
1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

1

Android Malware Detection using
Complex-Flows

Feng Sheny, Justin Del Vecchioy, Aziz Mohaisenz, Steven Y. Koy, Lukasz Ziareky

Abstract—This paper proposes a new technique to detect mobile malware based on information flow analysis. Our approach
examines the structure of information flows to identify patterns of behavior present in them and which flows are related, those that
share partial computation paths. We call such flows Complex-Flows, as their structure, patterns, and relations accurately capture the
complex behavior exhibited by both recent malware and benign applications. N-gram analysis is used to identify unique and common
behavioral patterns present in Complex-Flows. The N-gram analysis is performed on sequences of API calls that occur along
Complex-Flows’ control flow paths. We show the precision of our technique by applying it to four different data sets totaling 8,598 apps.
These data sets consist of both recent and older generation benign and malicious apps to demonstrate the effectiveness of our
approach across different generations of apps.

F

1 INTRODUCTION

According to security experts [1], over 37 million malicious
applications (apps) have been detected in only a 6-month
span with this trend expected to grow. Efficient malware
detection is crucial to combat this high-volume spread of
malicious code. Previous approaches for malware detection
have shown that analyzing information flows can be an
effective method to detect certain families of malicious
apps [7, 17, 55]. This is not surprising, as one of the most
common characteristics of malicious mobile code is collect-
ing sensitive information from a user’s device, such as a
device’s ID, contact information, SMS messages, location, as
well as data from the sensors present on the phone. When
a malicious app collects sensitive information, the primary
purpose is to exfiltrate it, which unavoidably creates infor-
mation flows within the app code base.

Many previous systems have leveraged this insight and
focused on identifying the existence of simple information
flows – i.e. considering an information flow as just a (source,
sink) pair present within the program. A source is typically
an API call that reads sensitive data, while a sink is an API
call that writes the data read from a source externally to the
program itself. These previous approaches use the presence
or absence of certain flows to determine whether or not an
app is malicious and can achieve 56%-94% true negative
rates when tested against known malicious apps.

In this paper, we show that there is a need to look beyond
simple flows to effectively leverage information flow anal-
ysis for malware detection. By analyzing recent malware,
we show there has been an evolution in malware beyond
simply collecting sensitive information and immediately ex-
posing it. Modern malware performs complex computations
before, during, and after collecting sensitive information.

yF. Shen, J. Del Vecchio, S. Y. Ko, and L. Ziarek are with Department of Com-
puter Science and Engineering, University at Buffalo, The State University of
New York; ffengshen, jmdv, mohaisen, stevko, lziarekg@buffalo.edu.
z A. Mohaisen is with the Department of Computer Science at the University
of Central Florida, E-mail: mohaisen@cs.ucf.edu.
An earlier version of this work has appeared in IEEE ICDCS 2017 [46].

More complex app behavior is involved in leveraging device
sensitive data and a simple view of information flow does
not adequately capture such behavior.

Furthermore, mobile apps themselves have also evolved
in their sophistication and in the number of services they
provide to the user. For instance, most common apps now
leverage a user’s location to provide additional features
like highlighting points of interest or even other users
that might be nearby. Augmented reality apps go a step
further, leveraging not only a user’s location, but also their
camera and phone sensors to provide an immersive user
experience. Phone identifiers are now commonly used to
uniquely identify users by apps that tailor their behavior to
the user’s needs. This means that benign apps now use the
same information that malicious apps gather. As a direct
result, many of the exact same simple (source, sink) flows
now exist in both malicious and benign apps.

The key to distinguish malicious apps and benign apps
is to discover the difference between app behavior and
computation over sensitive data. We propose a new rep-
resentation of information flows, called Complex-Flows, for
a more effective malware detection analysis. Simply put,
a Complex-Flow is a set of simple (source, sink) flows
that share a common portion of code in a program. For
example, a program can read contact information, encrypt
it, store it, and send it over the Internet. This means that
this program has two simple flows—a (contact, storage)
flow and a (contact, network) flow—that share a common
portion of code in the beginning of each flow (i.e., reading
and encryption). Complex-Flow represents them together as
a set that contains both flows.

Complex-Flows give us the ability to distinguish differ-
ent flows with same sources and sinks based on the compu-
tation performed along the information flow as well as the
structure of the flows themselves. We leverage this insight
and develop a new classification mechanism for malware
detection that uses Complex-Flows and their structure as
the basis for defining classification features. The details of
this classification entail an involved discussion, which we

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

2

defer to Section 4.
The goal of this paper is to differentiate malware from

benign apps by analyzing app behavior along information
flows that leverage sensitive data. We analyze and study
this behavior in both benign and malware apps. First, we
extract Complex-Flow inside apps in order to filter unin-
teresting app behaviors inside apps. As such, we focus on
app behavior related to sensitive data manipulation. Second,
we analyze API sequences to extract app behavior features
along information flows present within a Complex-Flow.
Lastly, we leverage these features via machine learning tech-
niques for classification. Apps are, therefore, classified based
on their structure (represented as Complex-Flow) and their
behavior along these flows (represented as API sequences).

Behavior is considered as normal if it is more widely
exhibited by benign apps than malicious apps. Behavior is
considered abnormal if it is more widely used by malicious
apps instead of benign. An app is considered malicious if
it exhibits abnormal behavior (e.g., apply obfuscation on
sensitive data, aggregate different sensitive sources before
leakage, or perform abnormal computation on sensitive
data). Through supervised learning, we aim to determine
which combinations of these behavior features indicate ma-
licious behavior and which indicate benign behavior. Based
on this, we leverage a classification system to distinguish
malware from benign apps.

To evaluate our technique, we used 3,899 benign apps
downloaded from Google Play, 12,000 known modern ma-
licious apps, and the well-known MalGenome dataset. Our
results show that our technique can achieve 97.6% true pos-
itive rate and 91.0% true negative rate with a false positive
rate of 9.0% when classifying modern malware. This shows
that the behavior captured by our Complex-Flows can be a
significant factor in malware detection.
Contributions. Our contributions are as follows. First, we
present Complex-Flow, a new representation to reveal how
an app leverages device sensitive data focused on the
structure and relationships between information flows. Sec-
ond, we present a new classification mechanism leveraging
Complex-Flows to distinguish malicious from benign apps.
Finally, we conduct a detailed evaluation study that high-
lights the differences between historical and recent apps.
Organization. The rest of the paper is organized as follows.
We first present a series of motivating examples in Section 2.
We discuss Complex-Flow and N-gram analysis of API
usage in Section 3. Our system design and implementation
are discussed in Section 4. We show the effectiveness of our
tool in Section 5. Related work and conclusions are given
in Section 7 and Section 8 respectively.

2 MOTIVATION

To illustrate how both modern benign and malicious apps
can confound malware detectors leveraging information
flows, consider one benign and one malicious app that
contain the same (source, sink) flows shown in Table 1.
The benign app, com.kakapo.bingo.apk, is a popular bingo app
available in Google Play. The malicious app masquerades as
a video player, but it also starts a background service to
send out premium messages and steals phone info includ-
ing IMEI, IMSI. Both apps send out phone identifiers

TABLE 1
Information Flows in Both Benign and Malicious Apps

Source Sink
TelephonyManager:getDeviceId HttpClient:execute

TelephonyManager:getSubscriberId HttpClient:execute
LocationManager:getLastKnownLocation Log:d

TelephonyManager:getCellLocation Log:d

IMEI

Encode

Gzip

HttpClient

Malware Benign APP

IMSI IMEI IMSI

HttpClient HttpClient

Fig. 1. App Behavior Comparison in Benign and Malware Apps

(IMEI, IMSI) over the Internet and write location data
into log files. Thus, even if we can detect the information
flows shown in Table 1 we cannot distinguish these two
apps.

To combat this problem, many previous approaches
would consider sending of phone identifiers as an indication
of malicious intent [56]. This approach worked well for
some time as this was often considered privileged infor-
mation. However, we and others [7] [55] have noticed that
sending this information is becoming more common in
benign apps, usually as a secondary authentication token
for banking apps, or in the case of our bingo app and many
other games, as a way to uniquely identify a user. In general,
it has become more common that benign apps require addi-
tional information to provide in-app functionality. Many ad
engines collect this kind of information as well [39]. Thus,
it is difficult to tell which apps are benign and which are
malicious by examining source and sink pairs alone. More
information is required to differentiate these two apps.

Let us examine how both our example apps access sen-
sitive data, to see if we can differentiate between them. We
present the bingo app and the malicious app in the form of
decompiled DEX bytecode (Android’s bytecode format) in
code snippets Fig. 2 and Fig. 3, respectively. We observe that
the benign bingo app accesses the sensitive data it requires
in lines 6, and 12, whereas the malicious app collects the
sensitive data in aggregate in a single method in lines 3-4.
The malicious app also bundles the data in lines 5-8 and
sends the aggregated data over the network in line 10. In
contrast, our bingo app does not send data immediately
after collecting it. As shown in this example, the two apps
contain the same information flows, but the structure of
these flows is quite different.

The difference becomes even more profound if we ex-
amine the computation the apps perform along the code
path of the information flow. Previous studies [16, 23] have
shown that system call sequences effectively capture the
computations done in a program; thus, we examine the API
call sequences occurring along the flows in both benign and
malicious apps, and compare them.

Fig. 1 shows the information flow view of these
two apps. In particular, we use the flow TelephonyMan-

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

3

1 public static String getLmMobUID(Context context){
2 ...
3 TelephonyManager tm= (TelephonyManager)
4 context.getSystemService("phone");
5 if (isPermission(context,

"android.permission.READ_PHONE_STATE"))
6 localStringBuffer.append(tm.getDeviceId());
7 ..
8 }
9 public static String getImsi(Context context){

10 TelephonyManager tm = (TelephonyManager)
11 context.getSystemService("phone");
12 param = tm.getSubscriberId();
13 ...
14 }

Fig. 2. Data Access Code Snippet in Benign App

1 private void execTask(){
2 ...
3 this.imei = localObject2.getDeviceId();
4 this.imsi = localObject2.getSubscriberId();
5 str2 = "http://" + Base64.encodebook(
6 "2maodb3ialke8mdeme3gkos9g1icaofm", 6, 3) +
7 "/mm.do?imei=" + this.imei;
8 localStr2 = str2 + "&imsi=" + this.imsi;
9 ...

