)
of α in X. Then the problem at hand is defined as
follows: given n multisets of cardinality k, find a set
Z = {α1, . . . , αζ} ⊂ U =

⋃n
i=1 Xi such that (i) for all

elements α ∈ U, if α has the multiplicity greater than
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or equal to κ, then α ∈ Z, i.e.,

Z =
{
α ∈ ∪ni=1Xi

∣∣∣F (α) ≥ κ
}
,

(ii) no polynomial-time algorithm can learn any ele-
ment other than the output of a κ+ protocol, and (iii)
no polynomial-time algorithm should know which
output of the execution belongs to which user [28].
As pointed out in [23], using a trusted third party
(TTP) to solve the private κ+ aggregation problem is
impractical since it is hard to find such entity in many
settings. Also, using secure multiparty computations
(SMC) is impractical since they are computationally
expensive. A final approach is to use existing private
set-operation protocols such as [24], [37]—especially
multiset union protocols. These protocols securely
compute all elements appearing in the union of input
multisets; in particular [24] allows to find all elements
whose multiplicity is at least τ . Since these protocols
give an output as a set, the output does not have
the multiplicity information. While this feature can be
beneficial from a privacy standpoint, it risks the func-
tionality of applications relying on the multiplicity of
elements, including κ+ aggregation.

1.1 Our Approach—Informal Descriptions
The non-trivial part of the κ+ protocols is to sat-
isfy two privacy requirements, namely (ii) and (iii)
simultaneously. From the literature, e-voting protocols
have similar requirements. In these protocols, each
ballot is mixed with a shuffle scheme to remove
linkability between voters and ballots. Thus, when
each element in a multiset is encrypted and shuffled
using e-voting protocols, all encrypted elements can
be decrypted while hiding linkability. However, all



non-κ+ elements also are revealed, which violates
condition (ii) in our requirements. To this end, we
need to find a way to preserve data privacy even
when all encrypted elements are decrypted.

In order to achieve this goal, we adopt an efficient
function E that commutes with an underlying public-
key encryption (E). Roughly speaking, we demand
that: (i) commutativity: E ◦ E = E ◦E, and (ii) double
privacy: given ¯̄α = Es ◦ Epk(α), no algorithm can effi-
ciently find α without the secret keys corresponding
to s and pk respectively. We call this notion double
encryption.

Existing shuffle schemes re-randomize input cipher-
texts without changing the plaintexts of the input
ciphertexts (e.g. [30], [18]). Rather, a double encryp-
tion scheme does not preserve the plaintexts of input
ciphertexts during executing our protocols, but it still
gives a way to recover the plaintexts. In conclusion,
our main technique is to shuffle doubly encrypted
elements.

1.2 Summary of Our Results
We present a formal definition of a private κ+ protocol
and its security in a system among n users over non-
partitioned data. We refrain from using SMC and
construct an efficient κ+ protocol that is secure in
the presence of a malicious adversary. In its efficiency,
our construction is comparable to [2], which achieves
its efficiency by adding to the system an extra entity,
called a proxy. On the other hand, the security guaran-
tees of our protocol are comparable to the work in [4],
which is secure but expensive.

Our protocol has several desirable features as fol-
lows: (1) It has O(n2k) computational complexity,
where n is the number of users and k is the cardinality
of each user’s set; assuming κ ≤ k, (2) It has O(n2k)
communication complexity, and (3) It has a linear
round complexity in the number of users. We notice
that n is much smaller than k in real-world appli-
cations, which further justifies the efficiency of our
protocol. However, devising a protocol with a round
complexity that does not depend on the number of
users remains as an open problem.

Using zero-knowledge techniques, we transform
the basic protocol for private over-threshold aggre-
gation into a protocol secure against malicious ad-
versaries. However, since there is a tradeoff between
the security and complexity, the protocols comes at a
higher computation and communication costs for its
stronger security. Nonetheless, the linearity of total
complexity in k is still preserved.

Organization. In Section 2, we discuss the related
work. In Section 3, we outline the preliminaries,
including double encryption, our formalism of κ+,
and cryptographic primitives used in our protocol. In
Section 4, we introduce our construction; including
the security and complexity analyses in §4.2 and

§4.3. In Section 5, we provide a full description of a
κ+ protocol which is secure in the malicious model
and analyze its security in the simulation paradigm.
Concluding remarks are in Section 6.

2 RELATED WORK

The related work is three directions: general-purpose,
special-purpose, and proxy-based. If we assume the
existence of a TTP, the cryptographic problem we
are considering becomes trivial. Thus all the related
work in the literature has been attempting to find a
way to replace the TTP while providing security at
the same level as when assuming the existence of
such a TTP. The general-purpose solutions rely on
fundamental theorem of cryptography addressed by
Yao [41] and developed by Goldreich et al. [17]. The
special-purpose group suggests carefully tuned meth-
ods to efficiently solve the problem compared with
the general purpose solution. Lastly, the proxy-based
schemes introduce some special entities and assign
a set of tasks to them, and thus these schemes can
achieve a further improved efficiency. However, the
results of this line of work makes extra assumptions
for the extra entities.

General-purpose approaches. In general, we may
not assume the existence of a trusted party whom
all participating users have to trust in a real world
scenario. For that, the first approach we consider
is a general solution based on SMC. The notion of
SMC allows n users to create a virtual trusted party.
Yao first introduced this notion and a method for
performing SMC was developed by Goldriech, Micali
and Wigderson in [17]. Their result is called the
fundamental theorem of cryptography, stating that
assuming trapdoor permutations exist, there exists
an SMC protocol for every polynomial-size function.
Unfortunately, due to the trade-off between generality
and efficiency, we cannot achieve an efficient solution
for our problem using this tool.

Special-purpose approaches. There have been a lot of
approaches to improve the efficiency of SMC-based
general solutions. One key direction is to devise a
specific tool for a solution to this cryptographic prob-
lem. A closely related work is a protocol proposed
by Burkhart and Dimitropoulos [4]. Their solution
efficiently operates with respect to its computation
complexity, but has two critical drawbacks: if input
datasets are disjoint, the accuracy of their construction
decreases sharply because the solution is probabilistic
and their round complexity is linear in the number of bits
in the data elements.

Another closely related work is to apply Kissner
and Song’s over-threshold set union protocol [24].
Their protocol allows us to find all elements appearing
at least τ times in the union of input multisets. The
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core idea of their scheme is as follows: each user rep-
resents her input Xi as a polynomial fi whose roots are
in Xi. The roots of the τ -th derivative of P =

∏n
i=1 fi

give a set consisting of all elements that appear more
than τ times in the union. The main shortcoming of
this scheme is that each result set does not count the
multiplicity of each element. This property may make
it difficult to apply the protocol for the κ+ problem.
Specifically, consider a case where one needs to find
all elements with the greatest multiplicity. We then
need to execute the scheme repeatedly until obtaining
the final result. While our protocol does not have such
high overhead for repeated execution, it also allows
changing τ during any step of the protocol execution;
c.f. §4.3 for a detailed comparison.

Proxy-based approaches. Chow et al. [8] proposed
an efficient scheme extending private set operations.
Their scheme introduces two special entities: a ran-
domizer and a computing server, all of which should
be semi-honest. One issue with their solution is that
it cannot support the aggregate operation over mul-
tisets. Another related work is Applebaum et al.’s [2]
protocol. This solution is based on an efficiency strat-
egy by adding a proxy and database (DB) for the
constant round complexity. Both entities are also as-
sumed to be semi-honest to prevent coalition between
them. In particular, their scheme extensively relies on
oblivious transfer (OT) [29], a computationally expen-
sive public-key primitive which requires two modular
exponentiations per invocation and runs for each bit
of the user’s data element. Furthermore, their protocol
extensively uses two semantical secure encryption
schemes at the same time: ElGamal encryption [10]
together with Goldwasser-Micali encryption [15].

To sum up, Table 1 summarizes properties of the
existing solutions compared with our protocol. The
computational complexity is expressed as the number
of multiplications over modulo p, and assuming that
all elements are less than p.

TABLE 1
Summary and Comparison; models are Non-proxy

based and Proxy-based.

