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Abstract—A novel nonlinear control scheme—robust iterative
learning control (RILC) is developed in this paper. The new
robust ILC system provides a general framework targeting at
synthesizing learning control and robust control methods with
the help of Lyapunov's direct method, thereafter being able to
handle more general classes of nonlinear uncertain systems. In
the proposed control scheme, learning control and variable
structure control are made to function in a complementary
manner. The nonlinear learning control strategy is applied dir-
ectly to the structured system uncertainties which can be separ-
ated and expressed as products of unknown state-independent
functions and known state-dependent functions. For non-struc-
tured system uncertainties associated with known bounding
functions as the only a priori knowledge, variable structure
control (VSC) strategy is applied to ensure the global asymptotic
stability. In addition, important issues regarding the objective
trajectory categories, resetting condition, derivative signal re-
quirement and their relationships have been made clear in this
paper. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction
Nowadays intelligent control and robust control are the two
main trends in the area of control theories and technologies. On
one hand, learning or adaptive capability is the main character-
istic of intelligent control. On the other hand, robustness or
insensitivity is the main characteristic of the robust control.
Learning is an active way to address system uncertainties in the
sense that it tries to identify the uncertain source such that the
optimal control arrangement can be made to eliminate the un-
certain effects. On the contrary, robust control works as a pas-
sive way to deal with system uncertainties in the sense that it
tries to estimate the worst situation such that the safest control
arrangement can be made to protect the control system from the
uncertain source. Whether using intelligent control or robust
control is highly dependent upon the available information
concerning control environment and control objectives. The
ultimate target of this paper is to explore the possibility of
synthesizing both learning and robust control strategies to gen-
erate new control system which can easily fulfill control objec-
tives that are impossible for either learning control or robust
control alone to handle.

Most learning control methods can only incorporate simple
P or PD-types control, or even work in open loop such as most
ILC based algorithms (Arimoto et al., 1984; Oh er al, 1988,
Saab, 1995; Xu, 1997). The simplicity of the existing learning
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control algorithms, or the lack of effective analysis approaches
for complicated learning control algorithms in a large degree
limits the extension of learning control to more general classes of
nonlinear uncertain systems. Moreover, the underlying open-
loop nature of many existing learning control methods further
deteriorate the system transient responses for each operation
cycle. On the other hand, robust control methods such as VSC
operate in closed loop and allow highly nonlinear, complicated
control algorithms to be used with the help of Lyapunov tech-
niques. It is well known that, VSC method works well when the
size of system uncertainties are limited by certain known bound-
ing functions, no matter those uncertainties are parametric
or structural, periodic or non-periodic, state-dependent or
exogenous ones (Utkin, 1978). However, VSC fails to work if
those bounding functions are not available. On the contrary,
most learning control methods do not require system knowledge
regarding uncertain bounds, but only apply to limited classes of
nonlinear uncertain dynamics which must be periodic. Hence,
by incorporating robust control methods such as VSC together
with Lyapunov techniques into learning control systems, one
may expect that much boarder classes of nonlinear uncertain
system can be handled.

From the point of view of system performance, learning con-
trol methods only ensure the convergence of the control system
with respect to the repeated operations, whereas robust control
methods only guarantee the convergence of the control system
along the time horizon. By synthesizing learning control and
robust control methods, we can retain the advantage of both
types of convergence. For instance, we can design a VSC to
suppress bounded non-periodic disturbances for each of the
operation cycles. Then the learning control part can be arranged
to climinate periodic uncertainties gradually through repeated
operations. In this way the stable controller design becomes
much easier because we now have two degrees of freedom:
stabilizing the system either in time domain or in terms of
iterations. As a consequence, more general classes of systems can
be easily coped with.

Compared with robust control methods, the main advantage
of synthesizing learning control and robust control is its capabil-
ity of improving the system performance gradually with respect
to periodic operations or repeatable control tasks with a fixed
finite period. In the proposed robust learning control scheme,
the contribution from learning control part is to learn and
eliminate state-independent uncertainties as much as possible.
The contribution from the robust part is to suppress the remain-
ing system uncertainties in which only the upper bounds are
available for design.