10 paramString1 =
((HttpClient)localObject).execute(localStr2);

11 ...
12 }

Fig. 3. Data Access Code Snippet in Malware App

ager:getSubscriberId ! HttpClient:execute as an example to
illustrate the differences in benign and malicious apps. Fig. 4
and Fig. 5 show the API call sequences occurring along the
flow. The lines in black show the same behavior of the two
apps, with both preparing to fetch the IMSI. The difference
between the apps is highlighted in red. The malicious app
fetches another phone identifier(IMEI) (line 3) right after
fetching IMSI, then couples this data (line 5) and compresses
it (line 6). The benign app, on the other hand, simply checks
and uses the network (lines 3-5).

This example shows that by comparing the API se-
quences we can infer that these two apps differ in behavior
even though they share the same information flows. Tradi-
tional data flow analysis fails to differentiate malicious app
behavior from benign one if they both leverage the same
set of sensitive data, since it misses the relation of different
information flows and the different behavior of these two
apps. To show how realistic this behavior difference is in
real-world apps, we examine both benign and malware
test dataset apps leveraging same APIs with encoding and
compression as shown in the above example. It turns out
that there are 188 malware apps that contain the same
behavior while there are only 3 benign apps that exhibit
such behavior. In our approach, we leverage this insight
and represent a set of related simple flows as a Complex-
Flow, and develop a machine learning technique to discover
which behavior along information flows and Complex-
Flows are indicative of malicious code. We further describe
this in the next section.

1 <Context: getSystemService(String)>
2 <TelephonyManager: getSubscriberId()>
3 <TelephonyManager: getDeviceId()>
4 <BasicNameValuePair: <init>(String,String)>
5 <URLEncodedUtils: format(List,String)>
6 <XmlServerConnector: byte[] zip(byte[])>
7 <HttpGet: void <init>(String)>
8 <DefaultHttpClient: void <init>()>
9 <HttpClient: getParams()>

10 <HttpParams: setParameter(String,Object)>
11 <HttpClient: getParams()>
12 <HttpParams: setParameter(String,Object)>
13 <HttpClient: execute(HttpUriRequest)>

Fig. 4. API Call Sequence in Malware App

1 <Context: getSystemService(String)>
2 <TelephonyManager: getSubscriberId()>
3 <PackageManager: checkPermission(String,String)>
4 <WifiManager: getConnectionInfo()>
5 <WifiInfo: getMacAddress()>
6 <TextUtils: isEmpty(CharSequence)>
7 <TextUtils: isEmpty(CharSequence)>
8 <TextUtils: isEmpty(CharSequence)>
9 <HttpGet: <init>(String)>

10 <BasicHttpParams: <init>()>
11 <HttpConnectionParams:

setConnectionTimeout(HttpParams,int)>
12 <HttpConnectionParams:

setSoTimeout(HttpParams,int)>
13 <DefaultHttpClient: <init>(HttpParams)>
14 <HttpClient: execute(HttpUriRequest)>

Fig. 5. API Call Sequence in Benign app

3 COMPLEX-FLOWS

The analysis of our example apps revealed that it is com-
mon for multiple data flows to access sensitive resource
data. However, the intent, purpose, and net effect of these
operations often differ between malicious and benign code.
In this section we propose the concept of a Complex-Flow,
a mechanism that captures the usage of sensitive mobile
resources, but also reveals the structure of this usage as well
as the relation between different uses.

3.1 Multi-Flows
To compute Complex-Flows, we must first discover the
relationships between simple flows. We call simple flows
which are computationally related to one another, either by
data flow or control flow, Multi-Flows. Abstractly, a Multi-
Flow is composed of multiple simple flows, such that any
two simple flows in the Multi-Flow share a subset of their
computation.

Let SRC be the data source an app accesses. Let SNK be
the sink point the data flows into. Let Sn be an intermediate
statement in the program where the source data or data
derived from the source data is used (i.e. a data flow).
Definition 1. A simple flow, SRC ! SNK, is composed

of a sequence of statements �S, which includes SRC and
SNK: �S = SRC ; S1 ; S2 ... ; Sn�1 ; Sn ; SNK.
We say that a sequence �S is a subsequence of a flow F ,
written as �S � F , if �S is contained within F .

Definition 2. A Multi-Flow represents multiple simple flows
that share common computation within a program. Let
�F be a set of all simple flows in a program. A Multi-Flow

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

4

for a sequence �S, �F 0(�S), is a set of simple flows in �F
that share �S as a common subsequence. It is defined as:

�F 0(�S) = fFij Fi 2 �F and �S � Fig

Thus, the simplest Multi-Flow occurs when two simple
flows share the same source or sink. It is important to distin-
guish that by source and sink we not only mean a given API
call, but where that API occur within the program. Section 2
provides a real-world Multi-Flow example with multiple
device identifiers collected at once and sent out over the
network. Here, the data is sent out not only just over the
same sink, but also over the same control flow path.

3.2 Complex Flows

Information flow analysis focuses on discovering the start
and end points of data flows, whether they be simple flows
or Multi-Flows. Analysis of the computations captured by
Complex-Flows is required to gain understanding of the
behavior of the Multi-Flow. Specifically we focus on dis-
covery of the interactions between an app and platform
framework: if an app wants to send DeviceId over network,
it must leverage the public network APIs of the platform
framework to complete this operation. Or if the app wants
to write DeviceId via the logging system, it must invoke the
APIs of the Android provided android.uti.Log package.
Even if the app does nothing but simply display sensitive
information on screen, it still must do so through the frame-
work GUI APIs. Below, we provide a formal definition of
Complex-Flows.

Definition 3. Let �S be a simple flow SRC ; S1 ; ::: ;

Sn ; SNK, where SRC is a source, SNK is a sink, and
Si is a program statement. We define an API sequence of
�S as a filtered sequence over �S that only contains API
call statements. Note that both the source and sink are
API calls by definition.

For a formal definition of an API sequence, we write S 2
AP I , if the statement S is a call to an API function. Then
an API sequence of �S is produced by filtering �S recursively
using the following three rules, which essentially removes
all non-API calls from a simple flow (below, S is a single
statement, and �S0 is a sequence of statements):

Rule 1 : filter(S ; �S0) = S ; filter(�S0) if S 2 AP I (1)

Rule 2 : filter(S ; �S0) = filter(�S0) if S =2 AP I (2)
Rule 3 : filter(;) = ; (3)

Definition 4. We define a Complex Flow CF in terms of a
Multi-Flow, �F (�S) as the set of filtered sequences (i.e.,
API sequences - AS) for each flow in the Multi-Flow:

CF = fASjAS = filter(F); F 2 �F (�S)g:

Definition 5. An N-gram API set is a set of API sequences of
size N derived from an API sequence. Formally, a set of
N-grams over a filtered sequence is defined as follows,
where j �S0j denotes the size of the filtered sequence �S0:

N-gram(�S) = f �S0j �S0 � �S; j �S0j = ng

Definition 6. We define all N-grams for a Complex Flow
CF as a set of N-gram API sets, one derived from each
filtered sequence AS contained in the Complex Flow:

fNGjNG = N-gram(AS); AS 2 CF)g:

We extract the app’s framework API call sequences to
capture the computations performed over sensitive data.
We only include those sequences present within Complex-
Flows. A Complex-Flow, represented as a set of sequences
of APIs, including the source and sink pairs of all simple
flows present in the Multi-Flow.

4 SYSTEM DESGIN

We have built an automated malware detection system
that classifies apps as malicious or benign via analyzing
the N-gram representation of Complex Flows described in
Sections 2 and 3. This classification system is integrated into
our BlueSeal compiler [47] [24], a static information flow
analysis engine originally developed to extract information
flows from Android apps. It also can handle information
flows triggered by UI events and sensor events. BlueSeal is
context sensitive, but is not path sensitive. It takes as input
the Dalvik Executable (DEX) bytecode for an app, bypassing
the need for an app’s source. BlueSeal is built on top of the
Soot Java Optimization Framework [50] and leverages both
intraprocedural and interprocedural data flow analysis. In
addition, BlueSeal is able to resolve different Android spe-
cific constructs and reflection. More details are discussed
in our previous paper [47] and on the BlueSeal website
http://blueseal.cse.buffalo.edu/.

Our implementation extends BlueSeal to discover
Complex-Flows in addition to its native capability to de-
tect simple information flows. The automated classification
component performs the following four analysis phases
to generate features and perform classification of apps as
malicious or benign: (1) Multi-Flow discovery, (2) API call
sequence extraction, (3) N-gram feature generation, and (4)
Classification. Our tool is open-source and available on the
BlueSeal website.

4.1 Multi-Flow Discovery

Traditional information flow analysis mainly focuses on
the discovery of a flow from a single source to a single
sink. We have extended BlueSeal to extract Multi-Flows,
where individual single source to a single sink flows are
aggregated and connected. We leverage data flow analysis
techniques to extract paths contained within each simple
flow. If two information flows share a subpath then these
two information flows belong to the same Multi-Flow. Each
Multi-Flow can contain multiple information flows, which
means it can contain multiple sources and multiple sinks.
We then analyze these Multi-Flows to extract API sequences
present within the Multi-Flow to create Complex-Flows.