Proxy Round Cpx Comp. Cpx Comm. Cpx
Ours × O(n) O(n2k log p) O(n2k log p)

[4] × O(n(n+ k log k) log p) O(n2k) O(n2k log p)

[2] © O(1) O(nk log2 p) O(nk log p)

Data Aggregation. Data aggregation is an important
technique in distributed systems, with many appli-
cations to enable efficient utilization of resources.
Thus many researchers in wireless and smart grid
networks have focused on the problem (e.g., [21], [11],
[39], [16], [34], [40], [12], [25], [26], [36]). However,
in this paper we use the term “data aggregation”
in a different sense. We consider data aggregation

as a part of data and information mining process
where data is searched, gathered, and presented in a
report-based, summarized format to achieve specific
business objectives. In particular, we are interested
in keeping privacy during the whole process of data
aggregation.

3 BACKGROUND AND MAIN TOOLS

Let us denote the multiplicity of an element α in a
multiset X by F (α) and the collection of multiplicities
for all elements in the multiset X by F (X). For n ∈ N,
we denote the set {1, . . . , n} by [n] and the set of all
permutations on [n] by Σn.

If A is a probabilistic polynomial-time (PPT) ma-
chine, we use a ← A to denote A which produces
output according to its internal randomness. If X is a
set, then x

$←− X denotes sampling from the uniform
distribution on X . We shall write

Pr[x1
$←− X1, . . . , xn

$←− Xn(x1, . . . , xn−1)|ϕ(x1, . . . , xn)]

to denote the probability that when x1 is drawn from
a certain distribution X1, and x2 is drawn from a
certain distribution X2(x1)—possibly depending on
the particular choice of x1—and so on all the way
to xn, the predicate ϕ(x1, . . . , xn) is true.

A function µ : N → R is negligible if for every
positive polynomial p(·) there exists an integer L
such that µ(λ) < 1/p(λ) for all λ > L. Let X =
{X(α, λ)}α∈{0,1}∗,λ∈N and Y = {Y (α, λ)}α∈{0,1}∗,λ∈N
be distribution ensembles. We say that X and Y are
computationally indistinguishable, which is denoted by
X

c
≈ Y , if for every polynomial-time algorithm D

there exists a negligible function µ(·) such that for
every α ∈ {0, 1}∗ and λ ∈ N

|Pr[D (X(α, λ)) = 1]− Pr[D (Y (α, λ)) = 1]| < µ(λ)

3.1 Definitions
We begin by reviewing the definitions of public-key
encryption (PKE) [15].

Definition 1 (PKE): PKE = (KG,E,D) is a public-key
encryption scheme if KG,E, and D are polynomial-time
algorithms defined as follows:
• KG, given a security parameter λ, outputs a pair

of keys (pk, sk), where pk is a public key and
sk is a secret key. We denote this by (pk, sk) ←
KG(1λ). The key pk also describes the plaintext
and ciphertext message spaces, Mpk and Cpk,
respectively.

• E, given the public key pk and a plaintext m,
outputs a ciphertext c encrypting m, which is
denoted by c ← Epk(m). To emphasize the ran-
domness r used for encryption, we denote this
encryption by c← Epk(m; r).

• D, given the public key pk, secret key sk and
a ciphertext message c, outputs a plaintext m
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such that there exists randomness r for which
c = Epk(m; r); otherwise outputs ⊥. We denote
this by m← Dsk(c). We omit pk for simplicity.

For a public-key- encryption scheme PKE and an
adversary A = (A1,A2), we consider the semantic
security game as follows:

1. (pk, sk)←− KG(1λ)

2. (state,m0,m1)←− A1(pk), such that |m0|= |m1|

3. c←− Epk(mb), where b $←− {0, 1}
4. b′ ←− A2(state, c)

It is said that A wins the game by a probability
Advcpa

PKE,A(λ) if b = b′.
Definition 2 (Semantic Security): A public-key cryp-

tosystem PKE = (KG,E,D) with a security parameter
λ is called semantically secure if for any PPT adversary
A = (A1,A2), there is a negligible function µ such
that Advcpa

PKE,A(λ) ≤ 1
2 + µ(λ).

Another important tool that we exploit in our
construction is double encryption over a public-key
encryption PKE . Roughly speaking, a double encryp-
tion scheme is a pair of encryption schemes PKE =
(KG,E,D) and E = (G,E,D) such that E ◦ E = E ◦ E.

Definition 3 (Double Encryption): Let PKE be a PKE
scheme defined as above. For a PKE scheme PKE , a
pair (PKE , E) is called double encryption if there exists
a triple of polynomial-time computable functions, E =
(G,E,D), that satisfies the following properties:
• A probabilistic function G(1λ) takes as input

a parameter λ, and outputs (s, t) s.t. ∀s, t and
∀m ∈ Mpk: m = Dt ◦ Es(m), where E and D
are deterministic.

• ∀pk, s, ∀m ∈Mpk: Epk ◦ Es(m) = Es ◦ Epk(m) up
to the randomness of Epk(·).

• ∀ c ∈ Epk(m), Es(m) = Dsk ◦ Es(c).
We note that the definition of double encryption

does not require semantic security, however the sec-
ond property implicitly implies that the security of
a PKE scheme gets preserved between commuting
operations. In addition, the second property does not
require the original plaintext to be preserved.

In addition to double encryption, our construction
uses a verifiable shuffle scheme as a sub-protocol.
Informally, a shuffle of a list of ciphertexts c1, . . . , cn is
a newly updated set of a list of ciphertexts c′1, . . . , c′n
with the same plaintexts in permuted order.

Definition 4 (Shuffle): Let PKE be a PKE scheme as
in Definition 1. A shuffle is a pair of polynomial-time
algorithms (PKE ,Shuffle) where:
• Shuffle, given a public key pk, a list of ciphertexts

(c1, . . . , cn) and a random permutation π on [n],
outputs a list of ciphertexts (c′1, . . . , c

′
n).

Then we say that a shuffle (PKE ,Shuffle) is verifiable
if there exists a proof system (P, V ) such that, given
a public key pk, a list of input ciphertexts (c1, . . . , cn)

and a list of output ciphertexts (c′1, . . . , c
′
n), it proves

that Shuffle is correct.
Putting together a double encryption scheme and a

shuffle scheme, we get an over-threshold (κ+) aggrega-
tion protocol. Below, we sketch such a protocol:
• Setup: The setup algorithm takes as input a

security parameter λ and outputs the public and
secret parameters by invoking (pk, sk)← KG(1λ)
and (s, t)← G(1λ).

• Double Encryption: In this phase, the users takes
as input the system parameters (pk, s) and a list
of elements (α1, . . . , αn), and produces a list of
doubly encrypted ciphertexts ( ¯̄α1, . . . , ¯̄αn).

• Shuffle: In this shuffle phase, each user chooses
a random permutation π ∈ Σn and shuffles
the doubly encrypted ciphertexts ( ¯̄α1, . . . , ¯̄αn),
and then outputs the mixed list such that ∀i :
Dsk(α′i) = Dsk( ¯̄απ(i)).

• Aggregate: In this aggregate phase, the users
compute α̃π(i) = Dsk (α′i) = Dsk

(
¯̄απ(i)

)
=

Es
(
απ(i)

)
for all i ∈ [n], using the list of per-

muted, doubly encrypted ciphertexts. Then each
user outputs all elements such that F

(
α̃π(i)

)
≥ κ.

• Reveal: In the reveal phase, each user outputs the
most frequent κ elements by computing Dt (α̃j)
for all j ∈ [ζ].

We remark that a shuffle scheme works on a list
of doubly encrypted ciphertexts. The reason for shuf-
fling is that for an n-tuple ciphertext 〈 ¯̄αi = Es ◦
Epk(mi)〉i∈[n], and because ¯̄αi can be written by Epk ◦
E(mi) for each i, and thus the n-tuple list is just a list
of ciphertexts under E, we need to apply shuffling
after performing double encryption.