It shows, that quite general classes of nonlinear dynamic
systems with high uncertainties can be easily dealt with by the
new control scheme. The robust learning control system pos-
sesses the capability of working in either iterative or repetitive
control mode for different control objectives. Through analyzing
the developed control system in a systematic way, important
issues regarding the objective trajectory categories, resetting
condition, derivative signal requirement and their relationships
have beent made clear.

This paper is organized as follows. Section 2 describes the
control problem and objectives. Section 3 details the design and
analysis of the proposed robust learning control scheme with
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resetting condition. Section 4 provides an example with simula-
tion results.

2. Problem statement
Consider a higher order MIMO nonlinear dynamical system
described by

)'(,-=x;+1, i=l,...,m——],
Xn =h(x,p, 1) + d(x, p, t, w} + B(z, p, t)u,

where x;,e #", i=1,....,m x2[x], x5, ....x5]Te & < @"!
is the measurable state vector of the system. ue #"*! is the
control input vector of the system. ze & < #9*! where & is
a subset of the state space & with dimension ¢ < nm.pe Z isan
unknown system parameter vector. & is the set of admissible
system parameters. h(x, p, 1) represents the structured uncertain-
ties and d(x, p, ¢, w) represents unstructured uncertainties. @ rep-
resents any aperiodic factor such as aperiodic exogenous distur-
bance or system noise. B(z, p, 1} € #"*" is the input distribution
matrix. In this paper, we make the following assumptions on
vectors h, g and matrix B.

(1)

Assumption Al. Each element of the unknown function vector
h{x, p, 1) can be expressed as

hix,p,t) =87 (p, )Su(x, 1), i=12..,n (2)

where 87 = [6} --- 6] is the unknown function vector of p and ¢;
and &7 = [¢} - &7 is the known function vector of x and .

Assumption A2. The nonlinear function vector d(x,p,t, w) is
bounded such that

Vie[0, T;] Vxe¥ Vpe?,
di,min(x’ t) g di(x, Ps t) S di,max(xt t), 1 = 1, 2, ey By

where d;(x,t) is the ith element of the function vector d.
di, min(X, 1) and d; ., (x, t) are known and continuous bounding
functions with respect to x and t.

Assumption A3. Matrix B(z,p,t) is positive definite for all
tel0, Ts],ze Z, pe 2, and satisfies the following inequalities:

0 < Aminl <B,

0B
= Mx’.maxlv (3)

'z
i=01..,q

where z,2¢; the inequality 4, < A, is defined as Apae(4,) <

Amin{A2). Amax(*) and Aga(-) represent the maximum and the
minimum eigenvalues, respectively. Each element of the matrix
B~! can be expressed as

oL, Oz, 0, ij=12..,n,

where ¢l = [¢ g ¢!4] is the unknown function vector of p and
L= [n, il s the vector of known nonlinear functions of
zand t.

In this paper, || 4| with respect to a square matrix 4 is the
induced matrix norm defined as

[|A]] = sup {”H |1” for x # 0} (4)

Since ||-}} is the Euclidean norm for vectors, the corresponding
induced matrix norm is
Al = [Amac(4T )]
for a real matrix A4, and
AN = | Amax(4)]

for a real symmetric matrix A4.

The control objective is to find an appropriate control input
ue #"~! for the uncertain nonlinear system (1) such that the

system state x(t) follows x4(t) with a prescribed accuracy ¢ as
follows:

Velxq(0) - x()]] <&, ()

where x4 = [X].q -~ X7 4] is the desired state trajectory.
In this article the following two categories of trajectory x4 are
under consideration:

Categoryl. A desired state trajectory x 4(), which is defined on
a finite interval of time [0, T ], is differentiable with respect to
t up to the mth order and all its higher-order derivatives

P48 x4 90, i=0,...,m
are available over t € [0, T].

Category I1. In addition to Category I, the desired trajectory
x4(2) of Category II satisfies the following alignment condition:

x4(0) = x4(T).

