
A Keylogging Inference Attack on
Air-Tapping Keyboards in Virtual Environments

Ülkü Meteriz-Yıldıran*†

University of Central Florida
Necip Fazıl Yıldıran ‡§

University of Central Florida
Amro Awad¶

North Carolina State University
David Mohaisen||

University of Central Florida

ABSTRACT

Enabling users to push the physical world’s limits, augmented and
virtual reality platforms opened a new chapter in perception. Novel
immersive experiences resulted in the emergence of new interaction
methods for virtual environments, which came with unprecedented
security and privacy risks. This paper presents a keylogging infer-
ence attack to infer user inputs typed with in-air tapping keyboards.
We observe that hands follow specific patterns when typing in the
air and exploit this observation to carry out our attack. Starting with
three plausible attack scenarios where the adversary obtains the hand
trace patterns of the victim, we build a pipeline to reconstruct the
user input. Our attack pipeline takes the hand traces of the victim
as an input and outputs a set of input inferences ordered from the
best to worst. Through various experiments, we showed that our
inference attack achieves a pinpoint accuracy ranging from 40% to
87% within at most the top-500 candidate reconstructions. Finally,
we discuss countermeasures, while the results presented provide a
cautionary tale of the security and privacy risk of the immersive
mobile technology.

Index Terms: Security and privacy—Privacy protections; Human-
centered computing—Text input; Human-centered computing—
Ubiquitous and mobile devices

1 INTRODUCTION

After decades of research and development [11, 12, 15, 19, 23], aug-
mented reality (AR) technologies are now available for consumers,
offering immersive experiences with a blend of virtual and real-world
contents and promising many practical applications [31,38]. Having
got the attention of users via smartphone AR [44, 46], the develop-
ment of more sophisticated AR technologies, such as head-mounted
displays (HMDs), navigation systems [14, 36], and automotive AR
windshields [17, 45], is also gaining speed. The applications offered
within the recently available AR HMD devices, such as Magic Leap
1 [4] and Microsoft HoloLens [5], show the diverse use cases of
these technologies, including simulation, entertainment, training,
and assistance. With AR’s involvement in response to the needs
that emerged from the recent COVID-19 outbreak [3,16,22,34], the
benefits of the AR technology are even more evident.

Despite their benefits, new security and privacy risks emerge from
the AR/VR’s fundamentally new interaction methods. As AR/VR
devices get closer to end-users, the community has put efforts into
identifying potential risks. HMDs are considered more secure as
only the user can see the contents [29]. However, recent work
showed they bring risks in other respects [26, 27, 30, 35, 40, 47].

*e-mail: meteriz@knights.ucf.edu
†Co-first author.
‡e-mail: yildiran@knights.ucf.edu
§Co-first author.
¶e-mail: ajawad@ncsu.edu
||e-mail: mohaisen@ucf.edu

Figure 1: First person view of the AR keyboard and hand model.

The interaction methods in AR/VR and with immersive plat-
forms shift towards more natural methods to offer a more convinc-
ing perception [2, 20, 48–52]. These methods include interaction
through voice commands, hand gestures, head movements, IMU
rings, and remote controllers. For text entry, Microsoft HoloLens
uses head movements and hand gestures, Microsoft Hololens 2 uses
air-tapping, and Magic Leap 1 uses a remote controller to write on a
virtual keyboard with a conventional layout shown only to users.

Acknowledging the risks, this paper presents and evaluates a
keylogging inference attack on in-air tapping input entry methods
by exploiting the hand trace information. Our attack leverages the
fact that hands follow specific patterns when tapping keys to achieve
keystroke detection. By localizing the keystrokes in time and space
and interpreting the task as a temporal localization problem, we
rigorously explore possible keyboard reconstructions from the key
tap points and develop heuristics to achieve best to worst ordering
of the reconstructions. Our method avoids any assumption on the
positioning and size of the keyboard to account for users’ freedom
in placement, configuration, and scale of virtual objects, which
is an essential feature of AR/VR applications. Our experiments
demonstrate that we can recover the text typed by a victim user with
up to 87% pinpoint accuracy. Additionally, the results remain above
40% for text length varying from 5 to 250, which is alarming.

Contributions. The research community envisions that the AR/VR
technology will invade many new domains and will be used by a
large number of users ubiquitously [28, 39], which makes under-
standing the technology’s potential vulnerabilities both timely and
critical. To this end, our key contributions are as follows. (1) We
present the first inference attack on in-air tapping keyboards for
AR/VR devices. Our attack is based on the victim’s hand traces and
does not require any user profiling, making it applicable to various
scenarios and adversarial capabilities. Our attack avoids strong as-
sumptions on the positioning and scaling of the keyboard to account
for users’ flexibility in configuring them in virtual environments.
(2) We present a detailed step-by-step and end-to-end evaluation
of a five-step attack pipeline. We measure the performance of our
method in terms of various metrics from the related literature. We
discuss how the performance of each step affects the end results
and demonstrate the performance of the disjoint steps to show their
applicability to keylogging inference attacks in various contexts. (3)
By observing that our attack and the use scenarios assume a fixed

position keyboard in a single session, we propose and analyze a
defense by dynamically positioning the keyboard in space.
Organization. We describe the system and threat models in § 2,
followed by the presentation of our five-step pipeline in § 3. We
discuss the performance evaluation, results, and defenses in § 4. We
review the related work in § 5 and conclude our work in § 7.

2 SYSTEM AND THREAT MODELS

2.1 System Model
For executing our attack, we developed an in-air tapping keyboard–
AR keyboard. Figure 1 shows the first person view of the AR key-
board and the hand models. Although the keyboard design and our
study also apply to VR, we mainly address AR environments.
AR Keyboard Design. In our keyboard design, the user attaches the
AR keyboard to some arbitrary location in the virtual environment,
and the AR HMD tracks the user’s hands. The AR HMD detects the
keystrokes by checking if a fingertip collides with a key in space.
The keyboard layout is US and it can be sized by the user freely.
Session. We define a session as the process of typing a text on the AR
keyboard. We assume the keyboard has a fixed spatial configuration
during a session, although it may change between sessions.
Tracking. Hand tracking sensors provide spatial information (i.e.,
positions, angles) of hands and fingers. For users to type on the AR
keyboard and for the adversary to carry out the attack, hand tracking
data is essential. For users, hand tracking capabilities are built-in in
AR HMDs [2, 43]. For the adversary, the hand tracking data comes
from one of a few possible mediums, as explained in § 2.2. Each of
those mediums provides the following information: the tip positions
of all fingers, the pointing directions of all fingertips, the position of
the palm center, and the palm normal. We refer to this information
as the low-level hand tracking data. We expect that our approach
will work with minor modifications even when the low-level hand
tracking data is not available precisely in the same format, but as
long as the spatial information of the hands is available.