The goal of the Multi-Flow detection algorithm is to: (1)
create a global graph of complete information flow paths
for an app, and (2) detect the intersection between indi-
vidual information flow paths that represent Multi-Flows.
Here, the intersection of two information flow paths simply
means two information flow paths share at least one node
in the global graph. The Multi-Flow detection algorithm
itself works by taking as input BlueSeal’s natively detected
individual information flow paths, which track simple flows
with a single source and single sink. To generate Multi-
Flows, we augment BlueSeal as follows:

http://blueseal.cse.buffalo.edu/

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

5

1 private void PhoneInfo(){
2 imei = Object2.getDeviceId();
3 mobile = Object2.getLine1Number();
4 imsi = Object2.getSubscriberId();
5 iccid = lObject2.getSimSerialNumber();
6 url = "http://"+str1+".xml?sim="+imei+
7 "&tel="+mobile+"&imsi="+imsi+"&iccid="+iccid;
8 Object2 = getStringByURL(Object2);
9 if ((Object2 != null) && (!"".equals(Object2))){

10 sendSMS(this.destMobile, "imei:" + this.imei);
11 }else{
12 writeRecordLog(url);
13 }
14 }
15 private void sendSMS(String str1, String str2){
16 SmsManager.getDefault().sendTextMessage(str1,

null, str2,null,null,0);
17 }
18 private void writeRecordLog(String param){
19 Log.i("phoneinfo", param);
20 }
21 public String getStringByURL(String paramString){
22 HttpURLConnection conn =

(HttpURLConnection)new
URL(paramString).openConnection();

23 conn.setDoInput(true);
24 conn.connect();
25 return null;
26 }

Fig. 6. API Call Sequence Extraction Example

1. Whenever we encounter a statement containing sensitive
API invocation (which accesses a device’s sensitive data),
we add the invocation as a node in the global graph. This is
considered the starting point of a data flow path.
2. Next, we check each program statement to see if there
is a data flow from the current statement to the initial,
detected statement. If so, we build an intermediate source
node in the global data flow graph, adding an edge from
the node for the initial statement. This step is recursive and
if there is a data flow from another program statement to
the intermediate source node, we create a new intermediate
source node as above. These intermediate nodes are critical
as they connect together single flows to create Multi-Flows.
3. The data flow’s path ends when we find a sink point.
These three types of points (i.e., source, intermediate, and
sink) are able to capture the whole data flow path for a
simple information flow while simultaneously outputting
a global graph that includes all, potentially interconnected,
data flow paths.
4. Multi-Flows are detected by iterating through this global
graph, finding simple data flows as well as Multi-Flows.
5. We extract API call sequences for all Multi-Flows. While
doing so, we analyze control-flow paths in each Multi-Flow
to extract API call sequences. We discuss this further next.

As mentioned in [47], we note that our BlueSeal engine
will address Android specific constructs. Android Intent
will be treated as a sink since it’s a potential point to leak
data outside. Also, reflection will be resolved if it can be
statically determined. Readers can refer to [47] for details.

4.2 Complex-Flow Extraction with API Sequences
Although the previous phase gives us the global graph for
an app with all Multi-Flows, it does not provide the exact

Fig. 7. Data Flow Structure of Example Code Snippet

Fig. 8. Control Flow Structure of Example Code Snippet

API call sequences occurring along the Multi-Flows, i.e.,
Complex-Flows. Analyzing Complex-Flows requires us to
consider control paths with branches and loops, since they
produce separate code paths. For example, if there is an if-
else block in-between a source and a sink, there can be two
separate API sequences that start with the same source and
end with the same sink. Thus, we develop a mechanism to
examine all code paths along the Multi-Flows detected by
the previous phase, and extract the API call sequences.

Technically, this can be done within the previous phase,
as the original BlueSeal implementation already considers
control paths when analyzing data flows. However, we
implement our API sequence extraction as a separate phase
for clean separation of our new logic.

We illustrate this process with an example. Fig. 6 is a
code snippet extracted from a known malicious app. For
simplicity, we remove other pieces of code not pertinent to
our discussion. The general code’s data flow structure is
shown in Fig. 7 and the corresponding control-flow graph
is shown in Fig. 8. Fig. 6 and Fig. 8 show that there are
two execution paths that must be extracted from the larger,
singular Multi-Flow structure shown in Fig. 7. Thus, we
output one API call sequence for each single path. The final
output of the example code snippet is shown in Table 2.

In order to extract such API sequences, we analyze each
control flow path, statement by statement, in the execution
order to extract all platform APIs invoked along with Multi-
Flows. As mentioned earlier, we consider different branches
separately, which means that for each branch point, we
create two separate branch paths. For a loop, we consider
the execution of its body once if an API is invoked inside a
loop. This is due to the fact that precise handling of loops
itself is a challenging problem and an active area of research,

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

6

TABLE 2
Final API Call Sequence Output

Sequence 0

TelephonyManager:getDeviceId()
TelephonyManager:getLine1Number()
TelephonyManager:getSubscriberId()
TelephonyManager:getSimSerialNumber()
java.net.URL:openConnection()
HttpURLConnection:setDoInput()
HttpURLConnection:connect()
SmsManager:getDefault()
SmsManager:sendTextMessage()

Sequence 1

TelephonyManager:getDeviceId()
TelephonyManager:getLine1Number()
TelephonyManager:getSubscriberId()
TelephonyManager:getSimSerialNumber()
java.net.URL:openConnection()
HttpURLConnection:setDoInput()
HttpURLConnection:connect()
Log: int i()

which requires loop bound analysis followed by unrolling
each loop for N times where N is the analyzed bound for
the given loop. Previous work proposes a mechanism to
precisely handle loops in Android apps [18]; it is our future
work to incorporate it. It is worth mentioning here that we
have an opportunity to reduce the complexity of precise
loop analysis, since our N-gram analysis described next has
a maximum bound for an API call sequence, i.e., we are only
interested in an API call sequence of size N . This means that
we only need to unroll a loop enough times to get an API
call sequence of size N , which reduces the complexity of
handling loops. However, we leave the full investigation of
this as our future work.

4.3 N-gram Feature Generation

Next, our system uses the API call sequences extracted
in the previous step to generate features for classification
purposes. As mentioned above, the API sequences are the
interaction between app and platform, and they represent
app behavior regarding sensitive data usage. We use the N-
grams technique to generate these features from the API call
sequences as N-grams. Traditionally, the N-grams technique
uses byte sequences as input. In our approach, we generate
N-grams using API call sequences as input to reveal app
behavior. We consider each gram to be a sub-sequence of a
given API call sequence. Sequence N-grams are overlapping
substrings, collected in a sliding-window fashion where
the windows of a fixed size slides one API call at a time.
Sequence N-grams not only capture the statistics of sub-
sequences of API calls of length n but implicitly represent
frequencies of longer call sequences as well. A simple ex-
ample of an API sequence and its corresponding N-grams
is shown in Table. 3. In detail, the first 2-gram indicates that
the app access the IMEI and phone number at once; while
the second 2-gram indicates that the app access the phone
number and IMSI at once.

4.4 Classification

The last step of our malware classification tool is leveraging
machine learning techniques on top of N-grams features
obtained from the Complex-Flow representation. The goal
of this classification to identify significant and different

TABLE 3
Example of API Sequence and its 2-grams

API Sequence
TelephonyManager:getDeviceId()
TelephonyManager:getLine1Number()
TelephonyManager:getSubscriberId()

2-grams

TelephonyManager:getDeviceId()
TelephonyManager:getLine1Number()
TelephonyManager:getLine1Number()
TelephonyManager:getSubscriberId()

behavior between malicious and benign apps. In this pro-
cess, our system is trained using both benign and malicious
apps. Our malware dataset contains malware apps from
different families. The practice of assigning a family label
to a malware sample is common in the malware detection
community. The categorization of apps into families de-
pends on the various rules triggering in (static and dynamic
analysis) tools used by the detector; in a way similar to the
rules employed by major antivirus scanners incorporated in
portals such as VirusTotal 1.

The malicious apps are categorized into different num-
bers of families based on the different detection tools, and
the number of families is on the order of hundreds. Despite
the variety of behavior exhibited in the different families,
our system is shown to learn how different types of malware
leverage information flows and what types of behavior it
contains. Besides, our system learns what types of behavior
appear when benign apps leverage these information flows.
Our system is trained to learn different behavior patterns
along with information flows and leverage them as features
for classification. In this way, our system will tell if an app
leverages information flows in a benign or suspicious way.
For a new app, our classification system will compare its
behavior pattern, represented as a feature vector obtained
from the Complex-Flows representation of the app, and
decide whether it is more similar to benign or malicious
apps in the training set. In general, our classification system
will detect if an information flow is malicious or not based
on the app’s behavior along the flow.

We note that determining whether an app is malicious or
not is rather a complex problem [38], as demonstrated by the
multi-billion USD antivirus industry. Furthermore, we note
that the initial detection of malicious apps, constituting the
ground-truth in our study, falls out of the main scope of this
work. For that, the initial labeling of malicious apps follows
the industry’s best practices, and utilizes dynamic and static
analysis (against predefined sets of rules), as well as contexts
(users feedback reports) to determine whether an app is
malicious or benign. The majority of the apps, however,
are determined to be malicious against VirusTotal detection,
which utilize a combination of the above static/dynamic
techniques as well as permission use and abuse. Thus, the
purpose of our approach can be viewed as twofold: (1) a
new modality of behavior representation (Complex-Flows)
and (2) a new method for label extrapolation based on this
modality.

Maliciousness of an app is, therefore, determined by
being part of our malware dataset. Our tool tries to match
this labeling through extrapolation by classifying an app
as malicious through the analysis of the Complex-Flows

1. https://www.virustotal.com/

https://www.virustotal.com/

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

7

present in the app. In a nutshell, the the app is benign if the
Complex-Flows perform meaningful operations similar in
structure to other benign apps and malicious if the structure
is similar to other malicious apps. Note that our benign
dataset is diverse, and covers popular apps, as well as apps
from different categories. As those apps do not show a
positive detection in public tools, such as VirusTotal, and are
not indicated by the Play Store as such, we have assumed
them being benign (more details are in section 5.8, when
addressing false detection analysis).

