
A Private Walk in the Clouds: Using End-to-End
Encryption between Cloud Applications in a Personal

Domain

Youngbae Song1, Hyoungshick Kim1, and Aziz Mohaisen2

1 Department of Computer Science and Engineering,
Sungkyunkwan University, Republic of Korea

{youngbae, hyoung}@skku.edu
2 Verisign Labs, USA

amohaisen@verisign.com

Abstract. This paper presents Encrypted Cloud (EnCloud), a system designed
for providing end-to-end encryption between cloud applications to facilitate their
operation and enable users trust in providers. EnCloud relieves end-users’ pri-
vacy concerns about the data stored in cloud services so that the private data are
securely stored on the cloud server in an encrypted form while the data owner’s
EnCloud applications are only allowed to decrypt the encrypted data. To show
the feasibility of EnCloud, we implemented a prototype for Dropbox. The experi-
mental results of the prototype demonstrate that the additional time delay incurred
by EnCloud operations is acceptable (within 11.5% of the total execution-time).

Keywords: Cloud; Domain Management; Privacy; End-to-End Encryption

1 Introduction

Cloud computing services offer many benefits (e.g., data storage and computing
infrastructure). However, they also raise serious privacy concerns [14]. These
concerns are not only limited to the prying eyes of providers but also include
government programs violating their citizens’ basic rights.

The Snowden’s leaks exposed that US and UK government agencies have
collected online users’ activities from cloud service providers. Reportedly, these
agencies can directly access data on central servers of several companies (e.g.,
Microsoft, Apple, Facebook, Yahoo, Google, PalTalk, and AOL) for their surveil-
lance efforts [6]. Also, providers like Google regularly get requests from gov-
ernments and courts around the world to hand over users’ data. In 2012, Google
received 21,389 requests for information affecting 33,634 user accounts, where
Google provided at least some data in response (about 66% of the time) [11].
Even worse, such cooperation is legal – the US Patriot Act, which was designed
to give the US government access to information that may help prevent terrorist

2

attacks, provides the legal platform for US law enforcement agencies to access
corporate and users data when necessary. To that end, users are starting to dis-
trust cloud providers, and many users would prefer to store their data on their
own devices at home, when possible [5, 7].

To contain such a powerful adversary, we propose EnCloud, a new security
application that prevents an attacker from accessing cloud-based data without
the owner’s knowledge or consent. EnCloud is designed to provide end-to-end
encryption between multiple cloud applications in the data owner’s personal do-
main. The proposed system is quite different from existing commercial products
in the key management (cf. §6): All encryption and decryption keys in EnCloud
are located at the client side rather than the server side. From a privacy perspec-
tive, users can then truly control the use of keys and manage their personal data.
To this end, our key contributions can be summarized as follows:

– We introduce EnCloud, a framework to address end-users’ privacy concerns
in cloud storage settings. We propose a secure domain management frame-
work so that the user’s data can only be accessed by cloud applications reg-
istered for her personal domain (cf. §3).

– We show that EnCloud can achieve data confidentiality against powerful ad-
versaries who can access not only the data stored in the cloud storage but
also any network communication at home by analyzing the security proper-
ties of the EnCloud system (cf. §4).

– We demonstrate the deployability of EnCloud by implementing a prototype
to support end-to-end encryption between cloud applications for Dropbox.
With this prototype, we analyze the overhead of EnCloud and demonstrate
that the additional time overhead incurred by the encryption and decryp-
tion operations is rather marginal (within 11.5% of the total execution-time)
compared with the overall execution-time (cf. §5).

The rest of this paper is organized as follows. In §2 we introduce the threat
model. In §3 we outline the design of EnCloud. In §4 we discuss a security
analysis of EnCloud. A prototype implementation and results are introduced in
§5. The related work is reviewed in §6, followed by concluding remarks in §7.

2 Threat Model

We consider a powerful adversary who acts as a government agency. The ad-
versary can access the data stored in the cloud storage and can monitor the
traffic between the end-user and cloud provider. We assume a computationally
bounded adversary running in a polynomial time, and is not capable of breaking
the encryption algorithm without knowing the key(s) used for encryption; this

3

assumption is reasonable since breaking advanced encryption algorithms (e.g.,
AES [3]) is computationally infeasible for the most powerful supercomputers.