2.2 Threat Model
We envision a concrete threat model that considers a victim using
the AR keyboard in AR HMD, and an adversary attempting to infer
what the victim types by exploiting the hand traces. To achieve this
goal, the adversary gains access to the victim’s hand traces through
one of a few possible mediums, each of which is covered in an attack
scenario. Other than differences in the method used for obtaining
the hand tracking data, the three scenarios, depicted in Figure 2,
share the same procedure from the adversary’s standpoint. Once the
adversary obtains the hand traces, she will be able to perform the
inference attack offline. With the innovations in AR domain, the
industry leaders launched various types of AR HMDs [4–7, 9] for
various stakeholders with countless use cases. Such speed in devel-
opment and deployment cycle indicates that AR HMD technologies
are expected to be an asset for daylong use [28, 39]. Given the
consumer demand in AR technologies and the rapid advancements,
the ubiquitous usage of AR HMDs in near future is plausible.
Scenario 1. In this scenario, the adversary plants a hand tracker
device near the victim in a public space, e.g., a coffee shop, and
records his hand movements as the user types in the AR keyboard.
The adversary might use the Leap Motion Controller [8] as the hand
tracker—being small (8x3x1.1cm) allow hiding in a stealthy attack.
Although the off-the-shelf version of the controller requires cable
connection, wireless setups are available [1] and could be utilized to
reduce the cable burden for a stealthier attack instance.
Scenario 2. In this scenario, the adversary wears an AR HMD
and sits near the victim, possibly in a public space, to record the
hand movements of the victim using the hand tracking feature of
the AR HMD. Due to the expected ubiquitous usage of AR HMD,
it is challenging to identify the adversary. The adversary needs to

be close to the victim (approx. 1.5m), where the data collection is
much easier to carry out in context, e.g., two acquaintances in the
same space, where one of them might be curious what the other is
typing.
Scenario 3. In this scenario, the adversary infects the AR HMD
of the victim with a malware, enabling the adversary to obtain the
data from the built-in hand tracking sensor through the AR HMD’s
API. One advantage of this scenario is that there is no assumption
on where the victim is located nor the adversary’s proximity to the
victim. As such, the attack could be conducted remotely, at any time,
from anywhere, without needing to deploy any additional device
near the victim. We should note that obtaining the sensor readings is
a more straightforward attack than reading the processed outputs of
the keyboard application. Malware can obtain the sensor readings
using the device API stealthily; however, reading the keyboard’s
processed output requires more sophisticated malware. For example,
assuming the gyroscope readings are available to the attacker does
not mean that the attacker can directly read the keyboard’s output.

We should note that the adversary does not know the position
of the AR keyboard in the victim’s virtual environment since users
can change the position however they like. Therefore, for all of the
adversarial scenarios above, the sensor readings cannot enable the
adversary to directly obtain the keyboard output by simply forward-
ing the sensor readings to the keyboard application. In all scenarios,
a calibration between the coordinate system of the victim’s virtual
environment and the coordinate system of the virtual environment
model of the adversary is required, and this requirement is one of
the main technical challenges we overcome in this study.

3 TECHNICAL DETAILS AND METHODS

To set out, In figure 3 we outline the technical details of our five-
step attack pipeline. Keylogging inference attacks are defined as a
two-stage process: keystroke detection and key identification [37].
The first two steps of our pipeline are for keystroke detection while
the subsequent three steps are for key identification.

3.1 Deep Key Tap Localization
To initiate our attack, we start by localizing the key taps on the
low-level hand tracking data stream using the following observation.

Observation 1. The hands follow a certain pattern while writing
on the AR keyboard. This, in turn, makes the key tap gestures
distinguishable from all other hand gestures.

To exploit Observation 1, we utilize a Convolutional Neural Net-
work (CNN) to localize key taps in time windows where key tap-
specific patterns are observed. However, the time-domain low-level
hand tracking signal changes as the tracking sensor is placed differ-
ently. Therefore, we pre-process the data to resolve this dependency
and ensure the attack repeatability in different spatial configurations.
Pre-processing. In this phase, we obtain three features from the
low-level hand tracking data: 1) the tip position of each finger
w.r.t. the palm center of the hand (fp) by subtracting the position of
the palm center from the position of the fingertips, 2) the pointing
direction of each finger w.r.t. to the normal vector of the palm (fd)
by subtracting the normal vector of the palm from the direction
vectors of the fingers, and 3) the velocity of each fingertip (fv) by
calculating the replacement of the fingertips from fp. We call them
position, direction, and velocity sub-signals, respectively.

We denote hand features as X = {xt}T
t=1 where the t-th frame

is xt = [fp fd fv]T . A segment s(tstart , tend) is a slice that includes
the frames between xstart and xend .
Network Architecture. Figure 4 illustrates the multi-head CNN
architecture. Each head is designed to fetch the independent tem-
poral features in the time series-like data. The kernel size of the
convolutions cover 3 frames in time and perform convolutions with

(a) Scenario 1: The adversary plants a hand
tracker device and records the victim’s hand
movements.

(b) Scenario 2: The adversary sits near the
victim and records his hand movements us-
ing AR HMD.

(c) Scenario 3: The adversary infects the
victim’s AR HMD and remotely obtains the
tracking data.

Figure 2: Illustrations of the attack scenarios with varying adversarial capabilities.

Inference IM1 IM2 IM3

psddeptf 1041 0.2 3

password 947 0.01 0

… … … …

0edderfy 1453 0.3 4

𝑓𝑣

𝑓𝑑

𝑓𝑝
Deep Key Tap

Localization
𝑓𝑣

𝑓𝑑

𝑓𝑝

𝑤𝑤

Key Tap

Localization

Refinement

Candidate

Key Center

Generation

Candidate

Keyboard

Reconstruction

Best to Worst

Ordering

password

Figure 3: The five-step pipeline for the attack, which takes hand tracking data as input and outputs inferences ordered from best to worst. The first
two steps are for keystroke detection stage while the subsequent three are for key identification stage.

σ

2 CONVs + 2 FCs

···

···

2 CONVs + 2 FCs

2 CONVs + 2 FCs

Confidence
Score

𝑓!

···

···𝑓"

···

···𝑓#

5
30

3
5
30

6
5
30

12

5
30

3
5
30

6
5
30

12

5
30

3
5
30

6
5
30

12

12 6

12 6

12 6 3 x 6

CONV Kernel

(1,3)

Activation
ReLU

Figure 4: The multi-head CNN architecture used for key tap localiza-
tion. The input is a segment from the pre-processed low-level hand
tracking data, while the output is the confidence score for the segment
belonging to a key tap.

stride 1. The rationale of the multi-head design is that data included
in the segments are initially independent from each other. Concate-
nating them and passing them to a single CNN where the stride is
set to 1 would cause irrelevant convolutions around the edges. For
example, it is redundant to convolve the position of the pinky finger
with the direction of the thumb. In other words, convolving position
and direction is not desired in the early stages. However, after the
convolutional layers and a fully-connected network in the heads,
we get a higher-level representation of the data segments, which
are now time-independent. Once we extract the time dependency,
we concatenate the features and get the confidence scores with a
final fully-connected network and a sigmoid function. We interpret
each key tap as a 30 frame action, or simply 375 ms, given that the
sampling rate of the hand tracker is 80 fps. Therefore, each head
takes a sub-segment with the shape of height 5 (fingers), width 30
(frames), and depth 3 (dimensions) as input.

Localization. For localization, we slide a fixed-length (30) window
on the low-level data stream to generate segments. We then obtain
the confidence score Pc of each segment using the CNN compo-
nent. We filter out the redundant detections by applying non-max
suppression to ensure that the localized windows are disjoint and
only the most confident windows are kept. Then, we eliminate the
segments with Pc less than the classification threshold τc = 0.5, with
the rationale explained in the evaluations. Finally, each segment is
associated with a key tap point by fetching the position of the index
fingertip at the midpoint of the window.

3.2 Key Tap Localization Refinement

Since we estimate the key tap points in the deep key tap localization
stage, they might be imprecise. In this stage, we refine the points in
four steps based on a geometric observation on the keyboard.

Observation 2. The key tap points lay on a plane in 3D.