We generate N-grams for each app analyzed and then
use every N-gram in any app as a feature to form a
global feature space. Based on this global feature space, we
generate a feature vector for each app, taking the count
of each gram feature into consideration. For example, if
a gram feature appears three times in an app, the corre-
sponding value of this gram feature in app’s feature vector
will be three. Finally, we feed app feature vectors into the
classifier. We use two-class SVM classification to determine
whether an app is malicious or benign. The SVM model is
a popular supervised learning model for classification and
also leveraged by other systems to perform malicious app
detection [7].

5 EVALUATION

Correct selection of training data in classification is very
important. There are cases where classifiers work extremely
well on one set of data but fail on other sets of data
due to over-training [42]. We use four sets of apps with
different characteristics to better evaluate our tool against
different benign and malicious app set combinations and
avoid the over-training pitfall. Two sets consist of benign
apps and two sets consist of malicious apps. All datasets
and scripts for evaluation are available. Please visit http:
//blueseal.cse.buffalo.edu/ for details.
Benign apps. The benign apps are free apps downloaded
from Google Play and include two sub-sets. One contains
the top 100 most popular free apps across all categories (i.e.
Art & Design, Beauty, Books & Reference, etc.) from Jan-
uary, 2014 and the other contains random free apps across
multiple categories from Oct, 2016. We have used 3,899 apps
in total from the set of apps downloaded, excluding the apps
that either have no flow reported by our tool or exceed the
execution time limit set for processing the app (60 minutes).
This execution time limit is needed because some apps take
hours to finish while more than 90% of the apps can be
analyzed in well under an hour.
Malicious apps. We use two malware data sets. The first
set is from the MalGenome project [56]. We leverage it
as a comparison point and to aid in reproducibility as
previous studies rely heavily upon it. The other malicious
apps are from a dataset of over 70,000 malware samples
obtained from security operations over a month by a threat
intelligence company operating in the United States and
Europe. Due to a non-disclosure agreement this set is not
publicly available. Each app from the 70K set has been
scanned through multiple popular anti-virus tools. Meta
data is associated with each app including scan results from
each anti-virus tool, time discovered, description of the app
and so on. Out of the entire set, we have randomly selected

3,899 apps that contain information flows to match up the
number of benign apps. Of these apps, 27.5% are repackaged
apps, meaning they are benign apps with malware injected
into them masquerading as benign apps. Analogous to the
benign apps, MalGenome apps represent older, outdated
apps while the other set represents new, modern malware
apps.

We label each of the four datasets as follows:
� Play 2014: Apps collected from Google Play in Jan,

2014. The total number of apps is 800.
� Play 2016: Apps collected from Google Play in Oct,

2016. The total number of apps is 3,099.
� MalGenome: Malware apps collected from MalGenome

project. The total number of apps is 800.
� Malware: Another set of malware apps collected from

intelligence company. The total number of apps is 3,899.

5.1 Evaluation Methodology and Metrics
We have used different combinations of these four sets in
our experiments to evaluate our classification system. The
evaluation process is as follows:
� We use the 10-fold cross-validation technique to di-

vide apps into a training set and a testing set. We
trained the classifier on the feature vectors from a
random 90% of both benign and malicious apps. The
remaining 10% form the testing dataset. Then we rotate
on the training and testing dataset. The classification
process will be repeated ten times in total and we
calculate the results average. This is a commonly used
statistical analysis technique.

� The training set is based on both benign and malicious
apps. N-grams generated from these apps are used to
form the global feature space. For each app, a feature
vector is built based on N-gram features.

� Then feature vectors of apps of the training set are used
to train a two-class SVM classifier.

� Lastly, after training, we use the testing set of mixed
benign and malicious apps for classification. The classi-
fier then provides a decision on an app, based on its N-
grams feature vector, as either “malicious” or “benign”.

Upon completion, we collect statistics based on the clas-
sification results. We use the following four metrics for our
evaluation:
TP True positive rate—the rate of benign apps recognized

correctly as benign.
TN True negative rate—the rate of malware recognized

correctly as malicious.
FP False positive rate—the rate of malware recognized in-

correctly as benign.
FN False negative rate—the rate of benign apps recognized

incorrectly as malicious.
The rest of this section details the results.

5.2 Runtime Performance
As mentioned earlier, we set an execution time limit on
extracting Complex-Flows. Here, we collect statistics on
system performance of app execution time of modern mal-
ware. All tests are running on machines with twelve Intel(R)
Xeon(R) CPU E5645(2.40GHz, 12M Cache). For each app, we

http://blueseal.cse.buffalo.edu/
http://blueseal.cse.buffalo.edu/

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

8

0 2000 4000 6000 8000 10000 12000
AppID

0

500

1000

1500

2000

2500

3000

3500
Runtime(sec)

App Runtime Performance

Fig. 9. App Execution Time Performance in seconds.

assign 6G memory to JAVA Virtual Machine. Our system
is able to analyze and extract Complex-Flows for 98% of
testing apps. There are a few apps (<130 apps) that exceed
this execution limit. Among these apps, we increase the time
limit to two hours and half of these apps (86 apps) can be
analyzed. Only a few apps throw out of memory exception.
By increasing JVM memory to 16G and time limit to 24
hours, all apps are able to be analyzed. One of the apps
takes around eight hours to finish and all others are able to
be done under four hours. Fig. 9 shows the full performance
results for apps analyzed under an hour limit. As we can
tell from this result, our system can analyze and extract
Complex-Flows for 90% of the apps under ten minutes. Only
10% of the apps requires an analysis time greater than that,
but can be analyzed in an hour.

5.3 Play 2014 Apps versus MalGenome Apps
We first show our results with the older benign apps
(Play 2014) and the older malicious apps (MalGenome). Ta-
ble 4 shows that when the gram size is small, it is sufficient
to differentiate the MalGenome apps from the benign apps.
For the gram size of 1, we achieve a true positive rate of
97.5% and the true negative rate of 85.2%.

A manual examination of single API usage in both
benign and malware apps shows there are 4,457 distinct
APIs in benign apps while there are only 813 for malware
apps. The overlap of these two sets is 771. An examination
of these 771 shared API calls shows that most of them are
sensitive APIs. This indicates that the Malgenome contains
malware that is heavily reliant on a specific set of APIs when
compared with the benign apps. We also looked at APIs
that are exclusive in malware apps, and found them to be
primarily APIs related to device WiFi status and database
permissions. These APIs are also commonly used in benign
apps as well. However, they are not captured along with
information flow paths. From this, we can conclude that
the usage of single API calls between the benign apps and
the MalGenome apps is quite different. By examining the
sensitive APIs involved in information flows in these apps,
the most common flows indicates that data is often used
inside the app for benign apps, while in malicious apps data
mainly flows to the network and storage. As we increase the

TABLE 4
Gram Based Classification Results of Play 2014 and MalGenome

Apps
gram size TP TN FP FN accuracy

1 0.975 0.852 0.148 0.025 0.913
2 0.950 0.699 0.301 0.050 0.822
3 0.980 0.688 0.312 0.020 0.831
4 0.549 0.948 0.052 0.451 0.753
5 0.485 0.952 0.048 0.515 0.725

1,2 0.81 0.92 0.08 0.19 0.868
1,2,3 0.886 0.84 0.16 0.114 0.863

1,2,3,4 0.759 0.889 0.111 0.241 0.825
1,2,3,4,5 0.696 0.938 0.062 0.304 0.819

gram size, we gain more precision for classifying malicious
apps while losing precision for classifying benign apps. This
is anticipated, since benign apps are more diverse than
malicious apps. Increasing the gram size causes a loss of
common behavior pattern in benign apps. To this end, we
conclude that MalGenome apps are less complicated than
benign apps – a result confirmed by our manual inspection.
Another conclusion we can make is that MalGenome apps
are more interested in a certain set of single APIs heavily
compared to benign apps. This can be captured from the
fact that the gram size of 1 is enough to differentiate these
malware apps from benign apps.

We also evaluated classification on combined gram fea-
tures by aggregating different gram size features together as
our global feature space. The result is shown as the last 4
rows in Table 4. By aggregating different gram features, we
can achieve high accuracy rates in classifying both benign
apps and malicious apps. We can also see that by aggregat-
ing different gram features, we can achieve better precision
than using a single gram. However, we also degrade clas-
sifier performance by adding too much information. This is
captured by the fact that gram-1,2,3,4,5 has worse precision
when compared to other combinations.

5.4 Google Play Apps versus Modern Malware Apps
In this section, we designed different experiments to eval-
uate our system thoroughly based on benign apps and
modern malware apps. First, we examine the old and new
Google Play apps against modern malicious apps individ-
ually; then, we run analysis on all benign apps and mali-
cious apps. To do this, we divide modern malicious apps
randomly into two subsets to match up with old and new
benign apps accordingly and label them as Malware 1 and
Malware 2. The detailed results are discussed below.

5.4.1 2014 Google Play Apps vs. Modern Malware Apps
First, we show the result with the older benign apps
(Play 2014) and the newer malicious apps (Malware 1). The
detailed results are shown in Table 5. Interestingly, our
classification with 1-grams does not perform well in dis-
tinguishing malicious apps from benign apps. This is quite
different from the result with MalGenome apps, which gives
us a high precision using 1-grams. However, benign app
classification still shows a high precision, since the true
positive rate is 98.7%. Our classification on single gram
size works best with 2-grams with the true positive rate of
95% and the true negative rate of 84.8%. In this case, we
can conclude that recent malicious apps are more similar
to benign apps regarding the usage of single APIs than

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

9

TABLE 5
Gram Based Classification Results of Play 2014 and Malware 1 Apps

gram size TP TN FP FN accuracy
1 0.987 0.71 0.29 0.013 0.796
2 0.95 0.848 0.152 0.05 0.882
3 0.59 0.924 0.076 0.41 0.809
4 0.478 0.939 0.061 0.522 0.765
5 0.333 0.953 0.047 0.667 0.726

1,2 0.967 0.813 0.187 0.033 0.864
1,2,3 0.895 0.852 0.148 0.105 0.865

1,2,3,4 0.624 0.923 0.077 0.376 0.822
1,2,3,4,5 0.596 0.923 0.077 0.404 0.812

TABLE 6
Classification Results on Play 2016 vs Malware 2 Apps
gram size TP TN FP FN accuracy

1 0.921 0.767 0.233 0.079 0.838
2 0.841 0.863 0.137 0.159 0.853
3 0.619 0.863 0.137 0.381 0.75
4 0.475 0.948 0.052 0.525 0.743
5 0.424 0.948 0.052 0.576 0.721

1,2 0.968 0.849 0.151 0.032 0.904
1,2,3 0.857 0.877 0.123 0.143 0.868

1,2,3,4 0.683 0.877 0.123 0.317 0.787
1,2,3,4,5 0.667 0.89 0.11 0.333 0.787

MalGenome apps. However, the computational differences
between benign and malicious apps is captured by the fact
that we can still achieve very good accuracy in classification
using different gram sizes.