3.2 Security Definition
We prove that our protocol is secure against malicious
adversaries that may arbitrarily deviate from the pro-
tocol specification. Following the standard technique,
we analyze the security by comparing what an ad-
versary can do in a real model to what it can do in
an ideal model. In the ideal model, the computation
is carried out by an incorruptible TTP to which the
users send their inputs over a secure channel. The TTP
then performs operations on the inputs and sends the
output to each user. Roughly speaking, the protocol
is secure if any adversary interacting in the real-model
protocol can do no more harm than it could do in the
ideal model. We only consider a static adversary who
can corrupt a fixed number of users before executing
the protocol.

Let f be an n-party functionality, A be a
polynomial-time algorithm, and Υ ( {ui}i∈[n] be a
set of corrupted users. Then the ideal execution of
f on inputs (α1, . . . , αn), auxiliary input z to A, and
security parameter λ is defined as the outputs of the
honest users and the adversary from this execution,
which is denoted by IDEALf,A(z),Υ(α1, . . . , αn;λ).
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On the other hand, in the real model there is no
TTP and the users exchange rounds of communication
with each other. Let f,A, and Υ be as described ear-
lier, and ℘ be an n-party protocol for computing f . The
real-model execution of ℘ on inputs (α1, . . . , αn), z,
and λ is denoted by REAL℘,A(z),Υ(α1, . . . , αn;λ) and
defined as the outputs of the honest users and the
adversary A from executing ℘.

Security following the Simulation Paradigm. In-
formally speaking, the standard definition asserts that
a secure protocol (in the real model) emulates the
ideal-model execution (where there exists a TTP). A
formal definition is given below.

Definition 5 (Secure Protocol): Let f and ℘ be as
above. Then, we say that protocol ℘ securely computes
f in the malicious model if for any PPT adversary A
for the real model, there exists a PPT adversary S for
the ideal model, such that for all Υ ( {ui}i∈[n],{
IDEALf,A(z),Υ(α1, . . . , αn;λ)

} c
≈{

REAL℘,A(z),Υ(α1, . . . , αn;λ)
}
.

In practice, our construction will use secure sub-
protocols. A standard method of hiding the details
of a sub-protocol computing an ideal functionality g
is to work in a hybrid model in which users do not
only communicate directly with each other but also
have access to a TTP Tg for g. Thus, when executing
a protocol ℘ that uses a sub-protocol for securely
computing g, the users run ℘ and access Tg instead of
invoking the sub-protocol. Then, the g-hybrid execution
of ℘ on inputs (α1, . . . , αn), z, and λ is defined as the
outputs of the honest users and A from the hybrid
execution of ℘ with Tg.

Here we briefly presented the standard definition of
security as used in our protocols. Readers may refer
to [14, Chap. 7] for more details.

3.3 Cryptographic Assumptions

Let G be a finite cyclic group of large prime order q,
and let g ∈ G be a generator. Given h ∈ G, the discrete
logarithm (DL) problem requires us to compute x ∈
Zq such that gx = h. A formal definition is given as
follows:

Definition 6 (DL Assumption): We say that the dis-
crete logarithm problem is intractable with respect to G
if for every PPT algorithm A there exists a negligible
function µ in λ such that Prg,x [A (G, q, g, gx) = x] ≤
µ(λ).

A stronger variant of the above assumption is called
the decisional Diffie-Hellman (DDH) assumption. The
DDH problem says that given G and three elements
a, b, c ∈ G, we are asked to decide whether there
exist x, y ∈ Zq such that a = gx, b = gy , and
c = gxy . Formally, the DDH assumption is stated in
the following.

Definition 7 (DDH Assumption): We say that the de-
cisional Diffie-Hellman problem is intractable with respect
to G if for every PPT algorithm A there exists a
negligible function µ in λ such that:

|Pr [A (G, q, g, gx, gy, gz) = 1]−
Pr [A (G, q, g, gx, gy, gxy) = 1] |≤ µ(λ),

where the probabilities are taken over the choices of
g and x, y, z ∈ Zq .

3.4 The ElGamal PKE and Its Distributed Version
We extensively use the ElGamal encryption
scheme [10]. Formally, ElGamal PKE is semantically
secure assuming the hardness of the DDH problem.
We describe the distributed version here. For settings
consisting of multiple users, we need to consider the
threshold scheme.

Let G be a cyclic group where the DDH assumption
holds. Let xi be a secret key and yi be a corresponding
public key of a user ui. The public key y =

∏n
i=1 yi =

g
∑n
i=1 xi = gx is known to all users, and encryption

is as in the standard ElGamal PKE. To ensure correct
behavior, each user must prove knowledge of her cor-
responding xi by running the zero-knowledge proof
℘DL on (g, yi), as specified in §3.6. Further, we denote
the key generation protocol by ℘KG which is related
with the ideal functionality FKG.

For decryption, a user uj sends a request for de-
cryption containing c = (u, v) to all other users.
On receiving the request, all other users compute a
decryption share di = uxi and send it to the user
uj . Upon receiving all decryption shares, the user
computes the message as m = v∏n

i=1 di
= v

u
∑n
i=1

xi
=

v/ux. We denote the associated ideal functionality by
FD. We note that since if one knows r = logg u he
can reconstruct m = v/hr, a user who encrypted
m can prove knowledge of plaintext m by proving
knowledge of r.

3.4.1 Instantiating a Double Encryption Scheme
We give an instance of a double encryption scheme
using the standard ElGamal PKE PKE = (KG,E,D).
Let us specify E = (G,E,D) as follows:
• A probabilistic function G(1λ) outputs (s, t) ∈

(Zq)2 such that st = 1 (mod q).
• A function E : G → G takes as input α ∈ G and
s, and outputs β = αs mod p.

• Given β ∈ G and t, a function D : G→ G outputs
βt mod p.

The following lemma states that (PKE , E) is a dou-
ble encryption scheme.

Lemma 1: Let PKE and E be as above. Then,
(PKE , E) is a double encryption scheme.

Proof: We can easily verify that (PKE , E) satisfies
the conditions of double encryption. First we see
that for all values m ∈ Gq , m = (ms)t (mod p).
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For any message m ∈ Gq , there exists r′ = rs

s.t.
(
gr
′
, (ms) · yr′

)
= ((gr)s, (myr)s). Lastly, for any

ElGamal ciphertext c = (u, v) ∈ (Gq)2, where u = gr

and v = myr, ms = vs · (us)−x (mod p).

3.5 Pedersen’s Commitment Scheme
We specify the type of commitment we are using.
First, we assume a PPT key generation algorithm to
output a public commitment key ck which specifies
a message space Mck, a randomizer space Rck and
a commitment space Cck. We assume an efficient
commitment function comck : Mck ×Rck → Cck. We
write the operations as m̂ = com(m; r) for r $←− Rck.
We sometimes omit the randomness r if there is no
ambiguity.

In this work, we use a perfectly hiding commitment
scheme. Informally speaking, the commitment scheme
is hiding if a commitment m̂ does not reveal which
message is inside it. In particular, our construction re-
quires the commitment scheme to be perfectly hiding.
As a scheme with these properties, we use the Peder-
sen’s commitment scheme using the same underlying
group G used for the ElGamal PKE [35].

3.6 Zero-knowledge Proofs
To prevent malicious activities, all users should
demonstrate that they follow the protocol honestly. To
achieve this, our construction utilizes zero-knowledge
proofs of knowledge (ZKP). All our proofs are Σ-
protocols that prove knowledge of a witness that a
given statement is true. We have an efficient trans-
formation of any Σ-protocol into a ZKP, and ex-
amples can be found in [20]. (This transformation
demands additionally five exponentiations.) All ZKPs
used in our construction have been well studied else-
where [14].

Let G, p, q, g be defined as above and pk (resp., ck)
be the public key of underlying PKE (resp., commit-
ment scheme). Details of ZKPs used in our scheme
are as follows:
• ℘DL, for demonstrating that given (G, p, q, g, h), a

prover knows the discrete logarithm to the base
g of h [38].

RDL = {〈G, p, q, g, y〉|∃x ∈ Zq s.t. y = gx}.

• ℘PT, for proving for a given ElGamal ciphertext
c = Epk(m; r) that she knows the corresponding
plaintext m (see §3.4).