Remark 1. The desired state trajectory of Category I is more
general in the sense that it does not require the alignment of the
initial value x4(0) and the terminal value x4(T,). As will be
shown later, the robust iterative control strategy with resetting
can be applied to both Categories I and II, whereas iterative
strategy without resetting can only be applied to Category II.

3. Robust iterative learning control scheme

The underlying idea of robust iterative learning control is to
learn and approach the unknown state-independent functions.
Learning mechanism is designed to identify all those state-
independent components and leave the remaining unknowns to
the robust control. Lyapunov’s direct method is applied such
that variable structure control strategy can be incorporated to
guarantee, for nonlinear and uncertain dynamic systems, the
global asymptotic convergence with respect to the iterations.

3.1. Modeling of inverse dynamics. To distinguish the required
control efforts for learning and robust control, respectively, the
inverse model of the nonlinear plant (1) is needed. First, for mth-
order dynamic systems, it is necessary to define an extended
tracking error, which is in fact a switching surface

m

o(t) = ¥ ailxiald) — %01, am=1, (6)

i=1

in which o;(i=1,...
polynomial.

Taking derivative of o with respect to time ¢ yields

,m) are coefficients of a Hurwitz

m m-
a(t) = Z OiXi+1,d z oX4 1 —h(x, p, 1)
i=1 i=1

—d(x, p, , w) — B(z, p, ), 7

where X, 4 1,g == X 4. In Order to partition the system uncertain-
ties into the known state-dependent functions, unknown state-
independent functions and unknown state-dependent functions
with known bounds, rearrange the above error dynamics as
follows:

m~1
u=B"!z,pt) [Z AXidy,a— Z aixm—h(x,p,r)]
=1

+ B}z, p, )d(x, p, t, @} — B”(z, p, 1)6(1)

=r+g—-Bqg, (8)
where

m m-1
=B"'(z,p, l)[ Y ooXiera— Y Xy —h(x,p, [)] )
i=1

i=1

represents all the nonlinear terms which can be separated into
the state-dependent functions and unknown state-independent
functions, and

g= “Bhl(l’Pal)d(x»Pa t w) (10)
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represents inseparable nonlinear terms with known bounding
functions.

Remark 2. The linear term

¢

m=1
EXi+1,d — z AXi+1s
i=1

i=1

in equation (9) is completely known, hence its bounding function
can be easily calculated. On the other hand, this linear term
consists of known state-dependent functions (constants and
state variables) and known state-independent time functions.
Therefore, both robust control and learning methods could
apply. However, in order to maximize the learning control
capability and reduce the robust control efforts, arrangement as
equation (9) is preferred.

3.2. Function partition. Based on the inverse dynamics
expression, it is possible now to partition function vector r in
equation (9) to facilitate the design of learning mechanism. From
Assumptions A1 and A3, vector r can be expressed by

r= A(x> t)y(xd’ p t)’ (1 1)

where A(x, ?) is a known matrix with appropriate dimensions.
y(X4, p, t) is an unknown function vector of time r and unknown
parameters p. Note that x4(f) is a known function vector of time
t only. In details, we have

Ax, t) = diag(CT, ... (),
(F=[nly - nlninlimy g, D gl 81 gl

m—1
n=[n, - m]TR Y aXisi. (12)
i=1

and correspondingly we have
A VHERE I §
WX P )= [@Lik1 - bl i — @l —dla
1181 - @1 01 @l20% - BL.0r - OL.85],

k=K K]T2 Y Xieyq. (13)

i=1

Note that the product of the row vector {] and column vector
y; represents the product of the ith column vector of B™! and the
vector

m m=1
[ T Xiera— 2, %Xier —h(X P, f)]
i=1

i=1

in equation (9). The partition is arranged in such way that ajl
state-relevant terms are assigned to the matrix A, and the re-
maining to the vector y which is to be learned through iterations.
Here we again have the flexibility of assigning the known

% Xi+ 1.4
1

i 3

i

either to A or to y. For simplicity of controller construction and
computation, we assign all x4 related terms to y in the proposed
method.