Step 1: Keyboard Plane Estimation. As the AR keyboard lays
on a plane in 3D, the key taps should also lay on the same plane.
Therefore, we first estimate a keyboard plane from the obtained key
tap points. A plane in 3D is defined by a normal vector perpendicular
to the plane, a point on the plane, and a scalar. To find a fitting plane
to the estimated 3D key tap points, we use a regression model that
minimizes a linear least square error between the points and plane.
Step 2: Reducing the False Positives. We follow the trace of
the fingertip for each key tap window and check if it crosses the
estimated plane. Otherwise, we eliminate it since the finger does not
touch the keyboard plane.
Step 3: Refining the Key Tap Points. To increase the spatial
precision of the key tap points, we use the intersection point where
the fingertip crosses the estimated keyboard plane instead of using
the midpoint of the key tap window as before.
Step 4: Dimension Reduction. Since all the key tap points lay on
the same plane, we can easily and feasibly represent them as 2D
points without any loss of information. To achieve this task, we first
create an orthonormal basis containing the normal of the plane using
the Gram-Schmidt Orthogonalization. Then, we change the basis

Algorithm 1 Construction of center groups
1: G: Cluster groups with varying number of clusters
2: C: Current set of weighted centroids
3: K: Key tap points
4: procedure BUILDCENTERGROUPS(K)
5: initialize:
6: G← /0
7: C←{(v,w) ∈ R2×R | v ∈ K,w = 1}
8: while size(C) > 2 do
9: c1,c2←MINIMUMDISTANCEPAIR(C)

10: cmerged ←MERGECENTERS(c1,c2)
11: C← (C∪{cmerged})\{c1,c2}
12: G← G∪{C}
13: return G
14: procedure MINIMUMDISTANCEPAIR(C)
15: return (c1,c2 | c1,c2 ∈C,EUCDIST(c1,c2) is min)
16: procedure MERGECENTERS(c1,c2)
17: (v1,w1),(v2,w2)← c1,c2
18: vmerged ←WEIGHTEDVECTORAVG(c1,c2)
19: wmerged ← w1 +w2
20: return (vmerged ,wmerged)

for the key tap points. Finally, we obtain 2D key tap points K by
omitting the component in the direction of the normal vector.

3.3 Candidate Key Center Generation
In this step, we deduce candidates for the key centers of the AR
keyboard from the refined key tap points. We set forth the following
observation about the relationship between the key centers and the
key tap points, which we exploit for our deduction.

Observation 3. When each key center in the AR keyboard is consid-
ered as the cluster centroid of that particular key, each key tap point
will belong to the cluster of the tapped key.

Based on Observation 3, we hypothesize that a proper clustering
of the key tap points eventuates partitioning them into clusters of
unique keys. For proper clustering, the number of clusters should be
the same as the number of unique keys pressed in a session. However,
not all unique keys are necessarily used during a session. Thus, the
attacker is unaware of the number of clusters required, which is a
key challenge in this step. To address this issue, we generate cluster
groups with a varying number of clusters through the agglomerative
hierarchical clustering to account for varying numbers of keys.

We denote a cluster group as C = {cm}M
m=1 where cm is the 2D

vector representing of the centroid of the m-th cluster in the group
C. The output of this step is a set of cluster groups, G, where each
has a different cluster count. The set of cluster groups is denoted by
G = {Cn}N

n=1, where Cn is the n-th clustering.
Algorithm 1 shows the procedure we use to compose the cluster

groups G. Initially, all key tap points are treated as singleton clusters
with uniform weights as in line 1.7. Then, the cluster group C
is iteratively updated (line 1.11) by merging the closest clusters
considering the weights. Each update to the cluster group C results
in adding a cluster group to G (line 1.12) with a different cluster
count. The Euclidean distance is then used to find the closest cluster
pair, and merging is done through weighted vector average.

3.4 Candidate Keyboard Reconstruction
In this step, we output the possible keyboard reconstructions by
overcoming two challenges.
Challenge 1: Unknown Coordinate Systems. Since the hand
tracker and the adversary’s AR keyboard model have different coor-
dinate systems, the same geometric constructs (e.g., points, vectors)
in a shared environment (i.e., real-world) are expressed differently

Algorithm 2 The algorithm to compute similarity transformation T
using two pairs of corresponding points in 2D. It can be used to map
any point a in space A to its correspondent b in space B.

1: procedure COMPUTETRANSFORMATION(a1,a2,b1,b2)
2: t← b1−a1 ▷ translation vector

3: s← |
−−→a1a2|
|−−→b1b2|

▷ uniform scaling scalar

4: α ← cos−1
−−→a1a2 ·

−−→
b1b2

|−−→a1a2| · |
−−→
b1b2|

▷ rotation angle

5: return FORMMATRIXT(t,s,α) ▷ see [41]

Algorithm 3 Reconstruction of candidate keyboards
1: G: Cluster groups with varying number of clusters
2: K: Key tap points
3: J: 2D centroids of the keys in the AR keyboard model
4: L: The candidate keyboard reconstructions

5: procedure COMPUTECANDIDRECONS(G)
6: initialize: L← /0
7: for each C in G do
8: for each permutations of centers c1,c2 from C do
9: for each combinations of centroids j1, j2 from J do

10: T ← COMPUTETRANSFORMATION(c1,c2, j1, j2)
11: K′← T(K)
12: L← INFERKEYS(K′) ∪ L
13: return L

by those two parties. Moreover, the user’s positioning and scaling
of the AR keyboard differently in the virtual environment introduce
yet another discrepancy. Considering these series of linear trans-
formations between the coordinate systems, we realize a similarity
transform T which represents the mapping between the coordinate
systems. Using two corresponding point pairs from each space, T
could be computed as shown in Algorithm 2. We refer to T() as the
similarity transformation function that applies T to its input.
Challenge 2: Unknown Corresponding Points. Having T , the key
tap points K can be transformed into the space of the AR keyboard
model as K′ = T(K). Then, each key tap position k′ in K′ could
be associated with a key by checking which key’s area k′ falls onto.
This results in recovering the keys tapped. However, the adversary
lacks two corresponding points from both spaces, failing to directly
obtain the correct transformation. To address this challenge, we use
the key centers from the previous step. As there is no prior knowl-
edge on which cluster corresponds to which key, we account for the
possibility of each cluster c belonging to any unique key j for each
cluster group C in G. We call a pairing of cluster center c with a key
j as center – key pair. Then, we obtain candidate keyboard recon-
structions by computing T using every possible center – key pairs.
We summarize the reconstruction of candidates in Algorithm 3.

3.5 Best to Worst Ordering of Reconstructions

The previous step produces numerous keyboard reconstructions, due
to its exhaustive process. However, many of them are inaccurate
due to the incorrect center – key pairings. Although the search
space is significantly reduced compared to having random guesses,
it is still infeasible for the adversary to consider all reconstructions.
We observe that accurate reconstructions typically have specific
characteristics. In this step, we measure these characteristics using
Inference Measurements (IM) to order the keyboard reconstructions
from best to worst, drastically decreasing the number of reconstruc-
tions to consider.

𝑇𝑠 = 0.5𝑇𝑠 = 1.0𝑇𝑠 = 2.0

Figure 5: The demonstration of the maximum and the minimum scal-
ing factors (IM1) used to filter the candidate keyboard reconstructions.
For concise visualization, the effect of Ts is shown by inversely scaling
the hand model rather than scaling the keyboard itself.