RPT = {〈pk, c〉|∃m ∈ G, r ∈ Zq s.t. c = Epk(m; r)} .

• ℘com, for demonstrating that a prover committing
to a message m, proves that he knows the mes-
sage m [32].

Rcom = {〈ck, m̂〉|∃m ∈ G,∃r ∈ Zq
such that m̂ = comck(m; r)}.

• ℘INV, for demonstrating that a prover who com-
mitted to secrets (s, t), proves that st = 1 without
revealing s, t [1].

RINV = {〈ck, ŝ, t̂〉|∃s, t ∈ Zq such that
ŝ = comck(s) ∧ t̂ = comck(t) ∧ s · t = 1}.

• ℘DE, for proving a correct double encryption,
i.e., that given (pk, ck, c), a prover knows the
discrete logarithm s of c2 to the base c1 where
ŝ = comck(s) and c1, c2 ∈ Cpk [6].

RDE = {〈pk, ck, ŝ, c1, c2〉|∃s ∈ Zq
such that c2 = cs1 ∧ ŝ = comck(s)} .

• ℘π , for demonstrating that a set of ElGamal ci-
phertexts L′ = {c′i}i∈[n] is a random permutation
and rerandomization of another set L = {ci}i∈[n].
We have a number of potential proofs in the
literature; the most recent solution was given by
Bayer and Groth [3] with sub-linear communica-
tion cost.

Rπ = {〈pk, L, L′〉|∃π ∈ Σn,∃ri ∈ Zq
such that ∀i ∈ [n], c′π(i) = ci · Epk(1; ri)}.

4 A SECURE κ+ PROTOCOL IN THE SEMI-
HONEST MODEL

In this section, we describe our construction for com-
puting κ+ elements privately. For a set of n users,
denoted by u1, . . . , un, let us denote ui’s private set
by Xi = {αi,1, . . . , αi,k}. Then the users wish to jointly
compute Z = {α ∈

⋃n
i=1 Xi|F (α) ≥ κ} .

4.1 Details of the Protocol
Let λ be a security parameter. As above, let p be a λ-bit
prime such that for some prime q, p = 2q+1, G = 〈g〉 is
a finite cyclic subgroup of Z×p whose order is q. We use
the double encryption scheme (PKE , E) given in §3.4.1
over params = (G, p, q, g). For simplicity, we assume
all elements are in the domain G of the ElGamal PKE.

With such notation, we proceed to describe our
construction.
• Setup. For i ∈ [n], each user ui

1) selects a value xi
$←− Zq , computes yi =

gxi , and sets sk = (params, xi) and
pk =

(
params, y =

∏n
i=1 yi = g

∑
i∈[n] xi

)
, for

a threshold ElGamal encryption PKE with a
public/private key pair (pk, sk).

2) computes a pair of secret keys (si, ti) such
that siti = 1 (mod q).

• DEncrypt.
1) Every user ui first encrypts his multiset Xi

as X̄i = {ᾱi,j}j∈[k], where ᾱi,j = Epk(αi,j ; γj)

for some γj
$←− Zq . Then he sends the set X̄i

to u1.
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2) u1 computes 〈Es1(ᾱi,j)〉i∈[n],j∈[k]. We denote
this by Y0.

• Shuffle & DEncrypt. For i ∈ [n], ui receives a
vector Yi−1, where Yi−1 is a vector of ciphertexts
generated by user ui−1. Using Yi−1, each user
computes his shuffled and doubly encrypted ver-
sion Yi as follows:

1) ui 6=1 computes

Esi(Yi−1) = 〈 ¯̄α1, . . . , ¯̄αnk〉
=
〈
Esi

(
· · ·Es1

(
ᾱπi−1(`)

)
· · ·
)〉
`∈[nk]

.

2) ui chooses a random permutation πi ∈ Σnk
along with randomizers {γ`} where γ` ∈ Zq
for all ` ∈ [nk], and applies it to the vector
of ¯̄α`; we denote the result by Yi.

3) ui sends Yi to ui+1; the last user un sends Yn
to all users.

• Aggregate. For Yn = (α′1, . . . , α
′
nk), all users

1) Jointly decrypt each element of Yn, obtaining
Ũ = {α̃1, . . . , α̃nk}.

2) Each user computes

Z̃ =
{
〈α̃, F (α̃)〉 |α̃ ∈ Ũ ∧ F (α̃) ≥ κ

}
.

• Reveal. Let Z̃0 := Z̃ and |Z̃|= ζ.
1) For each i ∈ [n − 1], ui computes Z̃i =
{〈Dti(α̃), F (α̃)〉}〈α̃,F (α̃)〉∈Z̃i−1

and sends it to
ui+1.

2) Lastly, un computes

Z̃n = {〈Dtn(α̃), F (α̃)〉}〈α̃,F (α̃)〉∈Z̃n−1

= {〈αj , F (αj)〉}j∈[ζ]

and broadcasts Z = Z̃n to all other users.
Finally, each user obtains a κ+ set Z, including all

elements α ∈ U such that F (α) ≥ κ.

4.2 Security Analysis
We prove that our protocol is secure in the semi-
honest model and analyze its efficiency. The following
theorem states the correctness of our protocol.

Theorem 1 (Correctness): In the private κ+ protocol
in §4.1, every honest user learns the joint set distri-
bution of all users’ private inputs, i.e., each element
Es(α) such that α ∈

⋃n
i=1 Xi and the number of times

it appears.
Proof: Let |U|= nk. After completing the algorithm

Aggregate, each player learns a randomly permuted
joint multiset Es(U) =

{
Es
(
απ(1)

)
, . . . , Es

(
απ(nk)

)}
.

Since π is a permutation, for each Es
(
απ(`)

)
and for

all ` ∈ [nk], there exists a pair of the unique index `∗

such that

`∗ = π−1(`) = π−1
n (`) ◦ · · · ◦ π−1

1 (`).

Namely, Es
(
απ(`)

)
is a unique blinded version of

α`∗ ∈
⋃n
i=1 Xi. Moreover, ∀`, `∗ ∈ [nk], α` = α`∗ if

and only if Es (α`) = Es (α`∗).

Corollary 1: In the private κ+ protocol in §4.1, every
honest user learns all κ+ elements in the union of
private multisets.

Now we show that our protocol satisfies the privacy
requirements in the semi-honest model. To this end,
we define the ideal functionality for κ+ aggregation
as follows.

Definition 8 (Ideal Functionality Ftopk): Consider a
set of n users {ui}i∈[n], a trusted party T , and an
ideal adversary S controlling a set of corrupted users
{ui1 , . . . , uiν} for some 0 ≤ ν < n. Again let ui’s input
Xi = {αi,j}j∈[k] and U =

⋃
i∈[n] Xi.

1) Each user ui sends Xi to T .
2) T computes the following functionality, and

returns the outputs Zi and Mi to each ui∈[n],
where Zi = {〈α, F (α)〉 |α ∈ U ∧ F (α) ≥ κ} and
Mi = {F (α)|α ∈ U}.

Next, we show that the protocol indeed privately
computes Ftopk for any coalition of semi-honest users.
Intuitively, a user does not get any computational
knowledge from the execution because, for any com-
munication, every user sees only a collection of
(doubly) encrypted and permuted encryptions. Before
proving the protocol’s privacy, we prove some sup-
porting lemmas.

Lemma 2: Let E,α ∈ G and si∈[n] be defined as
above. Assuming F (αi) = F (αj) for all i, j ∈ [n], for
any r

$←− G, we have(
α1 α2 · · · αn
α′1 α′2 · · · α′n

)
c
≈
(
α1 α2 · · · αn
α′1 α′2 · · · Esn(r)

)
where αi = Esi(α), α′i = Esi

(
α′i−1

)
with α′1 = α1 for

each i ∈ [n].
Proof: Let us first denote the distribution of

the left-side 2 × n-tuple by Ln :=
(
α1 ··· αn
α′1 ··· α

′
n

)
and the distribution of the right-side 2 × n-tuple by
Rn :=

(
α1 ··· αn
α′1 ··· Esn (r)

)
. If Ln and Rn are distinguishable

by a PPT algorithm A, (G, q, g, gx, αn, α′n) and
(G, q, g, gx, αn, Esn(r)) are distinguishable from
the following algorithm that takes as input
(G, q, g, gα, a, b):

1) Let x $←− Zq . For i ∈ [n − 1], set α = gx, αi =
Esi(α) and zi = Esi(zi−1) with z1 = α1.