We assume end-hosts are trusted and not under the control of the adversary.
However, the adversary is able to guess a user-chosen password using a low-
cost offline password attack – in offline password attacks, an adversary holds
any password-related messages or data, and then iteratively guesses the user’s
password and verifies whether his guess is correct or not in an offline manner.

Our goal is to protect the user’s private data stored in the cloud so that the
adversary only knows the presence of the encrypted data and their characteris-
tics (e.g., creation time, size, etc.) but not the contents or intended use.

3 EnCloud System

To achieve the security goal described in §2, a user U ’s data should always be
stored on the cloud server in an encrypted form. If U uses a single machine,
end-to-end encryption is simple enough to be implemented – the encryption and
decryption keys can easily be managed by an application on that machine.

However, nowadays a cloud service is not anymore accessed by a client
application on one single machine. Users can use the cloud service for their
PCs, Smartphones, tablets, smart TVs or any device equipped with the client
applications. Thus a major challenge is how to share keys securely between
these devices. EnCloud is designed to do this by creating a personal domain
of authorized applications (or devices) that can decrypt the data on the cloud
storage, in turn, ensuring that no unauthorized application can decrypt the data.

EnCloud has two functional components: Domain Manager (DM) and Do-
main Client (DC). To use a cloud server S in a private manner, the user U installs
a DM application on one of her devices (e.g., PC or smartphone) – in principle
DM should always be available for the communication with DC’s; U also in-
stalls a DC application on her other devices to create her personal domain. We
briefly explain the roles of DM and DC as follows (shown in Figure 1):

– Domain Manager (DM) is an application which is responsible for manag-
ing its domain members (i.e., Domain Clients) by registering and revoking
them. The user U has to install this application on a network-enabled de-
vice (e.g., PC or Smartphone). This device would have processing, storage
and display capabilities. The DM application creates a domain key and dis-
tributes the key to the domain clients in a secure manner. Here we assume
that DM should always be available for the communication with its domain
members although DC’s can often be turned off and turned back on.

4

Table 1. The notations used in the EnCloud system.

Notation Description Notation Description
U User of EnCloud S Cloud Server
DM Domain Manager DCi Domain Client with the name of i
d Data being stored in the cloud k Domain key
dek Data encryption key idd Unique identifier of data d

ci PIN code for DCi ski Session key for DCi

puki Public key for DCi prki Private key for DCi

Fig. 1. The proposed EnCloud framework. Domain Manager (DM) is responsible for managing
its domain members (i.e., Domain Clients) by registering and revoking them; a Domain Client
(DC) can securely access the data created by one of DC’s in the same domain.

– Domain Client (DC) is an application which is responsible for encrypting
user data when the data are exported from originating domain and decrypt-
ing the encrypted data when encrypted data are imported into the domain.
An existing cloud application interacts with DC to encrypt user data before
uploading the data to the cloud server directly. A user U has to install the
DC application on all the user’s devices which will use the cloud server S.

With these two components, EnCloud securely protects U ’s private data
within her personal domain devices through (1) end-to-end encryption and (2)
domain management. In the following subsections, we will present how En-
Cloud works for protecting user data on the cloud server S. The notations used
in outlining the operation of EnCloud are summarized in Table 1.

3.1 End-to-End Encryption

In EnCloud, encryption and decryption operations are processed at each DC
application for end-to-end encryption between cloud applications. When up-

5

loading the data to the cloud server S, the data should be encrypted while the
encrypted data should be decrypted only after downloading the data so that the
user’s data can be accessed by authorized applications only in her personal do-
main. Here we assume that each DC application holds the domain key k. In §3.2,
we will discuss how to manage k for DC applications.

Uploading Data. When a user U uploads her personal data d from a cloud
application to the cloud server S, the cloud application asks for the encryption
of the data d by interacting with DCi. DCi creates a data encryption key dek to
encrypt the data d. After encrypting the data d with dek, dek is also encrypted
to be securely stored in the cloud storage. A unique identification string idd
is used to associate dek with d. For example, the file name of d can be used
to implement idd. After creating these objects, DCi returns them to the cloud
application and then the cloud application sequentially uploads them instead of
the original data d. This process can be represented in the following manner:

U −→ S : (Edek(d), idd)

U −→ S : (Ek(dek), idd)

Downloading Data. When a user U wishes to download the data d from the
cloud server S via its associated cloud application, the cloud application returns
(Edek(d), idd) and (Ek(dek), idd). The identifier idd is used as an index to
obtain them. This process can be represented in the following manner:

S −→ U : (Edek(d), idd)

S −→ U : (Ek(dek), idd)

DCi decrypts Ek(dek) with the key k then decrypts Edek(d) with dek. After
decrypting both objects, DCi returns the plain data d to the cloud application.