The error dynamics (8) can then be rewritten as follows:

u=r+g-Blg
= AX, 0)y(Xs P, 1) + E(Xa X, P, 1, ©) — B7H(x, p, )6 (14)
3.3. Bounding function calculation. To design variable structure
control it is necessary to find the bounding function of the vector

g which are functions of x4, x, p, t and @. Taking Euclidean norm
on both sides of equation (10),

lell < 1B~ (z. p. |- ld(x, p, 1, ). (15)

From Assumption A2
ldix, p. t, W) < lybx, 1)
n 1/2
é[ Y. (max{|d; minl, ‘di.maxl})z] - (16)

i=1
From Assumption A3, we have

0<B 'S iminl
and hence

I1B™ (z p, Ol < max;A(B™ ") < |Amin| B 1a(z 1) (17)
Finally, the bounding function of the system uncertainty g is
ligll < ly(xa, %, 0)
& l5(z, t)l4(%, t). (18)
3.4. Robust ILC algorithm. The iterative type robust learning
control input consists of two parts

u; = Ay, + Wy,

19

AR A(x, 1), (19)

where j indicates the number of the learning trial. v, is the
recursive control part as follows

V=V ‘*‘ﬁJAJT—lUj-q (20)

and f, is the learning control gain. w; is the robust control part
which can be decided through minimizing the difference of the
following Lyapunov function

Ty
Vi= ‘[ fly(@) = v;(@lI* dr, @n
0

which consists of Euclidean norm and %, norm of learning
error y(7) — v,(). The difference of Lyapunov function between
two successive trials is

AV, =V, =V,

T
= f Oly(@) = v @I ~ [Iy(@) — v(@I*Tdr. (22)
0

3.5. Derivation of Robust control law. Substituting the learning
law (20} into equation (22) yields

AV = J. ’{ [y(r) — vi(z) — ﬂlAJTﬂj]T [y(t) = v(zr) ~ ﬁlAjTﬂj]

= [y(x) — v  [y(x) — v,(¥)]} dt

a

T
= f [Bta] A;ATa; — 2f0] Ay(y — v))]dr. (23)
On the other hand, from the inverse dynamics (14) and the
control law (9) we have
W=1r;+g;— Bj_ld"j =Apy+g - B,'-ld"j

=AN +W; (24)

or
Ay —v)=w;— g, + Bj 'q;.

Substituting above relation into equation (23) we have

Ty
AVj == J\ {BIZO'JTAJA;I‘GJ - Zﬂ;a}[wv, — 8+ Bj_ ldj]}d't

o

i

7,
f {fie]A,4]a; — 2Bi0] [w; — g; + B 'B;B; '0,]} dt

0
- ﬁla}lBj‘lajig'

— Boj(TOB; (Toe,(Ty) + fie] (0B} ' (0)a(0)

A

T
+ J( {fia] AsAJa; — 2o Tw; + 2Bt el llgll
)

+ BB BB oy} dr. (25)
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According to Assumption A3, it is easy to calculate the upper
bound of B 'B;B; . Because

9 0B,
B 'B;B;' = B;"! ); a—z_’ziﬂj‘ Y (26)

from matrix norm property we have

(1B 'B;B; || < I(B7 11 1| Byl

3 || 8B
B Y2 B 'i
<IIB; I ‘g:o o, |Zi|
q
< | 2minl? Z [Ai,max " |Z:1 2 p;. (27
i=0

Notice that, in the presence of the aperiodic functions d,
control input w; may not be zero even if the state error xg — X or
the quantity ¢ approaches zero. This means that an theoretically
infinitely high control gain with respect to ¢ may be needed near
the vicinity of the switching surface ¢ = 0. It is well known that
variable structure control in sliding mode possesses the high-
gain property across the switching surface and yet retaining
finite control authority. Therefore we choose VSC as an effective
robust approach for such cases. To make AV; as negative as
possible, the robust control part w; is designed as follows:

w; =%A,A,~Ta'j + I sgn(o;) + (p; + Bro)o;, (28)

where S, is a constant feedback gain, and
sgn(e) 2 [sgn(o,), ..., sgn(o,)]".
Substituting equation (28) into equation (26) and notice

ajsgn(o;) > |o;ll,
we have
AV, < — B} (T B (T ), Tde(Ty)

+ fia} (0) B} '(2(0), 0)o{0)
T

-2 J- ﬁxﬁrh”"j”zdf— (29)
0

Based on the inequality (29) we can make the following
conclusions.