The last 4 rows in Table 5 show the result or using
combined gram sizes. Similar to our previous result with
the MalGenome apps, the true negative rate increases along
with the increase in gram size, while the true positive rate
decreases. The best performance is provided by combining
gram sizes of 1, 2, and 3. It has a false positive rate of
only 14.8% and a false negative rate of 10.5%. We can also
conclude that the aggregated feature space improves the
performance more than the single gram size feature space.

5.4.2 2016 Google Play Apps vs. Modern Malware Apps

Next, we evaluate our approach on different sets of apps.
In this experiment, we have used the most recent Google
Play apps, labeled as Play 2016, as our benign set. We
have then chosen a different set of malicious apps, labeled
as Malware 2. The result is shown in Table 6. The results
show similar behavior as we increase the gram size. We still
can achieve highly precise classification on this new set of
apps, while keeping the false positive rates low. Similar to
previous results, smaller gram sizes give us better accuracy
for both benign apps and malicious apps.

Additionally, we ran our classification on the new
Google Play apps versus the other set of malicious apps
(Malware 1). The evaluation results are shown in Table 7.
As we can see, the results are very similar. These results
also support our conclusion above that unlike MalGenome
apps, modern malware apps are more similar to benign
apps regarding the use of single APIs. However, they are
still very different from benign apps from the app behavior
perspective. This behavioral difference information can be
leveraged to distinguish malicious apps from benign apps.
Lastly, these results shows that our approach is effective
across all our apps included for evaluation.

TABLE 7
Classification Results on Play 2016 vs Malware 1 Apps
gram size TP TN FP FN accuracy

1 0.937 0.795 0.205 0.063 0.86
2 0.937 0.781 0.219 0.063 0.853
3 0.841 0.904 0.096 0.159 0.875
4 0.441 0.883 0.117 0.559 0.691
5 0.39 0.909 0.091 0.61 0.684

1,2 0.937 0.836 0.164 0.063 0.882
1,2,3 0.825 0.89 0.11 0.175 0.86

1,2,3,4 0.703 0.909 0.091 0.297 0.849
1,2,3,4,5 0.688 0.909 0.091 0.313 0.844

TABLE 8
Simple Information Flow Based Classification Results

appset TP TN FP FN Accuracy
Play 2014vsMalware 1 0.869 0.619 0.381 0.131 0.744
Play 2016vsMalware 2 0.587 0.821 0.178 0.413 0.713

5.4.3 Simple Information Flow Based Classification
For comparison purpose, we run experiments on simple
information flow((source, sink) pair) based classification.
The evaluation process are exactly the same as described
in subsection 5.1. The only difference is that we use (source,
sink) pairs as features instead of examining their structure.
We run two experiments over four datasets mentioned
in 5.4.1 and 5.4.2 and show the results in Table. 8. As
we see from the table, the simple flow based classification
does not perform well on classifying benign and malicious
apps in both experiments. This is highlighted by the fact of
low true negative rate(61.9%) in Play 2014vsMalware 1 and
low true positive rate(58.7%) in Play 2016vsMalware 2. The
implication is, simple information flows are insufficient to
classify benign and malicious apps.

5.4.4 General Google Play Apps vs. Modern Malware Apps
Lastly, in order to evaluate the effectiveness of our approach,
we run our analysis over a mixed set of both benign and
malicious APKs, which contains all 3,899 Google Play apps
and 3,899 modern malicious apps. The detailed results are
shown in Table 9. We have run classification analysis on
single size grams as well as combined grams. As shown in
the table, the results are quite similar to our previous results.
Single size grams do not perform well in distinguishing ma-
licious apps from benign apps, while combined grams work
better than single grams. Our classification on combined
grams works best with combination of 1-gram, 2-gram,
and 3-gram with the true positive rate of 97.6% and the
true negative rate of 91.0%. Again, we conclude that recent
malicious apps are more similar to benign apps regarding
the usage of single APIs than MalGenome apps. There might
be two reasons for this. First, many modern malicious apps
are repackaged apps from legitimate apps; secondly, many
modern malicious apps attempt to trick people into in-
stalling their apps by delivering desired functionality using
benign code. However, the fact that our classification system
can still achieve very good accuracy using different gram
sizes means that computational differences between benign
and malicious apps play a significant role in the data sets.

Due to different complexity of apps we evenly divide
both benign and malware APK set into three different
categories based on app size, to verify our approach against
complexity bias. The big size set contains the top 30% of the
APKs based on size; the medium set contains the middle

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

10

TABLE 9
Gram Based Classification Results of Google Play and Malware Apps

gram size TP TN FP FN accuracy
1 0.967 0.788 0.212 0.033 0.858
2 0.961 0.802 0.198 0.039 0.865
3 0.988 0.659 0.341 0.012 0.833
4 0.974 0.540 0.460 0.025 0.758
5 0.976 0.528 0.472 0.024 0.768

1,2 0.980 0.865 0.135 0.020 0.926
1,2,3 0.976 0.910 0.090 0.024 0.945

1,2,3,4 0.976 0.757 0.243 0.024 0.874
1,2,3,4,5 0.949 0.716 0.284 0.051 0.840

TABLE 10
Gram Based Classification Results of Google Play and Malware Apps

with Big Size Set
gram size TP TN FP FN accuracy

1 0.958 0.685 0.315 0.042 0.806
2 0.92 0.762 0.238 0.08 0.836
3 0.8 0.75 0.25 0.2 0.774
4 0.838 0.797 0.203 0.162 0.818
5 0.701 0.763 0.238 0.299 0.732

1,2 0.972 0.775 0.225 0.028 0.863
1,2,3 0.915 0.820 0.180 0.085 0.863

1,2,3,4 0.831 0.798 0.202 0.169 0.813
1,2,3,4,5 0.817 0.798 0.202 0.183 0.806

30% of the apps; finally, the small set contains the rest of
the apps. We also run the classification analysis based on
these different sizes. Table 10, Table 11 and Table 12 shows
the results for big, medium and small set respectively. As
shown in Table 10 and Table 11, the results are similar. The
single gram classification does not perform well, but the
combined gram classification can achieve high precision.
The interesting part is in classification on the small-size sets.
As shown in Table 12, this result shows similar behavior
with MalGenome apps, i.e., high precision with 1-gram
classification. Indeed, these apps are similar in nature to
MalGenome apps that were collected over 5 years ago—
they are small in size and less complex, and exhibit simple
malicious behavior.

In general, analyzing all Google play and modern mali-
cious apps via our classification system proves that behavior
analysis with Complex-flows and N-grams can achieve a
good performance at distinguishing malicious apps from
benign apps. However, even though the performance of
the above results is good, there is one issue that the TN
precision varies a lot while the TP precision remains high.
We have hypothesized one possible reason for this, which
is the imbalanced code size for benign and malicious apps.
That is, the code size for benign apps could be much larger
than malicious apps, which might affect our results.

To account for this potential size bias, we have designed
another experiment that balances the code size of benign
and malicious apps instead of balancing the number of
apps. This set contains 876 benign apps and 1,352 modern
malicious apps, but the total code size of both sets are
similar. The detailed results are shown in Table 13. The
results show slightly different behavior than our previous
results in Table 9, i.e., the precision on malware classification
increases with gram size while the precision on benign apps
decreases. Nevertheless, our system can still achieve high
precision distinguishing malicious apps from benign ones,
achieving 96.8% on true positive and 84.9% on true negative.

TABLE 11
Gram Based Classification Results of Google Play and Malware Apps

with Medium Size Set
gram size TP TN FP FN accuracy

1 0.762 0.797 0.203 0.238 0.778
2 0.980 0.759 0.241 0.020 0.883
3 0.989 0.798 0.202 0.011 0.894
4 0.969 0.756 0.244 0.031 0.871
5 0.968 0.667 0.333 0.032 0.826

1,2 0.990 0.747 0.253 0.0109 0.883
1,2,3 0.990 0.823 0.177 0.0109 0.917

1,2,3,4 0.980 0.759 0.240 0.020 0.883
1,2,3,4,5 0.989 0.667 0.333 0.011 0.837

TABLE 12
Gram Based Classification Results of Google Play and Malware Apps

with Small Size Set
gram size TP TN FP FN accuracy

1 0.962 0.864 0.136 0.039 0.920
2 0.976 0.655 0.346 0.024 0.847
3 0.988 0.597 0.404 0.013 0.825
4 0.987 0.542 0.458 0.013 0.794
5 0.985 0.348 0.652 0.015 0.659

1,2 0.987 0.712 0.288 0.013 0.869
1,2,3 0.974 0.729 0.271 0.026 0.869

1,2,3,4 0.974 0.678 0.322 0.026 0.847
1,2,3,4,5 0.962 0.667 0.333 0.039 0.809

5.5 Comparison to MudFlow

The closest related research to ours is MudFlow [7], which
directly leverages information flows as features for classifi-
cation and leverages machine learning techniques to classify
apps in order to detect malware. MudFlow is able to iden-
tify new malware as its focus is on identifying abnormal
usage. Even though the main goal of MudFlow is to de-
tect abnormal usage of information flows, the authors also
provide strategy to identify malware based on its flow of
sensitive data. We leverage this feature of MudFlow as a
comparison point to differentiate classification of malware
based on information flows compared to Complex-Flows.
We structure our comparison of malware classification sim-
ilarly to that made by other researchers [19], who report
similar result leveraging MudFlow. Specifically, we evaluate
whether Complex-Flows are a better factor than simple
information flows in malware classification. We believe that
MudFlow and our approach are complementary to each
other, allowing MudFlow to identify malware based on both
abnormal information flows and Complex-Flows.

