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Tracking control of rigid-link electrically-driven robot manipulators
D. M. DAWSONY, Z. QU%, and J. J. CARROLL}

This paper illustrates a simple, hand-crafted approach which can be used to
design tracking controllers for rigid-link electrically-driven (RLED) robot
manipulators. The control methodology is intuitively simple since it is based on
concepts readily identified by most control engineers. To illustrate the ap-
proach, we develop a corrective tracking controller for the RLED robot
dynamics which yields global exponential stability for the link tracking error
under the assumption of exact model knowledge. To compensate for the
uncertainties in the rigid-link electrically-driven robot model, we then design a
corrective robust tracking controller which yields global uniform ultimate
bounded stability of the link tracking error. The proposed controller is robust
with regard to parametric uncertainties and additive bounded disturbances
while correcting for the typically ignored electrical actuator dynamics.

1. Introduction

In recent years, control engineers have become increasingly interested in the
robot tracking problem. As a result many controllers have been developed
which compensate for uncertainty in the nonlinear second-order dynamics
commonly used to represent rigid-link robots. Most of the more rigorously
developed nonlinear controllers for rigid-link robots fall into two categories,
indirect adaptive control and robust nonlinear control. The interested reader is
referred to Abdallah ef al. (1991) and Ortega and Spong (1988) for review
papers in these two areas.

A deficiency associated with many of the controllers represented in Abdallah
et al. (1991) and Ortega and Spong (1988) is that these controllers have been
designed at the torque input level. Therefore, any dynamics associated with the
joint actuators (e.g. electrical effects) have been neglected. Several researchers
have postulated that the detrimental effects of neglected actuator dynamics are
preventing the development of high-performance motijon and/or force tracking
controllers (Eppinger and Seeing, 1987). Therefore, it is believed that additional
progress can be made by including the effects of actuator dynamics in the
control synthesis.

Some recent work regarding the compensation of electrical actuator dynamics
is now summarized. In Ilic-Spong et al. (1987) a detailed nonlinear model of the
switched reluctance motor is developed and an electronic commutation strategy
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is established. The motor dynamics are then feedback linearized via a nonlinear
controller and the controller’s robustness is tested versus critical parameter
uncertainties such as stator resistance. Taylor (1989) extends this work by
formulating a composite control based on a singularly perturbed rigid-link
eletrically-driven (RLED) robot model with switched reluctance actuator dynam-
ics. Marino et al. (1990) develop a feedback linearizing control for an induction
motor which includes both electrical and mechanical dynamics. The proposed
controller contains a nonlinear adaptation scheme which is capable of identifying
the motor load torque and rotor resistance (which are assumed to be unknown
constants). Tarn er al. (1991) develop a feedback linearizing control that
requires acceleration measurements for RLED manipulators with direct-current
actuators. A feedback linearizing and decoupling transformation is presented by
Tzafestas et al. (1984) to produce a reduced-order model of the rigid-link robot
with direct-current actuator dynamics. The proposed controller reduces to a
standard computed torque algorithm for rigid-link robots under specified condi-
tions. Robust stability for the full-order RLED model is then considered and
stability conditions are derived. Note, all of these controllers require exact
knowledge of some (if not all) model parameters.

It is also important to note that many of the controllers proposed in the
literature compensate for the fast actuator dymamics by using a singular
perturbation approach (Kokotovic et al. 1986). Since the theory of singular
perturbation can be applied to many general classes of systems, it is very useful
for the control synthesis of both linear and nonlinear systems. The singular
perturbation approach involves the use of concepts such as time-scale separa-
tion, integral manifolds, and power series expansions. While these concepts are
powerful and elegant, it may be possible to use a simpler approach for the
control synthesis in many specific applications. This paper illustrates how a
simple hand-crafted approach can be used to analyse the stability of rigid-link
electrically-driven robots.

Using this simplified approach and the assumption of exact RLED model
knowledge, we develop a corrective tracking controller to achieve global
exponential stability of the link tracking error. The term corrective controller
(Kokotovic et al. 1986) is used to emphasize that the controller corrects for the
typically ignored electrical actuator dynamics. To compensate for uncertainties
in the RLED robot model, we then design a corrective robust tracking
controller to achieve global uniform ultimate bounded stability of the link
tracking error. The proposed controller is robust with regard to parametric
uncertainties and additive bounded disturbances while correcting for the elec-
trical actuator dynamics. While this paper focuses on the development of
hand-crafted controllers for the RLED robot, it should be noted that similar
results have also been obtained for the rigid-link flexible-joint (RLFJ) robot
(Dawson et al. 1991).