Theorem 1 (Robust ILC with resetting). Assume that the align-
ment of the initial states x;(0) = x; 4(0) is available for all trials,
the learning control law (20) and robust control law (28) guaran-
tee that the nonlinear system (1) tracks the given trajectory of
Category I asymptotically while all state variables are globally
and uniformly bounded.

Proof. Under the resetting condition,
6] (0)B] (0)6;(0) =0, j=0,1,....

Therefore, it follows from the relationship (29) that

T

AV;< —~ BI”JT(Tf)Bj-l(Tf)Uj(Tf) - 2ﬁlﬁfb.[ , Hd’j”zdfg (30)

o

which is negative definite when a(t) # 0, t € [0, T]. Now taking
summation of AV; up to k yields

&
Z AV;’—“ Vie1 = Vo

i=0

M~

< -
J

Br1o](T1)B; (dT), Te)o,(Ty)

o

™=

Ty
2B\ Brv J. ”"j”z dr. (31)
0 o

i

Consequently, we have

K T
)3 J liol1? dt < Vo/2BiBrs) < o0 (32)
i=0 Jo

Taking the limit of k =+ oo leads to

T
lim f lowli? dr = 0.

0

Since the switching surface (6) is selected to be Hurwitz, o, =0
ensures the global convergence of x, to x4 asymptotically. [

Remark 3. We can choose either learning control gain §, or
feedback gain f;,, to be sufficiently high so as to achieve the fast
convergence of the system states x to the desired value x.

Remark 4. In the calculation of the bounding function p; in
equation (27), the derivative signal of the system state Z; is
needed. It is then easy to observe that, if x, is not included in z,
all the derivatives of Z are in fact measurable system states. In
most motion control systems such as robotic manipulator, the
dynamics can be expressed as

il = Xz,
X; = h(x,, X, p} + B(x,)u.

Therefore, acceleration measurement is not required if using the
proposed robust learning control scheme.

Remark S. Control chattering of variable structure controller
may deteriorate learning performance. This problem can be
mitigated by inserting a small linear boundary layer around the
origin of the error coordinates. The control system will guaran-
tee uniform ultimate boundedness instead of asymptotic
stability. This is due to the presence of the uncertainties d
which requires essentially infinite gain across the switching
surface ¢ = 0.

3.5. Robust ILC without resetting. It is well known that iterative
learning control schemes are very sensitive to the initial zeroing
condition. Incomplete resetting or non-zero initial error, no
matter how small is the initial error, may result in divergence of
the learning control system. Therefore, from the practical point
of view, it would be more important and interesting to investi-
gate the condition under which the resetting requirement can be
removed for the iterative type learning control. This is con-
cluded in the following theorem associated with the assumption:

Assumption A4. For any element of the matrix B which is an
explicit function of t, then it is also a periodic function with the
period Ty, that is,

B(z,p, 0) = B(z, p, Ty). (33)

Theorem 2 (Robust ILC without resetting). Assume that the
alignment of the system state variables x,(T¢) = x;4,(0) is en-
sured for any two consecutive trials, then learning control law
(20) and variable structure control law (28) guarantee that the
nonlinear system (1) tracks the given trajectory x4 of Category II
asymptotically while all state variables are globally and uni-
formly bounded.