IM1: Scaling Factor. Users are free to scale the AR objects in the
virtual environment controlled by Ts. Making the keyboard too small
or too large negatively affects usability. As shown in Figure 5, a
smaller keyboard (Ts = 0.5) makes it difficult to pick the correct key.
In comparison, a larger keyboard (Ts = 2.0) increases the distance
the hands have to travel. Moreover, with a too large keyboard, the
keyboard may not fit into the frame of the AR HMD. Therefore, we
define limits for Ts to eliminate infeasible reconstructions.
IM2: Outlier Ratio. All key tap points should optimally fall into
the area of some key in the AR keyboard. However, we observe
outlier key tap points in improper reconstructions. To measure such
anomaly, we define IM2 and compute it as the ratio of the number
of outliers to all key tap points. Although the optimal value for IM2
is zero, we expect a smaller number of outliers.
IM3: The Number of Clusters – Unique Keys. The correct clus-
tering of key tap points should divide the key tap points into clusters
of unique keys. For a correct keyboard reconstruction, we expect the
number of clusters to be optimally equal to the number of unique
keys found after the transformation. For counter cases, we measure
the anomaly using IM3, which is the difference between the number
of clusters and the found unique keys. The optimal value for IM3 is
zero, yet some cases may result in values not equal but close to zero
for accurate inferences.

Upon computing IMs, we eliminate the reconstructions by enforc-
ing a scaling factor limit (IM1). However, we do not directly enforce
the optimal values for IM2 and IM3. To capture and estimate the
joint role of IM2 and IM3 on the reconstruction’s correctness, we
utilize a linear regression model. The model takes IM2 and IM3 as
input, and outputs the associated correctness score.

We train the regression model with the correctness scores mea-
sured in terms of the normalized Levenshtein similarity between
the estimated and the ground truth strings. Levenshtein similar-
ity measures the performance of both the keystroke detection and
key identification stages simultaneously [37]. After we train the
regression model, we forward IM2 and IM3 of each candidate re-
constructions to it. Then, we sort the reconstructions in a decreasing
order w.r.t. their correctness score. These sorted reconstructions
constitute the final output of our pipeline, i.e., the best to worst
ordering of the keyboard reconstructions. Note that once the correct
keyboard reconstruction is found, it is trivial to trace any input on
the keyboard, including the special characters.

4 EVALUATION

In our experiments, we evaluated each step of the pipeline and end-
to-end. With the evaluations of the individual steps, we intend to:
(1) reason about the validity of our assumptions which led to con-
struct each step, (2) explore how each step contributes to the overall
pipeline, and (3) explore the limitations of each step and discuss
their effects on the overall approach. The experiments involved

Leap Motion Controller

Magic Leap 1

Central Computer

Figure 6: The setup used to carry out the experiments.

five participants, including one female and four males with ages
ranging from 23 to 37. The Institutional Review Board (IRB) at our
institution approved the data collection process.

4.1 Experimental Setup
All threat models exploit low-level hand tracking data. There-
fore, we simulate and evaluate them with the same setup irrespec-
tive of the data collection medium. For our experiments, we use
Magic Leap 1 (ML1) as the AR HMD, and Leap Motion Con-
troller (LMC) as the hand tracker, as shown in Figure 6. LMC can
track hands within 60 cm in a 120×150° field of view, and ML1
detects hands within 80 cm distance.
Metrics. We measure the accuracy of a text inference in terms
of the normalized Levenshtein similarity. We also use pinpoint, h-
hop, and top-k accuracy [42]. The h-hop accuracy is computed by
considering the predicted keys that can be reached by taking h hops
from the actual key as true. The h-hop metric shows how seemingly
inaccurate inferences still cause privacy leaks. The pinpoint accuracy
is 0-hop accuracy. Top-k accuracy is the maximum accuracy within
the first k inferences in the best to worst ordering. Top-k is essential
to evaluate our method since we output a set of inferences.

4.2 Keystroke Detection
For this set of evaluations, we collected the P108 dataset from two
users while they were typing 54 random pangrams, mainly used to
simulate the data recorded by the adversary for training purposes.
The data is then split into train-validation (96 pangrams) and test
(12 pangrams) splits. To create the ground truth, we fetched the
key tap segments from each sample and labeled them as 1. Simi-
larly, we fetched disjoint background segments from the remaining
background data and labeled each of them as 0 for convenience.
Deep Key Tap Localization. To train the multi-head CNN, we use
Adam optimizer [24] with a learning rate of 0.001, L2 regularization
with a penalty of 0.001, and the weighted binary cross-entropy
loss function. The hyperparameters are determined by 5-fold cross-
validation. Then, we perform predictions on the test split. The
prediction procedure takes a set of input segments Stest = {sn}N

n=1
and returns the key tap segments with confidence scores greater than
a classification threshold: P = {(sm,αm)}M

m=1. Given each ground
truth key tap segment gtl in GT = {gtl}L

l=1, we associate each key
tap segment sm in P with a ground truth segment gtl , which is closest
to sm in time. For each association, we measure the intersection-
over-union (IoU). For two segments, S1(t1, t2) and S2(t3, t4), where
t1 and t3 are the start time, t2 and t4 are finish time, and t3 > t1, IoU
between S1 and S2 is defined as min(0, t2− t3)/(t4− t1), which takes
values in [0,1]. IoU becomes 1 if the segments fully overlap.

As a result, we obtain a set of associations of segments and their
IoU values: A = {(sm,gtl , IoU)}. We eliminate the associations
with IoU < τIoU , where τIoU is the IoU threshold. This helps us
evaluate the model over different IoU thresholds to reason about
the precision of the model in temporal localization. Following the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Left Hand

 τIoU=0.50 (AuC = 0.92)
 τIoU=0.75 (AuC = 0.83)
 τIoU=1.00 (AuC = 0.60)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Right Hand

 τIoU=0.50 (AuC = 0.92)
 τIoU=0.75 (AuC = 0.86)
 τIoU=1.00 (AuC = 0.77)

Figure 7: The precision-recall curve of the multi-head CNN in Deep
Key Tap Localization. Different networks are trained for each hand,
and both of them perform similarly well.

 0

 50

 100

 150

 200

 250

TP FP FN

2
3
5

2
2
7

5
3

1
9

1
1 1

9

C
o

u
n

t

User 1

Before

After

 0

 50

 100

 150

 200

 250

TP FP FN

2
2
2

1
9
3

1
1
6

1
6 2

2

5
1

User 2

Before

After

Figure 8: The effect of the Key Tap Localization Refinement on the
number of true positive (TP), false positive (FP), and false negative
(FN) samples for different users.

standard evaluation methods in temporal localization problems, we
interpret the segments in A as true positives, P\A as false positives,
GT \A as false negatives, and the remaining in Stest as true negatives.

Based on our preliminary observations during our experiments,
we set the classification threshold as τc = 0.5, where τc controls the
trade-off between true positives and true negatives. More precisely,
τc = 0.5 favors a greater number of the true positive samples while
keeping the false positives less than the true positives.

Finally, the Precision-Recall (PR) curves for left and right hand
and varying τIoU values are shown in Figure 7.
Key Tap Localization Refinement. In this step, we eliminate a
significant number of false positives, which is not possible by just
tweaking the classification threshold. To assess the performance
of this step, we performed Key Tap Localization Refinement on
the output of the previous step. As shown in Figure 8, the refine-
ment procedure significantly decreases the number of false positives
(by 64.1% and 86.2%, respectively) while slightly affecting the true
positives (decreased by 3.4% and 13.1%, respectively).