The paper is organized as follows. In §2, we design a corrective tracking
controller for RLED robots under the assumption of exact model knowledge.
We extend these results in §3 by designing a corrective robust tracking
controller which compensates for uncertainty in the RLED model. In § 4, we
present simulation results for a two-degree of freedom RLED robot with
direct-current actuators to illustrate the performance of the proposed corrective
tracking and corrective robust tracking controliers.
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2. Corrective tracking in the pfesence of electrical dynamics
2.1. Mathematical preliminaries

Before presenting the RLED robot dynamics, we introduce two stability
lemmas which will be exploited later in the development.

Lemma 2.1 (See the Appendix): If the n X 1 state vector x(t) in the continuous
system

() = f(x(1); 1) (1)

has an associated Lyapunov function (Corless and Leitmann 1981) V(x, t) with
the following properties

Mlx()IP < V(x, 1) < Llx(] V(x, 1) e R" X R ()
V(x, )< =Asllx()|* + ¢ Y(x, t) e R* X R 3)

where A, Ay, A3, and € are positive scalar constants, then the state x(t) is globally
uniform ultimately bounded (GUUB) (Corless and Leitmann 1981) in the sense
that

A 2, —ht £ —A &
Ol = |7 e @IFe + 357 11 - e) @

where A= AsfAy, and e is the natural logarithm exponential. The notation |[{ - }|| is
used to represent the euclidean norm (Barnett 1984) of the vector {+} and a ‘dot’
is used to designate differentiation with respect to time throughout the develop-
ment.

Lemma 2.2 (See the Appendix): Let y(t) be a n X 1 vector defined in terms of
an X 1 vector z(t) as shown

y(8) = 2(1) + az(1) )
where « is a positive scalar constant. If y(t) is upper bounded by the expression

Iyl = Vs + VIB[e ()

where i is a non-negative scalar constant, and |B|, o, and A are positive scalar
constants, then z(t) can be upper bounded as shown

el = e~z @) + 1 Y 1 = ey 4 2V iy ooy

2.2. RLED model development and associated properties

For simplicity, we assume that the actuator is a permanent magnet direct-cur-
rent motor. It should be noted that the following analysis can also be extended
to other motors commonly used in robotics, such as brushless direct-current
motors. The model (Taylor 1989) for an n-link RLED robot is taken to be

M(q)§ + Vu(q, §)q + G(q) + F(q) + Tp = K¢l ®
gnd N '
LI+ R, §) + Tg = ug ©)

where M(q) is a n X n inertia matrix, V,,(q, ¢) is a n X n matrix containing the
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centripetal and Coriolis terms, G(g) is a n X 1 vector containing the gravity
terms, F(g) is a n X 1 vector containing the static and dynamic friction terms,
g(t) is a n X1 vector representing the link displacements, I(¢) is an n X1
vector used to denote the armature current in each joint actuator, Ky is a
positive definite constant diagonal » X n matrix which characterizes the electro-
mechanical conversion between current and torque, L is a positive definite
constant diagonal »n X n matrix used to represent the electrical inductance,
R(I,q) is a n x 1 vector used to represent the electrical resistance and the
motor back-electromotive force, up is an n X 1 control vector used to represent
the motor terminal voltages, T; is a n X 1 vector representing an additive
bounded torque disturbance, and Tg is 2 n X 1 vector representing an additive
bounded voltage disturbance.

It is important to emphasize that constant bounds are assumed for each of
the parametric quantities represented in (8) and (9). For example, the torque
transmission matrix K is assumed to be bounded

kilx|? < xTKzx < ky||x|* for an arbitrary n x 1 vector x (10)

where k; and k, are positive scalar bounding constants. The inductance matrix
L is also assumed to be bounded

Lix|? <= xTLx < L)x|]* for an arbitrary n X 1 vector x 11)

where Iy and I, are positive scalar bounding constants. In addition, upper
bounds are assumed for the remaining RLED model parameters.

Traditionally, the robotic control literature (Slotine 1988) has emphasized the
use of the manipulator’s physical properties to aid in the stability analysis.
Therefore, we note the following useful robot properties

Property: Ineriia. The inertia matrix M(q) defined in (8) is positive definite
symmetric and is uniformly bounded as a function of q. Therefore, we can state
for an arbitrary n X 1 vector x

mallelP? = A { M(D}II? < xTM(g)x < Anaun{ M(D}Hx|? = myllx|? (12)

where my and m, are positive scalar constants that depend on the mass properties
of the specific robot considered. In general, Property 1 only applies to revolute
joint robots.

Property: Skew symmetry. A useful relationship exists between the time deriva-
tive of the inertia matrix M(q) and Coriolis/centrifugal matrix V,,(q, ¢) as shown

xT(M(q) = 2Vu(g, ))x =0 (13)

where x is an arbitrary n X 1 vector.