We have obtained MudFlow from the authors and run
MudFlow on our evaluation datasets. However, some of
the apps were not successfully processed by MudFlow. The
reason for this is either that the MudFlow execution time
exceeded the one-hour time limit (which we also use for
our tool) or that there was simply no output generated
by MudFlow. In such instances we opted to discard these
apps from the dataset. Thus, we have used 605 benign
apps and 876 malicious apps that are processed correctly by
MudFlow. We note that the MalGenome apps are excluded
from this comparison as our tests successfully reproduced
the results reported in [7]. We would like to thank the
authors of MudFlow for providing their tool publicly to
facilitate the comparison.

MudFlow provides two different strategies for classifi-
cation: one-class SVM and two-class SVM. One class SVM
is trained only using benign apps, while two-class SVM is
trained using both benign and malicious apps. In addition,

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

11

TABLE 13
Classification Results on Google Play vs Malware Apps with Balanced

Code Size
gram size TP TN FP FN accuracy

1 0.921 0.767 0.233 0.079 0.838
2 0.841 0.863 0.137 0.159 0.853
3 0.619 0.863 0.137 0.381 0.75
4 0.475 0.948 0.052 0.525 0.743
5 0.424 0.948 0.052 0.576 0.721

1,2 0.968 0.849 0.151 0.032 0.904
1,2,3 0.857 0.877 0.123 0.143 0.868

1,2,3,4 0.683 0.877 0.123 0.317 0.787
1,2,3,4,5 0.667 0.89 0.11 0.333 0.787

TABLE 14
MudFlow Results on Evaluation Apps

run tnr tpr accuracy
one-class 0.678 0.673 0.676

two-class-1 0.665 0.675 0.669
two-class-2 0.695 0.715 0.712

there are two different settings in two-class SVM. For our
evaluation, we have used all three settings.

Table 14 and Table 15 show the results of MudFlow and
our approach. As shown, MudFlow can achieve the true
negative rate of 69.5% and the true positive rate of 71.5%.
In our approach, there is a significant tradeoff between true
positive and true negative rates when single gram sizes are
used from 1-gram to 5-gram. However, when we combine
different gram sizes, we achieve much better accuracy on
classification. We get the best performance result when we
combine gram sizes of 1, 2, 3, and 4; the true positive
rate is 92.2% and the true negative rate is 75%. We can
achieve a better true negative rate (5.5% higher) and a much
higher(20%) true positive rate than MudFlow. Recall that
MudFlow leverages simple information flows as a feature
and our approach leverage N-gram features from Multi-
Flow structure for classification. As mentioned in Section 2,
simple (source, sink) pair cannot distinguish two apps that
contain the same flow while app behavior features extracted
from Multi-Flow structure can provide us more information
to distinguish malicious apps from benign apps. The results
highlight this point. Our approach collects more information
based on app behavior to achieve a better solution, while
MudFlow ignores this kind of information.

Due to the number of apps evaluated, the complete
effectiveness of both tools is difficult to discern. Evalua-
tion results show that app behavior features captured by
Complex-Flows can be am effective factor to classify mal-
ware from benign apps. It is important to note that even
though both MudFlow and our approach internally leverage
information flows to detect malware, fundamentally we
are using different feature sets for classification. Again, we
believe these two approaches are complementary to each
other.

5.6 Classification Precision and Recall Rates

To understand performance of our classification system
on different malicious and benign apps, we summarize
experimental results and show how our system performs.
Table 16 shows the Precision-Recall rate based on different
experiments we mentioned above. Here, we show results
from Play 2014 against MalGenome to represent old mali-
cious and benign apps, and results from Play 2016 against

TABLE 15
Gram Based Classification Results on Evaluation Apps

gram size TP TN FP FN accuracy
1 0.563 0.889 0.111 0.438 0.735
2 1 0.611 0.339 0 0.794
3 0.969 0.611 0.389 0.031 0.779
4 0.291 0.899 0.101 0.709 0.649
5 0.377 0.89 0.11 0.623 0.657

1,2 0.953 0.708 0.292 0.047 0.824
1,2,3 0.953 0.725 0.275 0.047 0.837

1,2,3,4 0.922 0.75 0.25 0.078 0.831
1,2,3,4,5 0.875 0.722 0.278 0.125 0.788

TABLE 16
Gram Based Classification Precision and Recall.

dataset gram size precision recall
Play 2014vsMalGenome 1 0.868 0.975
Play 2016vsMalware 1 1,2 0.851 0.937
PlayvsMalware SizeBig 1,2,3 0.836 0.915

PlayvsMalware SizeMedium 1,2,3 0.848 0.990
PlayvsMalware SizeSmall 1 0.876 0.962

Malware 1 apps to represent modern malicious and be-
nign apps. Finally, we show results from app size related
experiments, which include big, medium and small sized
apps. For each of them, we calculate precision and recall
statistics based on different gram strategy we leverage on
each dataset and present our best system performance here.
Gram size column indicates the best gram strategy for each
dataset. Plus, we present precision/recall curve to show an
overview of our classification system performance for these
datasets over all gram strategies, as shown in Figure. 10.
We also highlight the best performance gram strategy as
indicated with arrows in this figure. This, again, shows that
our system can achieve a good performance on classification
malware from benign apps by applying different gram
strategies on different datasets.

As we can see, old malicious apps are easier to detect
since our system can distinguish them from benign apps
based on size 1 gram with a high precision and recall rate.
While both modern malicious and benign apps are more
complicated, single API usage analysis cannot differentiate
malware from benign apps. However, different behavior
patterns in malicious and benign apps can still be captured
when leveraging complex combination of grams. In this
dataset, we can achieve a good detection performance by
combining 1-gram and 2-gram. Last but not least, modern
big and medium size malicious apps are complicated and
more difficult to detect than small size ones. This is shown
in Table 16 as it requires complex strategy to achieve a good
precision and recall rate for big and medium size apps while
it is enough to leverage single API usage analysis for small
ones.

5.7 Classification based on SVM with Balanced Train-
ing

In order to evaluate the efficiency of our classification sys-
tem on imbalanced training classifier, we design another
experiment with more malware apps. In this section, we
managed to run another 12,000 malware apps and run our
classification system over them against previous 3,899 Play
Store apps. The results are shown in Table 17. Similar to
other evaluation settings, we have run classification analysis
on single size grams as well as combined grams. As shown

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

12

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0
Precision

11,21,2,3

1,2,31

2014vsMalGenome
2016vsModern
Size_Big
Size_Medium
Size_Small

Fig. 10. Precision and Recall Curve.

TABLE 17
Gram Based Classification Results with Balanced Training.
gram size TP TN FP FN accuracy

1 0.512 0.908 0.092 0.488 0.794
2 0.623 0.731 0.269 0.377 0.7
3 0.592 0.821 0.179 0.408 0.755
4 0.401 0.851 0.149 0.599 0.722
5 0.320 0.89 0.11 0.680 0.727

1,2 0.891 0.750 0.250 0.109 0.791
1,2,3 0.871 0.892 0.108 0.129 0.886

1,2,3,4 0.7 0.911 0.089 0.3 0.851
1,2,3,4,5 0.571 0.920 0.08 0.429 0.820

in the table, the results, show that single size gram does
not perform well in distinguishing malicious apps from
benign apps, while combined grams work better than single
gams. Our classification on combined grams works best
with combination of 1-gram, 2-gram and 3-gram with the
true positive rate of 87.1% and the true negative rate of
89.2%. Interestingly, unlike the previous results, the true
positive rate never achieves a high precision with single size
gram classification. We believe this is caused by the imbal-
anced number of benign and malware apps. This also tells
us that modern malware apps are more similar to benign
apps. Even though there is a slightly drop on classification
performance, our classification system can still achieve good
accuracy using different gram sizes. We can conclude that
computational differences between benign and malware
apps is a very important factor in distinguishing malicious
apps from benign apps.

5.8 Manual Validation

False positives and false negatives are well-known limita-
tions of static analysis and apply to our system as well. Since
benign apps are directly downloaded from Play Store, it is
possible that this set contains undiscovered malicious apps.
We manually validate our system based on our classification
results to account for this possibility. We choose fifty benign
apps categorized as malicious by our system for manual
examination. Most of these apps include multiple third-
party libraries such as ad libraries, which likely contribute
to the malicious rating. These libraries are complex and lack
detailed documentation, making it difficult for us to deter-

mine the maliciousness of each and every apps. However,
we do find some interesting cases, which we outline below.

Consider, photo.android.hd.camera.apk, which claims it is a
camera usage app. We found during our manual inspection
that this app includes a third party library known as umeng,
which is known as a high risk adware library. In particu-
lar, this library has a capability to download and request
installation of new apps. It also monitors running apps on
device and sends this process list to a remote location. It also
sends device information, such as IMEI, location and net-
work info to remote servers. Another interesting case is the
benign app com.necta.aircall accept.free.apk, which has over a
million downloads. This app is categorized as benign by our
classification system. However, based on one of the results
of an online malware detection services, it is reported as
malicious in our data set. We manually examined the source
code of this app to understand this discrepancy. We found
it to be a phone call app, which also monitors incoming
and outgoing calls on the device. It can also receive and
send SMS. Based on our observation and manually analyzed
purpose of the app, we do not find any inherent malicious
behavior though it is understandable why some tools may
classify it as malware based solely on its type of activities.