3.2 Domain Management

When a user U uses several applications and devices for the cloud server S, it
is necessary to securely share keys between them for an application to freely
exchange the encrypted data with other applications installed on other devices.

Creating Domain. After choosing a device which is proper for DM, U installs
the DM application on the device. The DM application runs with default con-
figuration settings and generates a random key k as domain key. The domain
key k is securely stored.

6

Registering Device. When U registers a device with the name of i into her
domain, U installs the DC application on the device. The DC application (i.e.,
DCi) then searches DM via a network interface (e.g., WiFi). When the proper
DM application is found, U requests the DM application to join DCi into the
domain managed by the DM application by sending the JOIN request message.
This process can be represented in the following manner:

DCi −→ DM : JOIN, DCi, DM

When DM receives the JOIN request message, the unique identifier i for
DCi and a randomly generated PIN code ci are displayed on DM. The displayed
information is used to prevent man-in-the-middle attacks. U has to input the
code ci on DCi for establishing a secure communication channel between DM
and DCi. When U successfully types the code ci on DCi, both DM and DCi

generate a session key ski derived from the common secret code ci (i.e., ski ←
G(ci) where G is a randomized algorithm that takes ci as input and returns ski).

In addition, DCi generates its own public/private key pair puki and prki
to securely exchange messages with the DM application. To register puki to
DM, DCi first encrypts (puki, DCi, DM) with ski and sends it to DM. After
receiving this message, DM decrypts it with ski and checks whether DCi and
DM are correctly obtained. If they are valid, DM stores the information about
DCi including its public key puki and sends the domain key k to DCi encrypted
with puki. This process can be represented in the following manner:

DCi −→ DM : Eski(puki, DCi, DM)

DM −→ DCi : Epuki(k, DCi, DM)

After receiving the above message, DCi decrypts Epuki(k, DCi, DM) with
its private key prki and then securely stores k for later end-to-end encryption.
In this step, DCi also checks whether DCi and DM are correctly obtained by
the decryption to prevent modification of Epuki(k, DCi, DM) by an adversary.

Removing Device. When U removes a device i from her domain, U uninstalls
the DC application (i.e., DCi) from the device. While DCi is uninstalled, it
securely deletes the domain key k, its own public/private key pair and then sends
the LEAVE request message. This process can be represented as follows:

DCi −→ DM :LEAVE, DCi, DM

After receiving the LEAVE request message, DM displays DCi’s identifier
i and asks U to remove DCi from her domain. When U agrees to remove DCi,
DM deletes all the data related to DCi (i.e., puki and i for DCi).

7

Updating Domain Key. When a domain device is stolen or lost, U needs to
update the domain key k since she does not want to allow the stolen (or lost)
device to still access her personal data. To accomplish this task, U manually
selects to remove the stolen (or lost) device from the domain members – DM
deletes all the data related to the DC application to be removed.

When U tries to update the domain key, DM generates a new domain key
k̂ and then searches actively running DC applications via a network interface.
If there exist multiple running DC applications, DM (randomly) chooses an
application as key updater; DM sends the new domain key k̂ with the UPDATE
message to the chosen DC application (without loss of generality, we assume
that DCi is chosen). This process can be represented in the following manner:

DM −→ DCi : UPDATE, DCi, DM, Epuki(k̂)

After receiving the above message, DCi displays the DM application’s iden-
tifier and asks U to update the domain key. When U agrees to replace the old
domain key k with k̂, DCi decrypts Epuki(k̂) with prki to obtain the new do-
main key k̂ and starts downloading all encrypted data encryption keys from the
cloud server S. After downloading all data encryption keys encrypted with the
old domain key k, DCi decrypts them with k, and re-encrypts the data encryp-
tion keys with the new domain key k̂. Finally, DCi uploads all the data encryp-
tion keys encrypted with k̂ to S and then sends the UPDATED message to DM.
This process can be represented in the following manner:

S −→ DCi : (Ek(dek), id)

DCi −→ S : (Ek̂(dek), id)

DCi −→ DM : UPDATED, DCi, DM

After receiving the UPDATED message, DM periodically sends the new do-
main key k̂ to the remaining domain members over secure and authenticated
channels created using their public keys until no more DC applications with the
old domain key k are found.