2.3. Formwlation of the RLED error system

Our objective is to synthesize a controller given exact RLED model
knowledge which ensures global exponential link tracking in the presence of the
typically ignored electrical actuator dynamics. Note, the formulation of the
closed-loop error system is a non-trivial matter since the stability analysis is
directly related to the developed error system. With this objective in mind, we
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define the tracking error to be
e=4qga—¢ - (14

where g4 is a n X 1 vector representing the desired link trajectory. We will
assume that g4 and its first, second, and third derivatives are all bounded
functions of time. This assumption on the ‘smoothness’ of the desired trajectory
ensures that the controller, to be defined later, remains bounded (i.e. requires
finite control energy). In addition, we define a n X 1 filtered link tracking error
(Slotine 1988) to be

r=¢é+ ae 15)

where « is a positive scalar constant.
We now write the RLED robot dynamics of (8) in terms of the filtered link
tracking error of (15)

M(q)i = wr — Vin(q, )1 — K1l (16)
where

wp = M(q)[da + @&] + Viu(q, Q)lda + ae] + G(g) + F(¢) + T, (17)

The error dynamics of (16) clearly lack a torque level control input; therefore
we add and subtract a ‘fictitious’ control term uy, to the right hand side of (16)

M(q)i = wp — Vyu(q, @r — Kqup + Krn (18)
where
=u; — I (19)

is a nx1 vector representing a current level perturbation to the rigid-link
dynamics. Due to the simplicity of the direct-current motor dynamics, this term
can be effectively viewed as a torque perturbation to the rigid-link dynamics.

The ‘fictitious’ current control input u; is designed such that it would
provide global exponential stability of the link-tracking error for the rigid-link
dynamics alone (assuming it could be applied directly to the links). We will
show later in the development that u; is actually embedded inside an overall
corrective control strategy which is designed at ug, the motor terminal voltage
level.

If the current perturbation term in (18) was equal to zero, then u; could be
designed to yield GES for the link tracking error. Since the current perturbation
of (19) is not equal to zero in general, we must design a voltage level controller
ugp which compensates for 7 in (18). To accomplish this control objective, the
perturbation dynamics are needed. We therefore differentiate (19) to obtain

n=ap~1I (20)
Multiplying (20) by L substituting (9) yields
Ly =wg — Kyr — ug @
where : .
wg = Lig + R(I, §) + Tp + Kgr @)

Note, the interconnection term Kpr has been added and subtracted tc; the right
hand side of (21) to facilitate the stability analysis.
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Given exact model knowledge and the error dynamics of (18) and (21), we
define the controllers u; and ug to be

up = K7'[kyr + wy] and ugp = kgn + wg 23)

where k; and kg are positive scalar controller gains.

2.4. Stability analysis of the RLED error system

We now state a theorem for the RLED error dynamics given exact model
knowledge and the proposed controls of (23).

Theorem 2.1: The filtéred tracking error defined in (15) is globally exponentially
stable (GES) in the following sense:

Ir(Dll = Ve™” (24)
where
Ay
3= 2 O 25)
1
x=[rT (O ())° (26)
),1 = %mm (ml, ll) (27)
Az = %max(mz, 12) (28)
A3 = min(k, kg) (29)
and
A= hfhy (30)
Proof: Define the following Lyapunov function (Slotine and Li 1991)
V = 1rTM(q)r + in"Ln=4xTPx (31)
where

p_| M@ O"If":l

U

Note, 0,x, and I,x, are used throughout the development to denote the n X n
zero and identity matrices respectively.
Given Property 2.1, we can state that V is upper and lower bounded as
shown
Ml < v < (P . (32
where A; and A, are defined in (27) and (28).
Differentiating (31) with respect to time along the error system given by (18)
and (21) yields
V = rTwy — Kqu) + n'lwg — ug] (33)
where Property 2.2 has been exploited to reduce the expression. We now
substitute the controllers of (23) into (33) to obtain
V=—rTkpr — nTkgn = —xT0x (34)
where

Q - [kLIan Onxrz :‘
Onx‘n kEIan
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From (34), V can now be upper bounded as
V< —Aslx|? (39)

where A3 is defined as in (29). From (32) and (35), we can apply Lemma 2.1
(with £ = 0) and utilize the fact that ||r(¢)|| =< |x(¢)|| to yield (24). O

Remark 2.1: Given Theorem 2.1, we can apply Lemma 2.2 (with & =0) to
obtain the following upper bound on the link position tracking error

R
el = ne=oe(@)] + ZVATL s — =t 6)
where «, B, and A are defined in (15), (25), and (30), respectively. O

Remark 2.2: It should be noted that we can obtain an upper bound on the link
velocity tracking error é(¢) by applying a triangle inequality argument (Vidya-
sager 1978) to (15). Specifically, we can state that

lell < alle(n)]| + [Ir(n)l] (37
where [le(#)|| and [|r(z)|| are bounded by (36) and (24) respectively. O