4.3 Key Identification
For this set of evaluations, we collected data from three users (other
than P108’s users) while they were writing an e-mail randomly
selected from the Enron dataset [25]. For length uniformity, we use
the first 250 characters for each recording. We denote this data as E-
mail data. Additionally, we collected R5, R10, and R15, while the
users were writing random character sequences with varying lengths
of 5, 10, and 15. We collected 15 different sequences for each length
and the reported results are the average of the 15 sequences. We aim
to simulate the long-text scenarios, e.g., writing an e-mail, with the
E-mail dataset while using R5, R10, and R15 for simulating the
entry of short-text scenarios, e.g., login credentials.

To evaluate the key identification stage only, we use User-1’s data
and directly use the ground truth key tap points. We first perform
Candidate Key Center Generation, then Candidate Keyboard Re-

0.00-0.25 Accuracy 0.25-0.50 Accuracy

0.50-0.75 Accuracy 0.75-1.00 Accuracy

ℎ0

ℎ1

ℎ2

All

All

All

Top-15

Top-15

Top-15

0% 20% 40% 60% 80% 100%

Figure 9: The accuracy distribution of the E-mail keyboard reconstruc-
tions before and after best to worst ordering. “All” corresponds to
reconstructions after IM1 filtering.

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 10 15 50 100 500

A
cc

u
ra

cy

E-Mail

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 10 15 50 100 500

R5

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 10 15 50 100 500

A
cc

u
ra

cy

k values

R10

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 10 15 50 100 500
k values

R15

h0 h1 h2

Figure 10: The top-k h0, h1, and h2 accuracy for varying k considera-
tions for each data set obtained by utilizing the key identification steps
on the ground truth key tap points.

constructions. This results in 889,200, 9,750, 52,000, and 126,750
keyboard reconstructions for e-mail and each sequence in R5, R10,
and R15, respectively. The difference in the number of keyboard
reconstructions is due to the number of key taps, and it is upper-
bounded by 889,200 reconstructions due to the upper bound on the
number of centers. Among those, we are able to achieve a maximum
pinpoint (h0) accuracy of 97% for E-mail, 99%, 100%, and 99% for
R5, R10, and R15 sets, respectively, and all reach 100% of h1 and h2
accuracy. Although not all reconstructions have the same accuracy,
the results show that the key identification successfully includes ac-
curate reconstructions. The evaluation results of R5, R10, and R15
also demonstrate that our method works with a limited number of
samples, as low as 5, to create the correct keyboard reconstruction.

Upon obtaining the reconstructions, we continue with the best
to worst ordering by first filtering the reconstructions based on the
minimum and the maximum scaling factors (IM1) and consider the
pinpoint (h0) accuracy in evaluating its effect. The filter extracts
over 40% of the reconstructions with an accuracy that ranges be-
tween 0% and 25%, and keeps all reconstructions with accuracy
that is higher than 50%. We then ordered the rest thorough IM2
and IM3. We fit a linear regression model using the P108 data, and
obtain the best to worst ordering for the reconstructions belonging
to E-mail, R5, R10, and R15. Figure 9 shows the distribution of all
reconstructions (after IM1 filtering) and the top-15 reconstructions
for E-mail data on different accuracy quarters.

The results highlight that ordering indeed uplifts the better re-
constructions to the top of the list and significantly increases the
probability of finding an accurate reconstruction even when ran-
domly chosen from the first 15 elements of the list. Figure 10

W•AT WAS THAT SUO◄PPOSED TO ME•M

H AN

Typed: WHAT WAS THAT SUO◄PPOSED TO MEAN

Inferred: WAT WAS THAT SUO◄PPOSED TO MEM

Difference:

I WILL 0ET YO• K•O• ••EM IS A GOOD •AY

U N W WH DL N

Typed: I WILL LET YOU KNOW WHEN IS A GOOD DAY

Inferred: I WILL 0ET YO KO EM IS A GOOD AY

Difference:

I WOULD LIKE TTO GO TO L•JCH •S •EL•

U A W L• N

Typed: I WOULD LIKE TO GO TO LUNCH AS WELL

Inferred: I WOULD LIKE TTO GO TO LJCH S EL

Difference:

Figure 11: The 11th inference found in the ordered list which is ob-
tained utilizing the end-to-end pipeline on the E-mail. The spaces are
inserted for clearer visualization.

demonstrates the top-k accuracy for varying k using h0, h1, and h2
metrics. Over 95% h2 accurate reconstructions are listed within
top-15 of the ordered list. The reconstructions with over 92% h0
accuracy are listed within the top-500. As the number of key tap
points scattered over the AR keyboard increases, the shifted recon-
structions are more easily detected with a higher IM2. For example,
two centers representing the keys A and D are matched with the AR
keyboard model’s keys Q and E, causing the keys to be recovered as
the keys above them, causing a shift. Hence, a higher h0 accuracy
is reached in the earlier top-k considerations when the number of
key tap points is larger. Yet, having h0 inaccurate results does not
necessarily amount to entirely irrelevant results. Obtaining much
higher h1 and h2 for such low h0 values shows that the low pinpoint
accuracy is compensated with higher h1 and h2 accuracy due to the
existence of shifted reconstructions.

4.4 End-to-End Pipeline
In this section, we present end-to-end pipeline results for all datasets
and users. Using the P108 data, we first train the two models, the
multi-head CNN for Deep Key Tap Localization and the linear regres-
sion for Best to Worst Ordering. Next, we feed the E-mail, R5, R10,
and R15 datasets to the pipeline. We use the same hyperparameters
determined in the evaluation of the individual steps.

Table 1 shows the values of the h0, h1, and h2 accuracy obtained
for each dataset and each user. These values are obtained considering
the top-k with select values of k and the average accuracy obtained
by randomly guessing each character, i.e., brute-force attack.

Overall, the results show that our model can successfully infer
the text with a high accuracy. For edge cases where the pinpoint (h0)
accuracy is close to that of a random guess, the h1 and h2 accuracy
results show that the inaccurate key estimations of our method appear
close to the actual key, decreasing the search space for the adversary.
For example, even though the pinpoint (h0) accuracy of the first
guess (Top-1) of our model for R15 data of User-3 is the same as
that of random guess, i.e., 0.07, our method performs much better in
terms of h1 (0.38 vs. 0.18) and h2 (0.57 vs. 0.35) accuracy.

The maximum h0 achieved over all reconstructions for E-mail,
R5, R10, and R15 is 68%, 76%, 87%, and 62%, respectively. These
reconstructions are populated within the top-500 results. Comparing
the results with those in § 4.3 shows a clear evidence of the propa-
gation of errors in the keystroke detection to the end results, which
prevents the pipeline from achieving 100% accuracy.

Finally, Figure 11 shows the first three sentences of User-1’s e-
mail data and the inference of those sentences found at 11th place in
the ordered reconstructions list. In these inferred sentences, there are
12 missing, 1 extra, and 3 incorrectly identified letters. The missing

letters are due to the false negatives in the keystroke detection and
require spotting and guessing for correction. The extra letter is
due to the false positives in the keystroke detection and needs to be
spotted to fix. Finally, we can easily correct the incorrectly identified
letters by replacing them with the close neighbor keys.

4.5 Defenses
The findings we have presented are both promising, from a learning
standpoint, and alarming from a security standpoint. To counter the
attack, in the following we present various defense mechanisms.