2) Let αn = a and zn = b.
3) Submit the 2× n-tuple(

α1 · · · αn−1 αn
z1 · · · zn−1 zn

)
to algorithm A and output what algorithm A
produces.

For i ∈ [n − 1], we have zi = gx
∏i
j=1 sj and

all αi’s are indistinguishable from uniformly random
since the DDH assumption holds in G. Hence the
distribution of the tuple given to A is indistinguish-
able from Ln when (G, q, g, gx, a, b) is distributed as
(G, q, g, gx, αn, α′n), and from Rn when (G, q, g, gx, a, b)
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is distributed as (G, q, g, gx, αn, Esn(r)). Therefore the
assumption that Ln and Rn are distinguishable leads
to the contradiction the DDH assumption in G. This
completes the proof.

Lemma 3: Let E, E, α and si∈[n] be defined as above.

Then for any r
$←− G and ᾱ ∈ Epk(α), we have(

¯̄α1 ¯̄α2 · · · ¯̄αn
α′1 α′2 · · · α′n

)
c
≈
(

¯̄α1 ¯̄α2 · · · ¯̄αn
α′1 α′2 · · · Esn(r̄)

)
where r̄ = Epk(r), ¯̄αi = Esi(ᾱ), α′i = Esi

(
α′i−1

)
with

α′1 = ¯̄α1 for each i ∈ [n].
Proof: It is easy to prove the indistinguishability

between two 2×n-tuples by using the same techniques
as in Lemma 2. As above, denote the the distribution
of the left-side 2× n-tuple by L̄n and the distribution
of the right-side 2 × n-tuple by R̄n. If L̄n and R̄n
are distinguishable from some PPT algorithm Ā, then
we can construct the following distinguisher that can
differentiate Epk(αs) and Epk(rsn), which takes pk as
input:

1) As above, let x $←− Zq . For ∈ [n− 1], α = gx, ᾱ =
Epk(α), ¯̄αi = Esi(ᾱ), and zi = Esi (zi−1) with
z1 = ¯̄α1.

2) Send m0 = αs and m1 = rsn , where s =
∏n
i=1 si,

to a challenger.
3) Get an encryption cb = Epk(mb) from the chal-

lenger.
4) Let ¯̄αn = Esn(α). Then choose a random bit b′ ∈
{0, 1}, submit the tuple(

¯̄α1 · · · ¯̄αn
z1 · · · cb′

)
to algorithm Ā, and output whatever it pro-
duces.

For i ∈ [n− 1], we have

zi = Esi(zi−1) = Esi ◦ Esi−1
◦ · · · ◦ Es1(ᾱ)

= Esi ◦ Esi−1
◦ · · · ◦ Es1 ◦ Epk(α)

= Epk ◦ Esi ◦ Esi−1 ◦ · · · ◦ Es1(α) = Epk
(
α
∏i
j=1 sj

)
,

and all ¯̄αi’s are indistinguishable from a uniformly
random distribution, based on the semantic security
of the public-key encryption. However, this contra-
dicts the assumption that the public-key encryption
is semantically secure.

We are now ready to prove the main theorem. A
formal argument is given next.

Theorem 2: Assume that the threshold ElGamal en-
cryption E is semantically secure. The protocol in
§4.1 privately computes the n-party functionality Ftopk

against any coalition of less than n semi-honest users.
Proof: We construct a simulator, denoted by S,

for the view of the semi-honest users. Interestingly,
it is easy to construct the simulator despite the com-
plexity of the description of the protocol. Let f(X) =
(f(x1), . . . , f(xk)) for a set X = {x1, . . . , xk} where
f ∈ {E, E,D}. Given an index set of semi-honest

users, J = {i1, . . . , iν} (with ν < n), the public key
pk, and a sequence of their inputs Xi1 , . . . , Xiν and
the outputs of the protocol Z and M , the simulator
proceeds as follows.

1) Let I := [n]\J . For each i ∈ I , choose πi
$←− Σnk

and a pair of secret keys, (si, ti)
$←− (Zq)2 such

that siti = 1.
2) For all honest users, choose their new,

random multisets Xi∈I , satisfying that
{〈α, F (α)〉 |α ∈ (Xj∈J ∪ Xi∈I) ∧ F (α) ≥ κ} is
equal to Z and the distribution of the union
Xj∈J ∪ Xi∈I is identically distributed to M .

3) For each j ∈ J and i ∈ I , compute X̄j = Epk(Xj)
and X̄i = Epk(Xi). Output X̄j for j 6= 1 and j ∈ J .

4) If j = 1 and j ∈ J , select s1
$←− Zq and compute

¯̄Xj = Es1(X̄j) for each j ∈ J and ¯̄Xi = Es1(X̄i) for
each i ∈ I . Let Y0 = (¯̄Xj∈J ,

¯̄Xi∈I). Then apply a
random permutation π1 and randomizers γ1,j∈J
to Y0 and output the result Y1. If i = 1 and i ∈ I ,
compute Y0 and Y1 using s1 and π1 generated in
Step 1 and γ1,i∈I , in sequence.

5) For each pair (i, j) ∈ I×J such that j = i+1 and
0 < i < n, after selecting sj

$←− Zq and πj
$←− Σnk,

computing Esj (Yi), and applying πj to it, output
the result vector Yj . For each (i′, i) ∈ [n]×I such
that i = i′ + 1 and 0 < i′ < n, compute Yi using
the corresponding si and πi. (For simplicity, all
randomizers were omitted).

6) For each i ∈ I and j ∈ J , compute Ũ = Es(Xj) ∪
Es(Xi) where s =

∏
i∈I si ·

∏
j∈J sj and output Ũ

and Z̃ = {〈α̃, F (α̃)〉|α̃ ∈ Ũ ∧ F (α̃) ≥ κ}.
7) Let Z̃0 := Z̃. For each (i, j) ∈ I × J such that

j = i + 1 and 0 < i < n, compute Z̃j = Dtj (Z̃i)

where tj = s−1
j mod q and output Z̃j . For each

(i′, i) ∈ [n]×I such that i = i′+1 and 0 < i′ < n,
compute Z̃i with ti of Step 1.

We claim that the output of the protocol executions
can be computed by the simulator as a polynomial
function of Z and Ũ. Furthermore, we claim that
for every such J , every (Xi1 , . . . , Xiν ), and for every
possible outcome Z from the ideal functionality Ftopk,
it holds that the conditional distribution of the sim-
ulator’s outputs is computationally indistinguishable
from the conditional distribution of the users’ view in
J .

It is also trivial to show that by the simulator’s
choices in Step 2 and Lemma 2, the simulator outputs
the same Z and Z̃, as the protocol and Ũ in Step 6
of the simulator are computationally indistinguishable
from Ũ in the real execution.

Turning to the conditional distributions, we show
that the view of the simulator is computationally
indistinguishable from the view of users in J . Without
loss of generality, we can assume that u1 ∈ Υ. The
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view of users in J = {i1, . . . , iν} is{
R1(X̄i∈[n]),R2(Yi1), . . . ,Rν+1(Yiν ),

Rν+2(Z̃i1), . . . ,Rη(Z̃iν )
}

where R denotes the real transcript of the protocol and
η = 2ν + 1. The simulated transcript produced by the
simulator S is{

S1(X̄j∈J ∪ X̄i∈I),S2(Yi1), . . . ,Sν+1(Yiν ),

Sν+2(Z̃i1), . . . ,Sη(Z̃iν )
}
,

where S denotes the simulated transcript. We then
prove a hybrid argument over the simulated views for
the protocol. First, let us define the hybrid distribution
H(`) in which the first ` outputs are simulated and
the last η − ` are real. Formally, let H(`) denote the
distribution:{

S1(X̄j∈J ∪ X̄i∈I),S2(Yi1), . . . ,S`(Yi`−1
),R`+1(Yi`), . . . ,

Rν+1(Yiν ),Rν+2(Z̃i1), . . . ,Rη(Z̃iν )
}
.