5.9 Discussion

Information flows themselves may not provide enough in-
formation to distinguish malware apps (misclassified mal-
ware from MudFlow). Detailed app behavior, captured by
N-grams, is an important feature that can provide critical
information used to distinguish malicious apps from benign
apps. The detailed app behavior collected by Complex-
Flow provides more evidence of the maliciousness of an
app (higher true negative rate of our approach). For ex-
ample, consider the following observation identified by the
research. Similar, long API call sequence are less common
across benign apps, indicating that benign apps vary greatly
in app behavior. However, long API call sequence are com-
mon across malware apps and can improve the detection
rate of malicious apps, indicating malware shares com-
mon behavior patterns. Different sizes of N-grams indicate
different complexities of app behavior. Many MalGenome
apps can be classified separately from benign apps based
on gram-1 features alone, meaning these apps show sig-
nificant difference of app behavior on single API versus
benign apps. In contrast, classification of other modern
malware apps requires more than gram-1 feature. This
means these malware are more similar with benign apps
than the MalGenome ones. However, they can still can be
differentiated from benign apps by analyzing detailed app
behaviors represented by different gram features.

6 THREATS TO VALIDITY AND LIMITATIONS

Our classification system leverages static analysis to gener-
ate Multi-Flows and thus suffers from the classic limitations
of this approach. As new techniques are developed to im-
prove precision of static analysis, specifically static analysis
techniques of Android, our tool will be able to leverage
these improvements. We currently do not handle analysis
of native code in Android apps. Our approach cannot

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

13

detect malicious behavior that is present in native code.
We observe that current statistics show that around 5% to
30% of apps make use of native code [57] [3].Unfortunately,
there are a number of know classes of Android malware
whose threat vector is primarily located in native code.
Our implementation currently does not consider these cases.
Other classification schemes use the presence of native code
as a feature itself [49] [45].

Another limitation of our approach is that we consider
all the apps we downloaded from Google Play Store as
benign, but we cannot be completely certain that there are
no malicious apps among them (x4.4 and x5.8). The mali-
cious apps we used in this paper stem from collections of
malware where each apps has been identified as malicious
at some point. We do not know its main attack type and
its malicious code features and our identification scheme
is currently agnostic to this information. Lastly, we only
consider continuous sub-sequence of API calls in this paper.
N-grams features of non continuous sequence of API calls
may also be great features for classification purposes.

7 RELATED WORK

Information Flow Analysis on Android. TaintDroid [14] is
one of the most popular dynamic tools to detect information
leaks. By instrumenting an app, TaintDroid can report and
stop leaks that occur during execution of the app, but cannot
determine if a leak exists prior to execution. Researchers
have also developed many static tools to detect information
flows, e.g. FlowDroid [6], StubDroid [5], CHEX [34], Mu-
taFlow [36]. However, these tools only detect information
flows as single source and sink pairs and report potential
leakage. We take a step further to analyze app behavior
along with information flows and interaction among differ-
ent flows. BidText [26] is an static technique to detect sensi-
tive data disclosure by leveraging information flow analysis
and type propagation. DroidChecker [11] is a static analysis
tool aimed at discovering privilege escalation attacks and
thus only analyzes exported interfaces and APIs that are
classified as dangerous. Instead of analyzing simple API
usage, we leverage API sequences as features to define app
behavior. Huang et al. [28] propose a type-based taint anal-
ysis to detect privacy leaks in Android apps. Relda2 [52],
a light-weight, scalable and practical static analysis tool,
leverages information flow analysis to detect resource leaks
in the byte-code of Android apps automatically. However,
this tool has been applied to 103 real world apps for testing.
We tested our tool on more than 12,000 real world apps
for evaluation. Yang et al. [53] develop a control-flow rep-
resentation of user-driven callback behavior and propose
new context-sensitive analysis of event handlers. Octeau et
al. [40] presented the COAL language and the associated
solver for MVC constant propagation for Android apps.
Barros et al. [8] present static analysis of implicit control flow
for Android apps to resolve Java reflection and Android
intents. In our tool, we resolve Android specific structs
and reflection usage as well. We believe these tools can
be complementary to each other. Slavin et al. [48] propose
a semi-automated framework for detecting privacy policy
violation in Android app code based on API mapping and
information flows. Li et al. [32] propose IccTA to detect

privacy leaks among components in Android apps. Yang
et al. [54] develop a control-flow representation based on
user-driven callback behavior for data-flow analyses on
Android apps. These tools use traditional information flows
as feature to detect leakage and pattern based dangerous
behavior. However, as we discussed above, both modern
benign and malware apps leverage information flows heav-
ily. It requires more information, such as Complex-Flow, to
distinguish them. AppContext [55] extracts context infor-
mation based on app contents and information flows and
differentiates benign and malicious behavior. However, it
requires manual labelling of security-sensitive method calls
based on existing malware signatures.
Android Malware Detection. There are many general mal-
ware detection techniques proposed for Android. Some
of these leverage textual information from the app’s de-
scription to learn what an app should do. For example,
CHABADA [20] checks the program to see if the app be-
haves as advertised. Kim et al. [30] propose API birthmarks
to characterize unique app behaviors, and develop a robust
plagiarism detection tool using API birthmarks. Meanwhile,
AsDroid [27] proposes to detect stealthy malicious behav-
iors in Android apps by analyzing mismatches between
program behavior and user interface. All these techniques
rely on either textual information, declared permissions,
or on specific API calls, while our approach focuses on
analyzing app behaviors based on the app code related to
device sensitive data.

Machine learning techniques are also very popular
among researchers for detecting malicious Android apps.
However, most of these solutions train the classifier only
on malware samples and can therefore be very effective
to detect other samples of the same family. For example,
DREBIN [4] extracts features from a malicious app’s mani-
fest and disassembled code to train their classifier, where as
MAST [10] leverages permissions and Android constructs
as features to train their classifier. PFESG [51] merely uses
permissions with high utilization, which avoids over-fitting
of classification models and quantifies each permission’s
ability to identify malware. Mahindru et al. [35] extract a
set of 123 dynamic permissions and evaluate a number of
machine learning classification techniques on the newly de-
signed dataset for detecting malicious Android applications.
We believe these coarse features are great mechanisms to fil-
ter many apps prior to leveraging techniques like our own,
which require more analysis of the app internals. McLaugh-
lin et al. [37] propose a novel android malware detection
system that uses a deep convolutional neural network
(CNN) based on static analysis of the raw opcode sequence
from a disassembled program. Instead, our system filters
out uninterested sequence and focuses on sensitive data
related app behaviors instead of using opcode sequence
directly. SecureDroid [12] considers different importances
of the features to the classification problem, and present
a novel feature selection method to make the classifier
harder to be evaded. It also proposes an ensemble learning
approach by aggregating individual classifiers to improve
the system security. Target [33] is a hybrid system featuring
both static and dynamic analysis. Its static analysis is based
on user permissions, signatures and source code, and dy-
namic analysis is based on the behavior of running mobile

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

14

applications. While we focus on extracting new behavior
features from apps, we believe these tools can be comple-
mentary to each other. There are many other systems, such
as Crowdroid [9], and DroidAPIMiner [2], that leverage
machine learning techniques to analyze statistical features
for detecting malware. Leeds et al. [31] leverage machine
learning to differentiate between benign and malicious apps
based on permission requests and system calls. However,
this has been applied to a small dataset. Our approach
focuses on detailed app behaviors from large sets of apps
and can achieve a better detection rate. Similarly, researchers
developed static and dynamic analyses techniques to detect
known malware features. Apposcopy [17] creates app sig-
nature by leveraging control-flow and data-flow analysis.
RiskRanker [21] performs several risk analyses to rank And-
roid apps as high-, medium-, or low-risk. Sebastian et al. [41]
analyze dynamic code loading in Android apps to detect
malicious behavior. [15], [13] and [22] are all signature-
based malware detection techniques and are designed to
detect similar malware apps.
Other Android Security Tools. In addition, researchers have
explored many other ways to ensure security on Android.
These tools leverage techniques on different aspects to pro-
tect sensitive data, such as compositional analysis, sandbox
mining, partitioning app code to handle confidential data
or UI examination [44] [29] [43] [25].

8 CONCLUSION

In this paper, we proposed a new concept of Complex Flows
to derive app behavior on device sensitive data. We also
present an automated classification system that leverages
app behavior along with app information flows for classify-
ing benign and malicious Android apps. We have detailed
our approach to discover Complex Flows in an app, extract
app behavior features, and apply a classification procedure.
We show the effectiveness of our classification system by
presenting evaluation results on Google Play Store apps and
known malicious apps. For future work, we plan on refining
N-grams feature extraction to eliminate noneffective frame-
work API calls. We also can leverage other machine learning
classification techniques to find the most effective ones.
Acknowledgement. This work has been supported in part
by an NSF CAREER award, CNS-1350883.

REFERENCES
[1] Mobile threat report 2016 - mcafee. http://www.mcafee.

com/us/resources/reports/rp-mobile-threat-report-2016.
pdf.

[2] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api-
level features for robust malware detection in android. In
Proc. of SecureComm 2013, 2013.

[3] V. M. Afonso, P. L. de Geus, A. Bianchi, Y. Fratantonio,
C. Kruegel, G. Vigna, A. Doupé, and M. Polino. Going
native: Using a large-scale analysis of android apps to
create a practical native-code sandboxing policy. In Proc.
of NDSS 2016, 2016.

[4] D. Arp, M. Spreitzenbarth, H. Gascon, and K. Rieck.
Drebin: Effective and explainable detection of android
malware in your pocket, 2014.

[5] S. Arzt and E. Bodden. Stubdroid: Automatic inference of
precise data-flow summaries for the android framework.
In Proc. of ICSE 16, 2016.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. L. Traon, D. Octeau, and P. McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android appstion in tcb source
code. In PLDI ’14, Edinburgh, UK, 2014.

[7] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,
S. Rasthofer, and E. Bodden. Mining apps for abnormal
usage of sensitive data. In ICSE ’15, Piscataway, NJ, USA,
2015.