Replacing Domain Manger. We also need to consider replacing the domain
manager DM with a new one. This task can be implemented by a sequential
combination of ‘creating domain’, ‘registering device’ followed by ‘updating
domain key’. After creating a new domain and registering all the current DC
applications to the new domain, domain key should be updated with the new
domain manager. To support this feature, each DC application keeps the last
domain key when it was registered again.

8

4 Security Analysis

In EnCloud, encryption provides confidentiality of user data – the encrypted
data are protected with the data encryption key dek which is randomly generated
by an individual DC application; the dek is encrypted again with the domain
key k so that only a DC application with the domain key k can obtain the data
encryption key dek.

With the information about the user data stored in the cloud storage, an
adversary cannot obtain any information about the data encryption key dek and
the domain key k except for their associated identifiers if the adversary cannot
break the encryption algorithms used for Ek(dek).

Furthermore, even if the adversary can monitor all the communications be-
tween the DM and DC applications, the message including the domain key k is
encrypted with the DCi’s public key puki. Thus, it is infeasible to obtain k for
the adversary since the DCi’s private key prki securely stays in DCi.

A major challenge which we address in EnCloud is to prevent an adversary
who performs an offline brute force attack on the PIN code ci. With the captured
messages between DM and DC applications, an adversary might still try to
guess ci and check his guesses by attempting decryption of Eski(puki, DCi, DM).
However, the session key ski is only used to provide the integrity of puki. With
puki alone, an adversary cannot obtain any information about k.

EnCloud engages users in actions by showing on-screen messages with the
requested device’s identifier to continue performing tasks like registration into
a domain, removal of a domain, and update of a domain key. These interactions
can help rule out unauthorized commands and man-in-the-middle attacks.

5 Prototype Implementation

In this section, we demonstrate a prototype implementation of EnCloud for
Dropbox. The purpose of this implementation shows that the EnCloud system
can practically be implemented without incurring significant overhead. We im-
plemented an app on the Android platform for Dropbox. Dropbox APIs (sdk-
1.6) were used to upload and download files. We simplified the implementation
of EnCloud by assuming that the domain client application already holds a do-
main key. We particularly focused on the feasibility of end-to-end encryption
rather than domain management. For encryption, we used AES-256 (with CBC
and PKCS5Padding) in the javax.crypto package. When a user uploads
a file d, this app internally creates two files where one is for d and the other
one is for its data encryption key dek. The file d is encrypted with dek; dek is
encrypted with a domain key k internally stored in the EnCloud app.

9

Table 2. The execution-time measurements (SD: Standard Deviation) for encryption/decryption
operations and the total processing with varying file sizes. The time units are in milliseconds.

File Size Encryption Decryption Total

20MB
Mean 1545.73 (1.38%) 4710.73(4.19%) 112366.16
Max 1919.00 (0.74%) 7459.00 (2.88%) 259086.00
SD 207.96 (0.63%) 914.07 (2.77%) 32981.14

40MB
Mean 2796.26 (1.53%) 8032.70 (4.40%) 182738.23
Max 3537.00 (1.40%) 9798.00 (3.88%) 252612.00
SD 294.50 (0.76%) 984.22 (2.54%) 38808.89

60MB
Mean 4394.83 (1.44%) 13855.57 (4.54%) 304931.63
Max 5327.00 (1.19%) 19079.00 (4.25%) 448645.00
SD 599.61 (0.70%) 2585.83 (3.02%) 85367.29

80MB
Mean 7251.43 (1.40%) 32864.33 (6.33%) 519346.70
Max 92648.00 (7.22%) 57218.00 (4.46%) 1281747.00
SD 674.48 (0.29%) 8799.67 (3.85%) 228689.78

100MB
Mean 8389.26 (1.22%) 69905.77 (10.16%) 687818.37
Max 9779.00 (0.39%) 79668.00 (3.16%) 2523523.00
SD 1257.80 (0.31%) 5598.06 (1.36%) 410183.42

When a file is uploaded and downloaded, we measured the execution-time
incurred by encryption and decryption operations compared with the total execution-
time. To decrease the bias associated with the performance realized from the
testing samples, we repeated the test procedure 30 times with varying file sizes
from 20MB to 100MB. We used a Samsung Galaxy Note 2 (with a 1.6 GHz
Quad-core CPU, 533MHz GPU and 2GB RAM) running the Android 4.3 ver-
sion, and equipped with a non-congested 100 Mbit/s WiFi connection to a LAN
that was connected to the Internet via a Gigabit-speed link; the execution-time
overhead was measured using the method System.currentTimeMillis().
The experimental results are shown in Table 2.