We now prove that H(0) c
≈ H(η) by showing that

for all ` ∈ [η], H(`) c
≈ H(`+1). For the sake of

contradiction, assume the opposite, and choose ` so

that H(`)
c

6≈ H(`+1). These two distributions differ in
only one term, so there must be a polynomial-time
distinguisher for

S1(X̄j∈J ∪ X̄i∈I) and R1(X̄i∈[n]) if ` = 1,
S`(Yi`+1

) and R`(Yi`+1
) if 2 ≤ ` ≤ ν + 1,

S`(Z̃`−η+ν) and R`(Z̃`−η+ν) if ν + 2 ≤ ` ≤ η

However, the first case contradicts the semantic se-
curity assumption of ElGamal encryption, the second
case contradicts Lemma 3, and the last case contra-
dicts Lemma 2. This implies that no such polynomial-
time distinguishers exists. Finally, because the simula-
tor runs in linear time, it meets the requirement for a
polynomial time simulation. This completes the proof.

4.3 Efficiency Analysis

In the following we give a detailed analysis of the
running time and the space requirements of the proto-
col. We base our protocol on ElGamal encryption and
the power function with primes |p|= 1024, |q|= 160.
To measure the overhead at each user, we count the
number of exponentiations using a 1024-bit modulus.

In Table 2 we show a summary of the com-
plexity our protocol. The total computational com-
plexity is dominated by DEncrypt and Shuffle al-
gorithms. Putting the computational complexities
together shows that the total is O(n2k) in O(n)
communication rounds. The proposed protocol has

O(n2k log p) bits of communication in total. It is im-
possible to directly compare our protocol with Ap-
plebaum et al.’s protocol, since it runs in the proxy-
based model, so we just present the computational
complexity comparison for it.

Detailed Comparison. We consider three protocols
for a comparison with the literature: Kissner and Song
(KS) protocol [24], Burkhart and Dimitropoulos (BD)
protocol [4], and Applebaum et al. protocol.
• KS protocol. Since KS does not provide a way

for finding a threshold value τ that separates the
κ-th from the (κ + 1)-th items, we do not know
the actual complexity required for computing τ .
However, assuming τ is given, their protocol has
O(n2k) computation complexity in O(n) rounds.

• BD protocol. In turn, we give a comparison
with BD protocol. The DB protocol does not
use Yao’s garbled circuit evaluation, but it exten-
sively utilizes two special-purpose sub-protocols–
equality and lessthan (see [9], [31]). However,
in [5] it is shown that comparing two shared
secrets computational intensive. Thus, BD uses
a computationally efficient version of the ba-
sic sub-protocols as follows: equality requires
log p rounds and lessthan requires (2 log p+ 10)
rounds. Their protocol runs two key algorithms:

– Finding a correct threshold value τ : the round
complexity of the algorithm is

(log k(2 log p+ 10) + log p+ 2 log p+ 10)nk

– Resolving collisions: the round complexity of
this algorithm is

n(n− 1)

2
log p+ 2(n− 1) log p+ 10(n− 1)

Thus, the total round complexity is O(n(n +
k log k) log p) for hash tables of size log k and
U of cardinality nk. Their protocol requires
4
(
n(n−1)

2 k + k(n− 1)
)

multiplications in Z×p .
• Applebaum et al.’s protocol. Let us use Op(·) and
ON (·) to denote the complexity using modulus
prime p and modulus composite N , respectively.
Assume all elements are integers less than p and
the maximum multiplicity is less than log log p.
This protocol’s computations are as follows:

– Interactive computation between users and
the proxy (defined in §2): First, users should

TABLE 2
Complexity Analysis

Comp. Cpx Comm. Cpx Rounds
Setup n n log p 1
DEncrypt/Shuffle 4nk + 2n2k 2(n− 1)k log p+ n

+2n2k log p
Aggregate n2k 2n2k log p 1
Reveal nκ nκ log p n− 1
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run a protocol for oblivious evaluation of
pseudorandom function by communicating
with proxies, then encrypt the result with El-
Gamal encryption. This requires n(k(2 log p+
2) + 2k) exponentiations over Z×p . Also,
users should encrypt the multiplicity of
each element with GM encryption, requiring
nk log log p multiplications over Z×N . Finally
each user encrypts his ElGamal ciphertexts
using ElGamal encryption once more, which
requires 2nk exponentiations over Z×p .

– Aggregation by Database: The most
computationally-intensive parts are ElGamal
and GM decryption. Since the database
receives two types of ElGamal ciphertexts,
it has to perform 2nk exponentiations over
Z×p . GM decryption requires 2nk log log p
exponentiations over Z×N .

Thus, the total complexity is Op(nk log p) +
ON (nk log log p) exponentiations.

In order to present a fair comparison with our
protocol, we devise our protocol for a proxy-based
model in the following subsection.

4.4 A Proxy-based Construction

The most crucial drawback of the above protocol is
its O(n) round complexity. To avoid this problem,
Applebaum et al. introduced two semi-honest users: a
proxy which shuffles a list of input ciphertexts, and a
database which aggregates κ+ elements. Applying the
same technique to our protocol, we can also obtain
a constant-round κ+ protocol with the same security
with modifications as follows:

• Assume that there are n1 proxies and n2

databases described as in [2].
• Each database engages in setting up a threshold

ElGamal encryption and publishes a public key.
Instead of users, all proxies are distributed secret
shares (sl, s

′
l)l∈[1,n1].

• Each user computes a list of ElGamal ciphertexts
and sends it to a proxy.

• Each proxy runs DEncrypt and Shuffle, and returns
the result to all databases.

• Databases perform group decryption, and get the
list of encrypted κ+ elements

• Finally, all proxies decrypt the encrypted κ+ list
and return the κ+ to all users.

Compared to [2], our protocol does not require OT
operations, nor an extra encryption scheme. Recall
that Applebaum et al.’s protocol requires to use both
the ElGamal encryption scheme and the Goldwasser-
Micali (GM) encryption scheme: the ElGamal encryp-
tion scheme is used to encrypt elements in multisets,
but the GM encryption scheme is used to encrypt their
multiplicity.

5 A κ+ PROTOCOL WITH MALICIOUS AD-
VERSARIES

Now, we present our protocol secure against mali-
cious adversaries and by realizing the ideal function-
ality Ftopk. We first describe privacy issues raised by
a malicious adversary, which will be addressed in the
construction. We then provide a full description of a
secure κ+ protocol in the malicious model and end
with the security analysis.

5.1 Possible Attacks by a Malicious Adversary
In the following, we outline several privacy issues
raised by allowing a malicious adversary to the basic
protocol in §4.1. Recall that U = {ui}i∈[n] denotes the
set of all users and Υ ( U is used to further identify
the set of corrupted users.

1) It is clearly easy for a corrupted user to construct
his multiset by copying an honest user’s input.
For example, a user u ∈ Υ obtains an encrypted
input X̄i of an honest user ui through a public
channel. Since ElGamal encryption is homomor-
phic, she can re-randomize the output of ui so
that she can submit it as the encryptions of his
input multiset without detection.
To address these problems, we introduce a ZKP
for verifying whether a user knows the corre-
sponding plaintext m to an ElGamal ciphertext
c ∈ Epk(m).

2) Corrupted players may deviate from the proto-
col by producing their outputs by applying an
incorrect permutation or a value different from
a secret key si fixed in the setup phase of the
protocol.
These problems can be addressed by using ZKPs
specified in §3.6. First, given an ElGamal ci-
phertext c ∈ Epk(m), when a user ui computes
¯̄c = Esi(c) she need to first prove that she raised
c exactly to the power of si. In addition, given
a list of ElGamal ciphertexts, L = {ci}i∈[n], she
must produce another list of ElGamal cipher-
texts, L′ = {c′i}i∈[n], with a proof that there exists
a permutation π ∈ Σn satisfying Dsk(c′π(i)) =
Dsk(ci) for all i ∈ [n], .