[8] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl,
M. d’Amorim, and M. D. Ernst. Static analysis of im-
plicit control flow: Resolving Java reflection and Android
intents. In ASE ’15, Lincoln, NE, USA, 2015.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crow-
droid: behavior-based malware detection system for and-
roid. In SPSM ’11, 2011.

[10] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. Mast:
Triage for market-scale mobile malware analysis. In Proc.
of WiSec ’13, New York, NY, USA, 2013.

[11] P. P. Chan, L. C. Hui, and S. M. Yiu. Droidchecker:
analyzing android applications for capability leak. In Proc.
of WiSec ’12, 2012.

[12] L. Chen, S. Hou, and Y. Ye. Securedroid: Enhancing se-
curity of machine learning-based detection against adver-
sarial android malware attacks. In Proceedings of the 33rd
Annual Computer Security Applications Conference, ACSAC
2017, pages 362–372, New York, NY, USA, 2017. ACM.

[13] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics-aware malware detection. In Proc. of SP
’05, Washington, DC, USA, 2005.

[14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on
smartphones. In Proc. of OSDI’10, Berkeley, CA, USA, 2010.

[15] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In Proc. of CCS ’09,
2009.

[16] P. Faruki, V. Laxmi, M. S. Gaur, and P. Vinod. Mining
control flow graph as api call-grams to detect portable
executable malware. In Proc. of SIN ’12, 2012.

[17] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy:
Semantics-based detection of android malware through
static analysis. In Proc. of FSE ’14, 2014.

[18] Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel, and
G. Vigna. Clapp: Characterizing loops in android applica-
tions. In Proc. of ESEC/FSE ’15, 2015.

[19] J. Garcia, M. Hammad, and S. Malek. Lightweight,
obfuscation-resilient detection and family identification
of android malware. ACM Trans. Softw. Eng. Methodol.,
26(3):11:1–11:29, Jan. 2018.

[20] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking
app behavior against app descriptions. In Proc. of ICSE
’14, 2014.

[21] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: Scalable and accurate zero-day android mal-
ware detection. In Proc. of MobiSys ’12, 2012.

[22] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Auto-
matic generation of string signatures for malware detec-
tion. In Proc. of RAID ’09, 2009.

[23] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. J. Comput. Secur.,
1998.

[24] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosen-
berg, F. Shen, S. Y. Ko, and L. Ziarek. Flow permissions for
android. In Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2013),
2013.

[25] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and
G. Jiang. Supor: Precise and scalable sensitive user input
detection for android apps. In Proc. of SEC’15, 2015.

http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

15

[26] J. Huang, X. Zhang, and L. Tan. Detecting sensitive data
disclosure via bi-directional text correlation analysis. In
Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016,
2016.

[27] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. Asdroid:
Detecting stealthy behaviors in android applications by
user interface and program behavior contradiction. In
Proc. of ICSE ’14, 2014.

[28] W. Huang, Y. Dong, A. Milanova, and J. Dolby. Scalable
and precise taint analysis for android. In Proc. of ISSTA’15,
2015.

[29] K. Jamrozik, P. von Styp-Rekowsky, and A. Zeller. Mining
sandboxes. In Proc. of ICSE 16, 2016.

[30] D. Kim, A. Gokhale, V. Ganapathy, and A. Srivastava.
Detecting plagiarized mobile apps using api birthmarks.
Automated Software Engg., 23(4):591–618, Dec. 2016.

[31] M. Leeds, M. Keffeler, and T. Atkison. A comparison of
features for android malware detection. In Proceedings of
the SouthEast Conference, ACM SE ’17, pages 63–68, New
York, NY, USA, 2017. ACM.

[32] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. Iccta:
Detecting inter-component privacy leaks in android apps.
In Proc. of ICSE ’15, 2015.

[33] J. Lin, X. Zhao, and H. Li. Target: Category-based an-
droid malware detection revisited. In Proceedings of the
Australasian Computer Science Week Multiconference, ACSW
’17, pages 74:1–74:9, New York, NY, USA, 2017. ACM.

[34] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically
vetting android apps for component hijacking vulnerabil-
ities. In Proc. of CCS ’12, 2012.

[35] A. Mahindru and P. Singh. Dynamic permissions based
android malware detection using machine learning tech-
niques. In Proceedings of the 10th Innovations in Software
Engineering Conference, ISEC ’17, pages 202–210, New York,
NY, USA, 2017. ACM.

[36] B. Mathis, V. Avdiienko, E. O. Soremekun, M. Böhme, and
A. Zeller. Detecting information flow by mutating input
data. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017,
2017.

[37] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima,
P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé,
and G. Joon Ahn. Deep android malware detection. In
Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, CODASPY ’17, pages 301–
308, New York, NY, USA, 2017. ACM.

[38] A. Mohaisen and O. Alrawi. Av-meter: An evaluation of
antivirus scans and labels. In Proc. of DIMVA 2014, 2014.

[39] V. Moonsamy, M. Alazab, and L. Batten. Towards an
understanding of the impact of advertising on data leaks.
Int. J. Secur. Netw., 7, 2012.

[40] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel.
Composite constant propagation: Application to android
inter-component communication analysis. In Proc. of ICSE
’15, 2015.

[41] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and
G. Vigna. Execute This! Analyzing Unsafe and Malicious
Dynamic Code Loading in Android Applications. In Proc.
of NDSS ’14, San Diego, CA, 2014.

[42] F. Provost and T. Fawcett. Robust classification for impre-
cise environments. Mach. Learn., 42, 2001.

[43] K. Rubinov, L. Rosculete, T. Mitra, and A. Roychoud-
hury. Automated partitioning of android applications for
trusted execution environments. In Proc. of ICSE ’16, 2016.

[44] A. Sadeghi, H. Bagheri, and S. Malek. Analysis of android
inter-app security vulnerabilities using covert. In Proc. of
ICSE ’15, 2015.

[45] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim. FLEXDROID:

enforcing in-app privilege separation in android. In NDSS.
The Internet Society, 2016.

[46] F. Shen, J. D. Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek.
Android malware detection using complex-flows. In 37th
IEEE International Conference on Distributed Computing Sys-
tems, ICDCS 2017, Atlanta, GA, USA, 2017.

[47] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhan-
dapani, E. J. Lehner, S. Y. Ko, and L. Ziarek. Information
flows as a permission mechanism. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14. ACM, 2014.

[48] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan,
J. Bhatia, T. D. Breaux, and J. Niu. Toward a framework for
detecting privacy policy violations in android application
code. In Proc. of ICSE ’16, 2016.

[49] M. Sun and G. Tan. Nativeguard: Protecting android
applications from third-party native libraries. In Proc. of
WiSec ’14, 2014.

[50] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a java bytecode optimization
framework. In Proc. of CASCON ’99, 1999.

[51] C. Wang and Y. Lan. Pfesg: Permission-based android
malware feature extraction algorithm. In Proceedings of the
2017 VI International Conference on Network, Communication
and Computing, ICNCC 2017, pages 106–109, New York,
NY, USA, 2017. ACM.

[52] T. Wu, J. Liu, X. Deng, J. Yan, and J. Zhang. Relda2: An
effective static analysis tool for resource leak detection
in android apps. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering,
ASE 2016, 2016.

[53] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static
control-flow analysis of user-driven callbacks in android
applications. In Proc. of ICSE ’15, 2015.

[54] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static
control-flow analysis of user-driven callbacks in android
applications. In Proc. of ICSE ’15, 2015.

[55] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck.
Appcontext: Differentiating malicious and benign mobile
app behaviors using context. In Proc. of ICSE ’15, 2015.

[56] Y. Zhou and X. Jiang. Dissecting android malware: Char-
acterization and evolution. In Proc. of SP ’12, 2012.

[57] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get
off of my market: Detecting malicious apps in official and
alternative android markets. In Proc. of NDSS 2012, 2012.

9 BIOGRAHPY

Feng Shen is currently a Ph.D candidate at
University at Buffalo, where he focuses on static
data flow analysis for Android security. Before
joining UB, he graduated with MS from Arkansas
State University. Shen is currently leading the
BlueSeal team. The BlueSeal team mainly fo-
cus on research related to mobile security. The
BlueSeal team investigates static analysis and
dynamic instrumentation techniques onAndroid.
He is co-advised by Steve Ko and Lukas Ziarek.
His research interest is in security, distributed

systems, programming languages, and mobile computing.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2861405, IEEE
Transactions on Mobile Computing

16

Mr. Del Vecchio is a senior research scientist
with CUBRC and has worked as a program man-
ager for U.S. government sponsored research
programs for the past 12 years. He currently
manages a project that seeks to align and pro-
vide analytics for the many, heterogeneous data
sources available to Intel analysts. Mr. Del Vec-
chio is also a Ph.D candidate at the University at
Buffalo where he focuses on static code analysis
and reverse engineering.

Aziz Mohaisen is an Associate Professor in
the Department of Computer Science, with a
joint appointment in the Department of Electri-
cal and Computer Engineering, at the University
of Central Florida. His research interests are
in the areas of systems, security, privacy, and
measurements. His research work has been fea-
tured in popular media, including MIT Technol-
ogy Review, the New Scientist, Minnesota Daily,
Slashdot, The Verge, Deep Dot Web, and Slate,
among others. He obtained his Ph.D. from the

University of Minnesota. He is a senior member of IEEE.

Steven Y. Ko Steve Ko is an assistant professor
in the Department of Computer Science and En-
gineering at the University of Buffalo, The State
University of New York. His research interest
spans in systems and networking, with the cur-
rent focus on mobile systems. He received his
PhD from the University of Illinois at Urbana-
Champaign in Computer Science.

Lukasz Ziarek received the B.S. degree in Com-
puter Science from the University of Chicago
and the Ph.D. degree in Computer Science from
Purdue University. Lukasz Ziarek is an assitant
professor in the Department of Computer Sci-
ence and Engineering at the University of Buf-
falo, The State Univeristy of New York. His re-
search interests are in programming langauges
and real-time systems.