The test results show that the execution-time overhead incurred by encryp-
tion and decryption operations is marginal compared to the overall overhead. For
example, when the file size was 20MB, the total execution-time was 112,366
milliseconds on average while the execution-time measurements for two en-
cryption and two decryption operations were only about 1,545 and 4,710 mil-
liseconds, respectively, on average (for the 30 trials; about 1.37% and 4.19%
of the total execution-time). Although the average encryption and decryption
time was greatly affected by the file size, the additional overheads of encryp-
tion and decryption operations were still manageable: the average additional
delay incurred by encryption and decryption was less than 11.5% of the total
execution time in the worst case. This is because file transfer may overwhelm
other operations such as encryption and decryption. Interestingly, we can see
the significant difference in execution time between encryption and decryption.
We surmise that the underlying physical characteristics of NAND flash mem-

10

ory used in the prototype implementation may explain this characteristic – read
and write operations are needed only once for encryption whereas one read and
two write operations are needed, respectively, for decryption. If we consider the
fact that read is typically at least twice faster than write for flash memory, the
performance difference between encryption and decryption seems natural.

We now discuss the execution-time for updating domain key. When a do-
main device is stolen or lost, the domain key should be updated. We tested the
key update procedure 30 times with a 100MB file under the same conditions to
measure the execution-time to process this task. The average execution-time was
2,258 milliseconds, concluding that the proposed key update procedure is effi-
cient compared with, for instance, the case of the time it takes to download (or
upload), encrypt, and decrypt the same file with a domain key k, which yields
the total average execution-time of 364,393 milliseconds.

The space overhead can generally be computed with the number of stored
files as follows: For a file d to be stored in the cloud storage, the EnCloud system
stores the following files: encrypted data = (Edek(d), idd) and data encryption
key = (Ek(dek), idd) where dek is a randomly generated key and idd is a unique
identification string for d. If we use a m-bits block cipher for the encryption E,
|Edek(d)| ≤ |d| +m since the maximum length of the padding is less than m.
To store Ek(dek) and two idd strings, the additional overhead of m bits and
2 · |idd| is also needed, respectively. Therefore the worst case space overhead is
n·(2·m+2·|idd|) where n is the number of files to be securely stored in the cloud
storage. For example, if 30,000 private files are stored and the EnCloud system
uses AES-256 for encryption E with 256 bits for idd, the total storage overhead
is about 3.66MB (≈ 30, 000kb). In the EnCloud system, the space overhead is
proportional to the number of files to be stored and is rather marginal.

6 Related Work

The cloud computing [12] promises many opportunities while posing a unique
security and privacy challenges. Takabi et al [14] argued that privacy is a core is-
sue in all the challenges facing cloud computing – many organizations and users
are not comfortable storing their data on off-premise data centers or machines.

End-users do not trust cloud services to store their personal data, and would
prefer to store the data on their devices at home. Ion et al. [7] showed that many
users believe that the data stored in cloud services can be exposed or stolen.
Similarly, a survey by the Fujitsu Research Institute showed that about 88% of
cloud customers were concerned with unauthorized access to their data [5].

In practice, the user data in cloud services are often exposed to the risk of
unauthorized access. For example, Dropbox recently suffered an authentication
bug that made it possible to log into some users’ accounts without a password

11

for about 4 hours [10]. In addition, the Snowden’s leaks [1] explain why privacy
concerns on the cloud are not far fetched – some intelligence agencies (e.g.,
NSA and GCHQ) have collected online users’ data, even from cloud providers.
These cases show how cloud computing services could be vulnerable in real-
world situations, not only by external but also internal adversaries.

Kamara and Lauter [8] proposed several architectures for cryptographic
cloud storage based on cryptographic primitives such as searchable encryp-
tion and attribute-based encryption to mitigate privacy risks in cloud services.
They are particularly interested in sharing a secure cloud storage between users.
We extend their work for a different scenario where a user wants to share her
personal data between her cloud applications. Our focus is to design a simple,
efficient, and general framework that provides end-to-end encryption between
cloud applications in the data owner’s personal domain.