5.2 The Protocol Specification
We are now ready to describe a protocol that securely
computes Ftopk, allowing an adversary to behave ma-
liciously. The main component of this protocol is a
careful combination of the basic protocol and ZKPs.
However, introducing these zero-knowledge protocols
leads to changes in the basic protocol. To ensure a
better readability of the protocol, we add two symbols
to the protocol specification as follows: a star symbol
(?) for indicating that a step is newly added and a
dagger symbol (†) for that a step is modified from
the basic protocol’s description. In the following, ℘topk
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denotes the real-world protocol corresponding to the
ideal functionality Ftopk.

Protocol ℘topk — Secure Over-threshold Aggregation
• Inputs. Xi = {αi,1, . . . , αi,k} with |Xi| = k for all
i ∈ [n].

• System parameters. Let params = (G, p, q, g) be as
defined in §4. In addition, we simply assume that
Pedersen’s commitment scheme uses the exactly
same elements, and the keys are selected so that
the message spaces are compatible.

• Protocol actions.
– Setup. For each user ui∈[n]:
†1) computes yi = gxi and hi = gx

′
i for

randomly chosen xi, x
′
i ∈ Zq , and sends

(yi, hi) to other users with a proof of
knowledge of logg yi and logg hi using
the ZKP protocol for RDL. The key for
the Pedersen commitment scheme is h =∏n
i=1 hi and the public key for the ElGa-

mal PKE is y =
∏n
i=1 yi.

†2) chooses a pair of secret keys (si, ti) where
siti = 1 and publishes commitments ŝi =
comck(si) and t̂i = comck(ti) for the re-
spective keys while proving that siti = 1
by invoking the ZKP protocols for RINV

and Rcom.
– DEncrypt.
†1) Every user ui computes X̄i as in the basic

protocol, but sends it to all other users
while proving the knowledge of each el-
ement by invoking the ZKP protocol for
RPT.

†2) Every user checks if all ZKPs were com-
puted correctly, and aborts otherwise. The
user u1 then computes Y0 as in the basic
protocol, proving the knowledge of s1

using the ZKP protocol for RDE.
– Shuffle & DEncrypt.

1) Each user ui≥2 computes Esi(Yi−1) as in
the basic protocol.

2) Each user ui∈[n] gets Yi by applying πi
$←−

Σnk and γi,`
$←− Zq to ¯̄α` for all ` ∈ [nk].

†3) Each user ui∈[n] sends Yi to all other users,
and proves knowledge of (si, πi, {γi,`}) by
using ZKPs for RDE and Rπ , respectively.

?4) Upon receiving Yi along with correct dou-
ble encryption and shuffle proofs, all other
users engage in zero-knowledge execu-
tions ℘DE and ℘π with ui for which ui
proves that Yi were computed correctly. If
an error is found, the protocol is aborted

– Aggregate. As in the basic protocol, all users
obtain Z̃ = {〈α̃, F (α̃)〉|α̃ ∈ Ũ ∧ F (α̃) ≥ κ} by
participating in a group decryption.

– Reveal. Let Z̃0 be as in the basic protocol. For
each i ∈ [n]:

†1) ui computes Z̃i as in the basic protocol
and sends it to all other users, proving
the knowledge of ti by invoking the ZKP
protocol for RDE.

?2) Upon receiving Z̃i, all other users perform
the ZKP protocol ℘DE with ui for which
ui proves that she correctly computed Z̃i
from her committed key ti and her input
Z̃i−1. If an error is found, the protocol is
aborted.

Finally if all checks with un succeed, all users get
a κ+ set Z = {α ∈ U|F (α) ≥ κ}.

5.2.1 Group Construction
Group setup. We first need to discuss how users
participate in an arbitrary group. In our work, users
make a group together with the help of a center C
which receives the IDs of users who would like to
currently join in our protocol. Because we allow even
the center to misbehave maliciously, we apply a group
construction protocol which is provably secure against
such an attacker. One concrete example is Lindell
and Waisbard’s scheme [27, §5.2.2]. For n = 20, their
scheme ensures a center to maliciously build a group
with probability 10−48.

Electing a group leader. The next issue we discuss is
how users elect a group leader after building a group.
Indeed, leader election is a fundamental problem in
distributed computing. There are numerous protocols
for addressing this problem (see, for example, [33]] for
the semi-honest case; there have also been extensions
that deal with corrupted users [13], [22]). In particular,
Katz and Koo suggested a leader election protocol
running in a constant round, using moderated veri-
fiable secret sharing [22].

5.2.2 Efficiency
On top of the overhead of the basic protocol, the
additional cost for the protocol ℘topk is required for
performing the ZKP protocols. Table 3 summarizes
the complexities of selected ZKP protocols. We evalu-
ated our scheme using ElGamal encryption and Ped-
ersen commitments with primes p, q where q|p−1, |q|=
160, |p|= 1024. In particular we considered a ZKP
protocol for correct shuffle by Groth [19]. Since all
of them are a special honest verifier zero-knowledge
argument of knowledge, we need to transform the
used protocol into a standard ZKP protocol, which
requires additional computation and communication
cost. However, because this transformation does not
increase the big-O complexities, we ignored this cost
in our evaluation. Moreover, we did not consider
some optimized variants for the three zero-knowledge
protocols.

5.3 Security Analysis
We now proceed to prove that the protocol ℘topk is
secure in the presence of malicious adversaries. The
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TABLE 3
Complexities of Zero-knowledge Protocols (ZKP).

Communication is in bits at the prover’s side.

RDL RDE RPT Rπ

Prover n 2n2k + nκ n2k 0.4nk

Verifier 2n 4n2k + 2nκ 2n2k 0.5nk

Comm. 1184n 2368n2k + 1184nκ 1184n2k 720nk

following is our main theorem stating this result.
Theorem 3: Assuming the threshold ElGamal en-

cryption PKE is semantically secure, the hardness
of the DDH and DL problems, and that all of the
previously specified ZKPs cannot be forged, then
the protocol ℘topk described above securely computes
Ftopk in the presence of malicious adversaries.

Proof: It is clear that for the case where no users
are corrupted, the output is correct. Our proof is in
a hybrid model where a TTP is used to compute an
ideal functionality FKG which outputs a public value
(pk, ck) for Pedersen’s commitment scheme and the
ElGamal PKE, FD for decryption and the ZKPs for
RDL,RPT,Rcom,RINV,RDE and Rπ .

Let J = {i1, . . . , iν} denote the set of corrupted
users. Let A denote an adversary controlling users
with indexes in J . We construct a simulator S that
extracts A’s input Xj∈J and outputs a κ+ set Z. A full
description of the simulator is as follows:

1) S is given Xj∈J , Z,M and A’s auxiliary input z,
and invokes A on these inputs.

2) S receives from A, (xj∈J , x
′
j∈J) for the ideal

functionality of RDL and stores (xj∈J , x
′
j∈J) only

if for each j ∈ J , yj = gxj and hj = gx
′
j .

Otherwise S aborts and sends ⊥ to the TTP for
Ftopk.

3) Let I := [n]\J . S chooses xi, x
′
i ∈ (Zq)2 uni-

formly at random and sends yi = gxi and
hi = gx

′
i for each i ∈ I . It then emulates the

TTP abd computes RDL.
4) For each j ∈ J , S receives from A, (sj , tj) for the

ideal computation of RINV and records it only
if sjtj = 1; otherwise S aborts and sends ⊥ to
Ftopk.

5) For each i ∈ I , S chooses (si, ti)
$←− (Zq)2

such that siti = 1 and sends ŝi = com(si)
and t̂i = com(ti). It then emulates the TTP
computing Rcom and RINV.

6) From A, S receives the encrypted sets X̄j∈J and
Xj∈J (upon the execution of RPT), and verifies
if each Xj∈J in this step is equal to each Xj∈J
received in Step 1. If there is any difference
between the two sets, S sends ⊥ to Ftopk and
aborts. S sends Xj∈J to the TTP for Ftopk and
receives a set Z and the multiplicity distribution
of the union, M , as the answer.