Proof. Under the condition x;(T;) = x;.,(0) and the property
of the given trajectory which also ensures X;, 4(T;) = X, ,4(0), it
follows that

6i(T¢) = 6;4,(0) (39)

is satisfied for all trials. From inequality (29) we know

AV, < — o] (T)B; "(z(T), Tr)oT;)

Te
+ B16] (0)Bj '(2(0), 0)a (0) — 2‘[ BiBresllayli? dr.
]
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Fig. 1. The maximum tracking error profile of ¢ vs. iterations.
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Fig. 2. The maximum tracking error profile of x, vs. iterations.

Again, taking summation of AV up to k and using conditions u Te
(33) and (34) yields ’ - ‘Eo 2By | Nl e
=
k k+1
YAV, =V -V, = — ¥ Bo](0)B™'(z;(0), 0)s,(0)
i=0 i=1

k
< - Z /i,a;-r(Tf)B"‘(z,(T,), T (Ty)
j=0

J

k
+ 3 Biof(0)B™(2,(0), 0)a,(0)

j=o

k k T

+ Y 6] (0)B™(2,(0), 0)a {0) - X 2ﬂlﬂfbj ller;lf? dz
j=0

j=0 1]
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= - B16I+ 1(0)B~ Y(Ze+ 1(0), 0)ai+ 1(0)
+ Bio5(0) B~} (2(0), 0)ao(0)

k
- Z 2By J>

T
la;l1? d. (35)

0

From above formula we can derive

K T
Z 2B, Bev f lla;li2dr < Vo + Bi165(0)B™ ' (2o(0), 0)a0(0),  (36)

j=0 o

in which the right-hand side remains constant as k increases.
Therefore, similar to Theorem 1, taking the limit of k —
leads to

Ty
I!im j llowll?dT = 0.

0

Since the switching surface (6) is selected to be Hurwitz, 6, = 0
ensures the global convergence of x, to x4 asymptotically.

Remark 6. The assumption imposed on the initial and terminal
system states x;(T¢) = X;.,(0) for any two consecutive trials is
very reasonable for most motion control systems as the final
position of the previous trial naturally becomes the initial posi-
tion of the new trial.

Remark 7. 1f B matrix in equation (1) is autonomous, namely, no
explicit time function in B, then the periodity Aassumption A4 is
not necessary. It is obvious that, for most motion control sys-
tems including robotic dynamics, matrix B is autonomous. As
a consequence, we can remove the resetting mechanism which is
indispensable for conventional ILC schemes.

4. Simulation example
Consider the following second-order nonlinear dynamics

Xy = X3,
%y = 8(t)xix; + b(u + d(xy, X3, 1). (37

The structured uncertainties are 6(f) = 9(1 + cos(?)) and
b(t) = 1 + €. b(t) has a known lower bound Ay, =1 and
b(t) has a known upper bound Ay, = 1. The unstructured un-
certainty is d = 0.2sin(x,x,) with a known upper bound
Amax = 0.3.

The desired trajectory is x,4(t) = sin® t and the period is
[0,2n). The switching surface is chosen to be

g = (-’Ed - Xz) 4 IO(X,, - xl).

In the simulation the learning gain and the feedback gain are
chosen to be ) = B, = 10. The sampling period is 1 ms. To
reduce the chattering, the switching function sgn(s)) is replaced
by the following continuous saturation function

sgn(a) if |o| > 0.2,

8
0/0.2  otherwise. (38

sat(o) = {

Robust iterative learning is conducted without resetting.

Figures 1 and 2 illustrate the tracking profiles of o and the state

x, vs. iterations respectively, which confirm the effectiveness of
the proposed robust iterative learning control scheme.

5. Conclusion

A new control scheme—robust iterative learning control
scheme is developed by integrating variable structure control
and iterative learning control approaches. The proposed robust
ILC system possesses both learning and robustness properties,
thereby is able to handle quite general classes of nonlinear
systems. The learning approach is used to attack the structured
system uncertainties, whereas VSC approach is used to deal
with non-structured uncertainties. Based on Lyapunov’s direct
method, in this paper we further investigate and clarify a number
of important properties associated with the ILC scheme such as
objective trajectory categories, the resetting condition, and the
use of derivative signals.
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