Slamanig [13] demonstrated how to use side channels (CPU time or storage
space) in cloud to infer the behavior of co-located users. Khan and Hamlen [9]
proposed a framework called AnonymousCloud based on Tor [4] (which is de-
signed to resist traffic analysis) in order to conceal ownership of cloud data.

There are several solutions providing end-to-end encryption for off-premise
user data. To that end, Voltage Security (www.voltage.com) introduced a
commercial security product based on identity-based encryption (IBE) [2] to
protect files and documents used by individuals and groups. While usable in
many applications, like email, an obvious shortcoming of the technique is that
the provider can also decrypt its users’ data for having access to users’ pri-
vate keys. In other words, in order for the system to work, users have to trust
the provider, a requirement we set to avoid in this work. Encryption services
such as Boxcryptor (https://www.boxcryptor.com) and Cloudfogger
(http://www.cloudfogger.com) encrypt user data locally and then the
encrypted data sync with the user’s cloud storage. However, the security of their
solutions relies on the difficulty of guessing passwords since the decryption keys
in their services are protected with a password typed by the user at login. Unlike
these products, EnCloud is designed to provide end-to-end encryption to defeat
offline dictionary attacks; all encryption and decryption keys in EnCloud are
located at the client side rather than the server side.

7 Conclusions

We proposed a system named EnCloud against powerful adversaries (e.g., an
intelligence agency) who can access cloud-based data. EnCloud is designed to
provide end-to-end encryption between cloud applications in the data owner’s
personal domain so that the private data are securely stored on the cloud server in

12

an encrypted form while the data owner’s EnCloud applications are only allowed
to decrypt the encrypted data.

We also demonstrated EnCloud’s feasibility by analyzing the security and
performance on a prototype implementation for Dropbox. We highlighted that
the additional execution-time overhead incurred by EnCloud is not significant
compared with the overall execution-time. This shows that EnCloud can be im-
plemented without a significant overhead while providing an effective end-to-
end encryption between cloud applications. However, in this prototype, the ad-
versary can learn some meta attributes about files (e.g., creation time, size, etc.).
In future work, we will consider how to hide such information.

8 Acknowledgements

This research was supported by the MSIP (Ministry of Science, ICT & Future Planning), Ko-

rea, under the ITRC (Information Technology Research Center) support program (NIPA-2014-

H0301-14-1010) supervised by the NIPA (National IT Industry Promotion Agency).

References

1. Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat internet
privacy and security (2013)

2. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. of
Computing 32(3) (2003) 586–615 extended abstract in Crypto’01.

3. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York, Inc. (2002)
4. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In:

Proceedings of the 13th Conference on USENIX Security Symposium. (2004)
5. Fujitsu Research Institute: Personal data in the cloud: a global survey of customer attitudes

(2010)
6. Gellman, B., Poitras, L.: U.S., British intelligence mining data from nine U.S. Internet

companies in broad secret program (2013)
7. Ion, I., Sachdeva, N., Kumaraguru, P., Čapkun, S.: Home is safer than the cloud!: Privacy

concerns for consumer cloud storage. In: Proceedings of the Seventh Symposium on Usable
Privacy and Security, ACM (2011) 13:1–13:20

8. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Proceedings of the 14th Interna-
tional Conference on Financial Cryptograpy and Data Security. (2010) 136–149

9. Khan, S., Hamlen, K.: Anonymouscloud: A data ownership privacy provider framework in
cloud computing. In: Proceedings of the 11th International Conference on Trust, Security
and Privacy in Computing and Communications. (2012) 170–176

10. Kincaid, J.: Dropbox security bug made passwords optional for four hours (2012)
11. Mearian, L.: No, your data isn’t secure in the cloud (2013)
12. Mell, P., Grance, T.: The NIST definition of cloud computing. http://csrc.nist.

gov/publications/nistpubs/800-145/SP800-145.pdf (2011)
13. Slamanig, D.: More privacy for cloud users: Privacy-preserving resource usage in the cloud.

In: 4th Hot Topics in Privacy Enhancing Technologies, HotPETs. (2011)
14. Takabi, H., Joshi, J.B.D., Ahn, G.J.: Security and privacy challenges in cloud computing

environments. IEEE Security and Privacy 8(6) (2010) 24–31