7) S chooses each random set Xi∈I such that both
Z and M are derived from Xj∈J ∪ Xi∈I by

adding random elements in G. S computes the
encryptions X̄i∈I . S sends all encryptions to A
and then emulates the TTP for RPT.

8) For each user uj∈J , S receives Yj from A along
with (sj , πj , {γj,`}`∈[nk]) for the execution ofRDE

and Rπ , respectively. S checks that Yj is com-
puted from Yj−1, and terminates otherwise. If
1 ∈ J , S computes Y0 using X̄j∈J ∪ X̄i∈I and s1

received from A. For each ui∈I , S computes Yi
according to the protocol while emulating the
ideal functionalities of RDE and Rπ by sending
Yi to A, where it uses a random permutation
σi ∈ Σnk and randomizers.

9) S receives inputs for the functionality FD from
A and gives Z̃ and M to A where Z̃ = Es(Z)
for s =

∏
i∈I si ·

∏
j∈J sj .

10) For each uj∈J , S receives Z̃j from A together
with tj for the functionality of RDE. It checks
that 〈Dtj (α̃), F (α̃)〉 ∈ Z̃j for all 〈α̃, F (α̃)〉 ∈ Z̃j−1

and aborts otherwise. For each ui∈I , S computes
Z̃i according to the protocol and emulates the
functionality of RDE by sending Z̃i to A.

As when proving Theorem 2, we compare the sim-
ulated execution to a hybrid execution where a TTP
is used to computed the ideal functionalities FKG and
FD, and the ZKPs for RDL,RPT,RINV,RDE and Rπ . To
prove that A’s outputs in the hybrid and simulated
executions are computationally indistinguishable, we
construct a sequence of hybrid games and show that
the corresponding random variables H

(`)
A(z)(Xi∈[n], λ)

that consist of the output of A in hybrid game H(`)

are computationally indistinguishable.
Game H(0): The simulated execution.
Game H(1): The simulator S1 does not interact with

the TTP for Ftopk and is given ui’s real input Xi instead
for each i ∈ I . S1 works exactly as S except that in
Step 7 of the simulation, it uses the encryptions in
conjunction with the sets Xi∈I (whereas S uses Xi∈I ).
That is, the only difference between the two games
is that S uses random sets to complete Z and M ,
whereas S1 uses Xi∈I .

We claim that the distributions in these two ex-
ecutions are computationally indistinguishable. Let
X′i = X\Z and X ′i = X\Z for each i ∈ I , and let α′ ∈ X′i
and α′′ ∈ X ′i have the same position for some i ∈ I .
Note that Epk is semantically secure. Assuming A dis-
tinguishes the views of games H(0) and H(1), we can
construct an adversary AE that breaks the semantic
security assumption in G with the same probability.
This contradicts the semantic security assumption of
the ElGamal PKE. Hence,the random variables H(0)

A(z)

and H
(1)
A(z) are computationally indistinguishable.

Game H(2): The simulator S2 is identical to S1

except that it commits to the inputs (si, ti) of each
honest user ui∈I from the start instead of computing
the commitments based on random values (si∈I , ti∈I).
As comck is a perfectly hiding commitment scheme,
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H
(1)
A(z) and H

(2)
A(z) are identically distributed.

Game H(3): The simulator S3 works exactly as S2

except that in Step 8 of the simulation, it uses (si, πi)
to compute Yi, whereas S2 uses (si, σi). Note that
comck is a perfectly hiding commitment scheme and
the double encryption scheme (PKE , E) is commuta-
tive, i.e., Esi ◦ · · · ◦ Es1 ◦ Epk = Esi ◦ · · ·Epk ◦ Es1 =
· · · = Epk ◦ Esi ◦ · · · ◦ Es1 . Thus, the only difference
between the two games is that for some (i, j) ∈ I × J
with j = i + 1, S3 sends Yi = 〈Epk(Es(απi(`)))〉`∈[nk]

to A where s =
∏i
l=1 si, whereas S2 sends Yi to A

by applying s =
∏
j∈I,j<i sj ·

∏
i′∈I,i′≤i si′ instead.

We claim that H(2)
A(z) and H

(3)
A(z) are computationally

indistinguishable. The proof follows from the security
of the shuffle because Yi in both games is a list of
mixed and re-randomized ElGamal ciphertexts. Let
Aπ denote a PPT adversary who is given (pk, Yi−1, Yi)
and wishes to find πi and {r`}`∈[nk] such that α′′` =
α′πi(`) · Epk(1; r`) where α′` ∈ Yi−1, α

′′
` ∈ Yi. Using the

same technique used in Lemma 3, we can build Aπ
that breaks the shuffle with the same probability that
A distinguishes the views of two games. This leads to
a contradiction to the DDH assumption by Lemma 3,
and completes the argument.

Game H(4): The simulator S4 uses ti∈I instead of
ti∈I . Note that every Z̃i∈[n] is a list of ElGamal cipher-
texts. By the same argument the random variables
H

(3)
A(z) and H

(4)
A(z) are computationally indistinguish-

able.
Game H(5): The hybrid execution. The output dis-

tribution in H(4) is identical to the output in the
hybrid execution since the only difference is that the
honest users performs all computations by themselves
in the latter game.

Clearly, S runs in probabilistic polynomial time.
This completes the proof.

6 CONCLUSION

In this paper we have looked at the problem of finding
the κ+ elements securely, and formally defined what
it means for a protocol to be a secure κ+ protocol.
We developed two protocols, with varying operation
overhead, analyzed their security, and demonstrated
their practicality by analyzing its precise computa-
tional and communicational cost. Moreover, we pro-
vided a full proof showing that our protocol is secure
in the presence of semi-honest adversaries.

Since the semi-honest protocols commonly have
critical security restrictions, by requiring every ad-
versary to follow the instructions specified in the
protocol, we transformed our basic protocol into a
stronger κ+ protocol which is also secure in the
presence of malicious adversaries. In addition to a
full description of our protocol with malicious adver-
saries, we proved that the protocol is secure within
the simulation paradigm.

In the future, we will look into converting the
Zero-Knowledge Proofs from their present interactive
variant into Non-Interactive Zero Knowledge Proofs
through the Fiat-Shamir heuristic, which will improve
the communication complexity of our protocols.

ACKNOWLEDGMENT

Myungsun Kim was supported by Basic Science Re-
search Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of
Education (No. 2014-R1A1A2058377), the work of
Aziz Mohaisen was supported in part by a grant
from the University at Buffalo, Jung Hee Cheon was
supported by Institute for Information & communi-
cations Technology Promotion (IITP) grant funded
by the Korea government (MSIP) (No. B0717-16-0098,
Development of homomorphic encryption for DNA
analysis and biometry authentication), and Yongdae
Kim was supported by Next-Generation Information
Computing Development Program through the Na-
tional Research Foundation of Korea (NRF) funded by
the Ministry of Science, ICT & Future Planning (No.
NRF-2014M3C4A7030648). The preliminary version
of this paper was presented in Information Security
and Cryptology–ICISC 2012–15th International Con-
ference, Seoul, Korea, November 28–30, 2012.

REFERENCES

[1] M. Abe, R. Cramer, and S. Fehr. Non-interactive distributed-
verifier proofs and proving relations among commitments. In
Y. Zheng, editor, Advances in Cryptology-Asiacrypt, LNCS 2501,
pages 206–223, 2002.

[2] B. Applebaum, H. Ringberg, M. Freedman, M. Caesar, and
J. Rexford. Collaborative, privacy-preserving data aggregation
at scale. In M. Atallah and N. Hopper, editors, PETS, LNCS
6205, pages 56–74, 2010.

[3] S. Bayer and J. Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In D. Pointcheval and T. Johansson,
editors, Advances in Cryptology-Eurocrypt, LNCS 7237, pages
263–280, 2012.

[4] M. Burkhart and X. Dimitropoulos. Fast privacy-preserving
top-k queries using secret sharing. In IEEE ICCCN, 2010.

[5] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain net-
work events and statistics. In USENIX Security, 2010.

[6] J. Camenisch. Proof systems for general statements about dis-
crete logarithms. Technical Report TR 260, Dept. of Computer
Science, ETH Zurich, 1997.
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