One simple yet highly effective defense to our attack would be
by randomizing the keys at each keyboard usage or after every key
tap [33]. However, this would affect usability, specifically for long
text inputs [32]. Another simple defense would be by invalidating
the assumption that the keyboard lays on a single plane. By intro-
ducing a keyboard design represented by N planes, e.g., a curved
keyboard, we could becloud the attack process for the adversary.
Another defense is by invalidating the adversary’s assumption that
the keyboard position remains fixed throughout a session by altering
the position of the keyboard after each keystroke, i.e., by dynamic
positioning. We describe the implementation and conduct a security
analysis to demonstrate the efficacy of this defense.
Dynamic Positioning. A translation vector t⃗ is represented with
two scalar parameters: its direction angle α and length d. After
each keystroke, we use a translation vector t⃗ by choosing α and d
randomly from the ranges [0,2π] and [r,2r], respectively, where r
is the diagonal length of a key. The motivation for upper-bounding
d by 2r is to ensure that the usability is not significantly affected,
where the user would quickly locate the key position by taking the
former keyboard position as a reference. With the lower bound of r,
we guarantee that the keys will always change position by at least
one hop between two keystrokes. Finally, randomly choosing d
within the [r,2r] range, the adversary is substantially challenged by
the fact that any key’s position on the keyboard may correspond to
any key within the 2-hop neighborhood.
Analysis. For a security analysis of this defense, we consider a few
assumptions to make the analysis tractable. We assume that: 1) the
adversary achieves keystroke detection with 100% accuracy with
perfect spatial localization, 2) the user always taps a key from the
key’s center point, 3) for each displacement, the translation vector
t⃗ is chosen to displace the keyboard such that the centers of the
alphanumerical keys are moved to exactly one of the keys’ centers
within their 2-hop neighborhood. These assumptions are unrealis-
tic and only put the adversary in a more favorable position while
enabling us to sketch a lower bound on the security analysis. We
emphasize that what we do next is a lower bound security analysis,
and the exact security of this defense is more robust in reality.

When the initial position of the keyboard is known, to guess the
key for the next keystroke, the adversary can exploit the fact that
it can only be to one of the keys within the 2-hop neighborhood of
the key formerly present at that location. Therefore, for each key k,
the probability of successfully recovering k after a displacement is
equal to the ratio of the number of positions where k can appear to
the number of distinct keys that can appear at these positions. We
show the probabilities for each key in Figure 12, from which we
derive the average probability as Pnext = 0.25.

Since the adversary does not know the initial keyboard position,
we consider the probability of successfully identifying the first key
as Pfirst =

1
36 = 0.028, where 36 is the number of the alphanumerical

keys. Using this analysis, the adversary’s success probability to
guess a text of length l is Pl = Pfirst×(Pnext)

l−1 = 0.028×(0.25)l−1.
For example, for texts of length 4 and 8, Pl=4 = 4.4× 10−4 and
Pl=8 = 1.7×10−6, which shows the effect of the countermeasure
for practical scenarios such as inputting passwords.

We anticipate that the dynamically-positioned keyboard will be
more usable, especially compared to the randomized keyboard, since

Table 1: The maximum h0, h1, and h2 accuracy achieved for each data set across varying top-k orderings and brute-force attack.

Top-1 Top-3 Top-15 Top-50 Top-100 Top-500 Random
User h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2

E
-m

ai
l 1 0.15 0.38 0.53 0.19 0.42 0.54 0.61 0.65 0.66 0.61 0.65 0.66 0.62 0.65 0.66 0.63 0.65 0.66 0.06 0.16 0.30

2 0.15 0.40 0.66 0.17 0.40 0.66 0.65 0.73 0.77 0.66 0.74 0.78 0.67 0.74 0.78 0.68 0.74 0.78 0.06 0.18 0.34
3 0.12 0.40 0.51 0.17 0.40 0.56 0.21 0.49 0.58 0.40 0.55 0.59 0.40 0.55 0.59 0.40 0.55 0.59 0.10 0.17 0.33

R
5

1 0.04 0.31 0.56 0.09 0.43 0.66 0.29 0.71 0.82 0.49 0.80 0.84 0.65 0.84 0.84 0.76 0.84 0.84 0.06 0.20 0.46
2 0.08 0.19 0.35 0.17 0.37 0.53 0.23 0.46 0.54 0.31 0.50 0.54 0.38 0.53 0.54 0.50 0.53 0.54 0.08 0.21 0.46
3 0.03 0.26 0.44 0.13 0.38 0.50 0.25 0.50 0.63 0.30 0.52 0.64 0.41 0.55 0.64 0.46 0.60 0.65 0.11 0.24 0.46

R
10

1 0.10 0.39 0.60 0.23 0.67 0.81 0.46 0.85 0.89 0.59 0.89 0.89 0.71 0.89 0.89 0.87 0.89 0.89 0.09 0.23 0.45
2 0.06 0.27 0.46 0.14 0.47 0.63 0.29 0.61 0.71 0.37 0.68 0.73 0.44 0.69 0.73 0.53 0.72 0.73 0.06 0.23 0.45
3 0.07 0.27 0.44 0.11 0.40 0.54 0.24 0.52 0.62 0.31 0.57 0.64 0.37 0.60 0.64 0.43 0.61 0.65 0.07 0.23 0.46

R
15

1 0.06 0.31 0.51 0.13 0.47 0.64 0.25 0.58 0.71 0.40 0.69 0.73 0.46 0.70 0.73 0.55 0.70 0.74 0.05 0.16 0.34
2 0.09 0.34 0.54 0.17 0.44 0.63 0.26 0.60 0.67 0.39 0.66 0.67 0.44 0.66 0.67 0.54 0.67 0.67 0.07 0.19 0.35
3 0.07 0.38 0.57 0.20 0.56 0.73 0.33 0.67 0.78 0.45 0.75 0.80 0.54 0.76 0.80 0.62 0.76 0.81 0.07 0.18 0.35

0.40

0.20

0.35

0.30

0.25

Figure 12: With the dynamically positioned keyboard defense, the
probability for each key that the adversary’s guess on the key is a true
positive. Outward keys have more chance to be correctly guessed
since they have fewer target positions after displacement that conflict
with the other keys.

it preserves the keyboard layout and only alters the position of the
keyboard one to two keys away from the original position.

5 RELATED WORK

Keylogging attacks have been studied for a long time, although in
different contexts. The rise in the popularity of AR/VR systems drew
the attention of the community to study the security and privacy of
AR/VR, including the potential risks of novel text input methods.
Attacks on AR/VR Keyboards. The built-in system keyboards in
current AR/VR HMDs share a similar layout to the AR keyboard we
studied in this paper. However, targeting and selection methods vary.
Kreider [26] explores the feasibility of keylogging inference attacks
on the HoloLens keyboard, which targets by the headset and selects
by tapping gesture. The adversary obtains the drawmetric profiles of
10 possible passwords in advance and infers which one the victim
types by analyzing the profile extracted from the victim’s video
recording. Although the study is based on manual processing, which
is impractical for random length inputs from unknown, intractably
large input sets, the evidence underlines the potential privacy leakage
due to the visual side-channel for AR/VR HMDs. On the other hand,
our method is a systematic approach that works on random inputs
of any length. Arafat et al. [10] performed a keylogging inference
attack on VR HMDs by observing the patterns in CSI distortions.
They were able to obtain up to 69% of the virtual keystrokes. Ling
et al. [30] demonstrate computer vision- and motion sensor-based
attacks to infer passwords for two modes: (1) targeting via headset
and selecting via controller and (2) targeting and selecting via a
controller. Both approaches rely on the assumption that the keyboard
is fixed in position and the size in the virtual environment in order
to use pre-computed rotation angles for inference. On the contrary,
we account for the possibility that the virtual objects can be freely
positioned and scaled in the virtual environment by the user, which
otherwise limits the flexibility of virtual applications.
Other Keylogging Inference Attacks. Since the first keylogging
inference attack over 50 years ago [13, 18], there have been many
incidents that emerged or potential risks underlined by researchers in
the field [37]. Among those works, ours falls in the cluster of studies

where spatial information is utilized to detect the key locations and
achieve inference without user profiling. Sun et al. [42] present
an approach for inference from tablet backside motion patterns
available with video recordings. They utilize top-k and h-hop to
evaluate their results, pointing that high 1- and 2-hop accuracy values
indicate a significant information gain. Jin et al. [21] used the desk
motion patterns to achieve inference from video recordings. They
represented words with a sequence of group labels by replacing
each character with its group label, where a group stands for a set
of neighbor keys in some proximity. Using a Long Short Term
Memory technique over sequences of such groups to obtain words,
they improved the accuracy, showing the importance of accurate 1-
or 2-hop granularity.

6 LIMITATIONS AND FUTURE WORK

Our work has several limitations, which we list in the following.
Contextualized Learning. For long text inputs, the results show
that the adversary achieved 65% pinpoint accuracy by inspecting as
few as 15 reconstructions. Since such inputs are likely to include
context, the accuracy could be further improved through deduction.
In our future work, we will utilize language models to systematically
achieve this task, which could also help highlight reconstructions
with context to reduce the search space for the adversary.
Short Inputs. The attack accuracy reaches up to 87% for short
text inputs, which provides a significant information gain to the
adversary. In short messages with context, the language models
could be very beneficial. On the other hand, in login credentials, the
language context might be abstracted from the text. It is expected
that such short texts would not follow the regular language models,
leaving all reconstructions equally probable to the adversary.
Other Modalities. Comparing the results of the key identification
stage with that of the end-to-end pipeline, we observe that the main
stage hindering reaching a 100% pinpoint accuracy is the keystroke
detection. We aim to improve the keystroke detection by exploiting
other methods using additional clues in our future work. More
specifically, we intend to explore to what extend the eye and head
movements could contribute to the keystroke detection phase.

7 CONCLUSION

In this paper, we presented a keylogging inference attack targeting
in air tapping keyboards for AR/VR HMDs by exploiting the obser-
vation that hands follow specific patterns while users are typing in
the air. Substantiated by three different attack scenarios and threat
models with reasonable capabilities, our attack provides up to 87%
accuracy in inferring a random text of any length without requiring
any special user profiling. We discuss various countermeasures to the
attack, and show that they are a nontrivial task as they often conflict
with usability. In our future work, we will exploit language models
to increase accuracy, optimize the attack, and further evaluate the
trade-off between usability and defenses.
Acknowledgement. This work was supported in part by NRF grant
2016K1A1A2912757 (GRL) and CyberFlorida Seed Award (2020).

REFERENCES

[1] Nefes data kit untethers USB devices for wireless
VR setups. https://www.tomshardware.com/news/

nefes-data-kit-wireless-vr,34162.html, Apr. 2017. Ac-
cessed: 2020-03-12.

[2] Keyboard mixed reality. https://docs.microsoft.com/en-us/
windows/mixed-reality/design/keyboard, 2019. Accessed:
2021-05-07.

[3] Augmented reality company builds rapid deployment kits in response
to covid-19, Mar 2020.

[4] Magic leap 1 — magic leap. https://www.magicleap.com/

magic-leap-1, 2020. Accessed: 2020-03-13.
[5] Microsoft hololens — mixed reality technology for business. https:
//www.microsoft.com/en-us/hololens, 2020. Accessed: 2020-
03-13.

[6] Raptor - everysight. https://everysight.com/product/

raptor/, 2021. Accessed: 2021-12-31.
[7] Thinkreality a3. https://www.lenovo.com/us/en/

thinkrealitya3, 2021. Accessed: 2021-12-31.
[8] Tracking — leap motion controller. https://www.ultraleap.com/
product/leap-motion-controller/, 2021. Accessed: 2021-05-
07.

[9] Vuzix blade. https://www.vuzix.com/products/

vuzix-blade-smart-glasses-upgraded, 2021. Accessed:
2021-12-31.

[10] A. A. Arafat, Z. Guo, and A. Awad. Vr-spy: A side-channel attack on
virtual key-logging in vr headsets. In 2021 IEEE Virtual Reality and
3D User Interfaces (VR), pp. 564–572, 2021. doi: 10.1109/VR50410.
2021.00081

[11] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Mac-
Intyre. Recent advances in augmented reality. IEEE Comput. Graph.
Appl., 21(6):34–47, Nov. 2001. doi: 10.1109/38.963459

[12] R. T. Azuma. A survey of augmented reality. Presence: Teleoper.
Virtual Environ., 6(4):355–385, Aug. 1997. doi: 10.1162/pres.1997.6.
4.355

[13] D. Boak. A history of us communications security. 1973.
[14] C. Cao, Z. Li, P. Zhou, and M. Li. Amateur: Augmented reality

based vehicle navigation system. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 2(4), Dec. 2018. doi: 10.1145/3287033

[15] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and
M. Ivkovic. Augmented reality technologies, systems and applications.
Multimedia Tools and Applications, 51:341–377, 2010.

[16] S. Dash. Here’s how indian startup blinkin helped set up acs in hospitals
in wuhan during the coronavirus crisis, Mar 2020.

[17] A. Doshi, S. Y. Cheng, and M. M. Trivedi. A novel active heads-up
display for driver assistance. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 39(1):85–93, 2009. doi: 10.
1109/TSMCB.2008.923527

[18] J. Friedman. Tempest: A signal problem. 35:76, 1972.
[19] Y. Gan, T. Wang, A. Javaheri, E. Momeni-Ortner, M. Dehghani,

M. Hosseinzadeh, and R. Rawassizadeh. 11 years with wearables:
Quantitative analysis of social media, academia, news agencies, and
lead user community from 2009-2020 on wearable technologies. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 5(1), Mar. 2021.
doi: 10.1145/3448096

[20] Y. Gu, C. Yu, Z. Li, Z. Li, X. Wei, and Y. Shi. Qwertyring: Text entry
on physical surfaces using a ring. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 4(4), Dec. 2020. doi: 10.1145/3432204

[21] K. Jin, S. Fang, C. Peng, Z. Teng, X. Mao, L. Zhang, and X. Li.
Vivisnoop: Someone is snooping your typing without seeing it! In
2017 IEEE Conference on Communications and Network Security
(CNS), pp. 1–9, Oct 2017. doi: 10.1109/CNS.2017.8228624

[22] D. Kariuki. Hypergrid business, Feb 2020.
[23] K. Kim, M. Billinghurst, G. Bruder, H. B. Duh, and G. F. Welch.

Revisiting trends in augmented reality research: A review of the 2nd
decade of ismar (2008–2017). IEEE Transactions on Visualization
and Computer Graphics, 24(11):2947–2962, Nov 2018. doi: 10.1109/
TVCG.2018.2868591

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[25] B. Klimt and Y. Yang. The enron corpus: A new dataset for email clas-
sification research. In Proceedings of the 15th European Conference
on Machine Learning, ECML’04, p. 217–226. Springer-Verlag, Berlin,
Heidelberg, 2004. doi: 10.1007/978-3-540-30115-8-22

[26] C. Kreider. The discoverability of password entry using virtual key-
boards in an augmented reality wearable: an initial proof of concept.
In SAIS, 2018.

[27] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. Towards security and
privacy for multi-user augmented reality: Foundations with end users.
In 2018 IEEE Symposium on Security and Privacy (SP), pp. 392–408,
May 2018. doi: 10.1109/SP.2018.00051

[28] H. Li, A. Gupta, J. Zhang, and N. Flor. Who will use augmented
reality? an integrated approach based on text analytics and field survey.
European Journal of Operational Research, 10 2018. doi: 10.1016/j.
ejor.2018.10.019

[29] J.-W. Lin, P.-H. Han, J.-Y. Lee, Y.-S. Chen, T.-W. Chang, K.-W. Chen,
and Y.-P. Hung. Visualizing the keyboard in virtual reality for en-
hancing immersive experience. In ACM SIGGRAPH 2017 Posters,
SIGGRAPH ’17. Association for Computing Machinery, New York,
NY, USA, 2017. doi: 10.1145/3102163.3102175

[30] Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu. I know what you
enter on gear vr. In 2019 IEEE Conference on Communications and
Network Security (CNS), pp. 241–249, June 2019. doi: 10.1109/CNS.
2019.8802674

[31] F. Lu and D. A. Bowman. Evaluating the potential of glanceable ar
interfaces for authentic everyday uses. In 2021 IEEE Virtual Reality and
3D User Interfaces (VR), pp. 768–777, 2021. doi: 10.1109/VR50410.
2021.00104

[32] I. S. Mackenzie and S. X. Zhang. An empirical investigation of the
novice experience with soft keyboards. Behaviour & Information
Technology, 20:411–418, 2001.

[33] A. Maiti, M. Jadliwala, and C. Weber. Preventing shoulder surfing
using randomized augmented reality keyboards. In 2017 IEEE Inter-
national Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pp. 630–635, March 2017. doi: 10.
1109/PERCOMW.2017.7917636

[34] D. Maloney. Augmented reality aids in the fight against covid-19, Mar
2020.

[35] R. McPherson, S. Jana, and V. Shmatikov. No escape from reality:
Security and privacy of augmented reality browsers. In Proceedings
of the 24th International Conference on World Wide Web, WWW
’15, p. 743–753. International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, CHE, 2015. doi: 10.
1145/2736277.2741657

[36] Z. Medenica, A. L. Kun, T. Paek, and O. Palinko. Augmented reality
vs. street views: A driving simulator study comparing two emerging
navigation aids. In Proceedings of the 13th International Conference
on Human Computer Interaction with Mobile Devices and Services,
MobileHCI ’11, p. 265–274. Association for Computing Machinery,
New York, NY, USA, 2011. doi: 10.1145/2037373.2037414

[37] J. V. Monaco. Sok: Keylogging side channels. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), pp. 211–228, May 2018. doi: 10.
1109/SP.2018.00026

[38] L. Pavanatto, C. North, D. A. Bowman, C. Badea, and R. Stoakley.
Do we still need physical monitors? an evaluation of the usability
of ar virtual monitors for productivity work. In 2021 IEEE Virtual
Reality and 3D User Interfaces (VR), pp. 759–767, 2021. doi: 10.
1109/VR50410.2021.00103

[39] P. A. Rauschnabel, R. Felix, and C. Hinsch. Augmented reality mar-
keting: How mobile AR-apps can improve brands through inspiration.
Journal of Retailing and Consumer Services, 49(C):43–53, 2019. doi:
10.1016/j.jretconser.2019

[40] K. Ruth, T. Kohno, and F. Roesner. Secure multi-user content sharing
for augmented reality applications. In Proceedings of the 28th USENIX
Conference on Security Symposium, p. 141–158, 2019.

[41] P. Shirley and S. Marschner. Fundamentals of Computer Graphics. A.
K. Peters, Ltd., USA, 3rd ed., 2009.

[42] J. Sun, X. Jin, Y. Chen, J. Zhang, Y. Zhang, and R. Zhang. Visible:
Video-assisted keystroke inference from tablet backside motion. In
NDSS, 2016. doi: 10.14722/ndss.2016.23060

https://www.tomshardware.com/news/nefes-data-kit-wireless-vr,34162.html
https://www.tomshardware.com/news/nefes-data-kit-wireless-vr,34162.html
https://docs.microsoft.com/en-us/windows/mixed-reality/design/keyboard
https://docs.microsoft.com/en-us/windows/mixed-reality/design/keyboard
https://www.magicleap.com/magic-leap-1
https://www.magicleap.com/magic-leap-1
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://everysight.com/product/raptor/
https://everysight.com/product/raptor/
https://www.lenovo.com/us/en/thinkrealitya3
https://www.lenovo.com/us/en/thinkrealitya3
https://www.ultraleap.com/product/leap-motion-controller/
https://www.ultraleap.com/product/leap-motion-controller/
https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded
https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded

[43] K. Sun, W. Wang, A. X. Liu, and H. Dai. Depth aware finger tapping
on virtual displays. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys
’18, p. 283–295. Association for Computing Machinery, New York,
NY, USA, 2018. doi: 10.1145/3210240.3210315

[44] D. Takahashi. Pokémon go is the fastest mobile game to hit $600
million in revenues, Oct 2016.

[45] M. Tonnis, C. Lange, and G. Klinker. Visual longitudinal and lateral
driving assistance in the head-up display of cars. In IEEE and ACM
International Symposium on Mixed and Augmented Reality, pp. 91–94,
2007. doi: 10.1109/ISMAR.2007.4538831

[46] M. Wilson. Snap is the world’s most innovative company of 2020, Mar
2020.

[47] K. Wolf, K. Marky, and M. Funk. We should start thinking about
privacy implications of sonic input in everyday augmented reality!
2018.

[48] Y. Yin, Q. Li, L. Xie, S. Yi, E. Novak, and S. Lu. Camk: Camera-based
keystroke detection and localization for small mobile devices. IEEE
Transactions on Mobile Computing, 17(10):2236–2251, 2018. doi: 10.
1109/TMC.2018.2798635

[49] C. Yu, Y. Gu, Z. Yang, X. Yi, H. Luo, and Y. Shi. Tap, dwell or gesture?

exploring head-based text entry techniques for hmds. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems,
CHI ’17, p. 4479–4488. Association for Computing Machinery, New
York, NY, USA, 2017. doi: 10.1145/3025453.3025964

[50] C. Yu, K. Sun, M. Zhong, X. Li, P. Zhao, and Y. Shi. One-dimensional
handwriting: Inputting letters and words on smart glasses. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, p. 71–82. Association for Computing Machinery,
New York, NY, USA, 2016. doi: 10.1145/2858036.2858542

[51] F. Zhang, Z. Liu, Z. Cheng, O. Deussen, B. Chen, and Y. Wang. Mid-air
finger sketching for tree modeling. In 2021 IEEE Virtual Reality and
3D User Interfaces (VR), pp. 826–834, 2021. doi: 10.1109/VR50410.
2021.00110

[52] H. Zhang, Y. Yin, L. Xie, and S. Lu. Airtyping: A mid-air typing
scheme based on leap motion. In Adjunct Proceedings of the 2020
ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2020 ACM International Symposium
on Wearable Computers, UbiComp-ISWC ’20, p. 168–171. Association
for Computing Machinery, New York, NY, USA, 2020. doi: 10.1145/
3410530.3414387

	Introduction
	System and Threat Models
	System Model
	Threat Model

	Technical Details and Methods
	Deep Key Tap Localization
	Key Tap Localization Refinement
	Candidate Key Center Generation
	Candidate Keyboard Reconstruction
	Best to Worst Ordering of Reconstructions

	Evaluation
	Experimental Setup
	Keystroke Detection
	Key Identification
	End-to-End Pipeline
	Defenses

	Related Work
	Limitations and Future Work
	Conclusion