Remark 2.3: It should be noted that the corrective control ug given by (23),
depends on the calculation of w;, #; and I. At first it may appear that this
requires measurement of g, ¢, § and I. However, since we assume exact
knowledge of the dynamic model as given by (8) and (9), we can use this
information to eliminate the need for measurement of §. That is, &; can be
written as

ip = K7 lkel(da = §) + o] + wr] ©9

where
Wi = M(q)[dq + M] + M(‘Z) > da + W(Qd - q)

+ Voulg, Pldga + ael + Viulq, Qlia + @] + G(g) + F(g) + T,
(39)

and § is found from (8) to be
§ = M@Kl ~ Vg, §)4 ~ G(@) = F(q) ~ Ti] (40)

After substituting (40) for ¢ in (38) and (39), u; will only depend on the
measurement of g, ¢, and I. To formulate #;, we must assume that the robot
dynamics of (8) are once differentiable. This implies that terms such as the joint
friction F(g) must be at least once differentiable. O

Remark 2.4: Our assumption that the desired trajectory is sufficiently smooth is
motivated by (38) and (39), since the corrective controller requires the first,
second, and third time derivatives of the desired link trajectories. Therefore,
these trajectories must be bounded for the motor terminal input voltage to be
bounded. , ’ ) d
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Remark 2.5: The actual control voltage implemented at the motor terminals,
ug, can be found by making the appropriate substitutions into (23)

ug = Lig + R(I, §) + Kgr + kgK7'[kpr — Kqd]
+ kgK P UM(da + aé] + Vg, 9)[ga + ae]l + G(q) + F(¢) + TL]
(41)
where 11, is given by (38). O

Remark 2.6: The Lyapunov based stability analysis given in this section can be
readily extended to compensate for uncertainty in the RLED model described
by (8) and (9). As shown in § 3, a nonlinear robust corrective tracking controller
which compensates for parametric uncertainty and additive disturbances in the
RLED model is designed using a similar Lyapunov based approach. O

Remark 2.7: Our development assumes that the arm is revolute. If the manipu-
lator has prismatic joints, Property 2.1 can be rewritten as

millEl? = A M(@ME]? < xTM(g)x < Anax{ M@} = ma(@) s (42)

for arbitrary n X 1 vectors x. The term m; is a positive scalar constant and
my(q) is a positive definite scalar function. The controller u;, is then modified to
be

up = K7 lkeya(llaldr + wil (43)
where y,(|lg])) is a positive definite, differentiable scalar function given by

yollglh = 3 max(ma(q), I2) (44)
The controller uz remains as defined in (23). Lemmas 2.1 and 2.2 can now be
applied to yield GES for the link tracking error as shown previously. a

3. Corrective robust tracking in the presence of RLED model uncertainty

In this section, we design a corrective robust tracking controller to compen-
sate for uncertainties in the RLED robot dynamics. A GUUB stability result for
the link tracking error is given for the proposed controller. The controller is
robust with regard to parametric uncertainties and additive bounded distur-
bances in the RLED dynamics presented in § 2.

. 3.1. Formulation of the corrective robust tracking controller
Given the RLED error dynamics of (18) and (21), we define the robust

- controllers uy, and ug to be
: up = k{l[kLr + 0] and ug = kgn + vg (45)
o where k; and kg are positive scalar controller gains and kq is defined in (10).
The auxiliary control terms v, and vy are defined as (Corless 1989)
' rpL ok

L= T v e ™ PE T Tollog + ez (46)

iwhere &, and &g are positive scalar control gains which are adjusted to achieve
‘a desired link tracking performance. The terms p;, and pg are scalar functions
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used to ‘bound’ the uncertainty in the RLED model. These bounding functions
are defined as follows

pre; &) = [lwr| and pg(e, &, ) = [wgl| (47)

where w;, and wg are defined in (17) and (22) respectively.

The procedure for calculating the bounding functions will be discussed later
in the development. For now, we simply assume their existence. It should be
emphasized that these bounding functions depend only on measurements of I, g
and ¢. This is due to the fact that the proposed electrical dynamics are a set of
first-order differential equations.

3.2. Stability analysis of RLED error system

We now show that the corrective robust controllers given in (45) with the
auxiliary control terms given in (46) result in GUUB stability of the link
tracking error. It should be emphasized that the proposed robust controller does
not require exact knowledge of the dynamics as described by (8) and (9). Since
wy and wg in (17) and (22) contain unknown parameters and additive
disturbances, there will be some uncertainty associated with these terms. Using
bounds on the uncertainty given by (47), the robust controllers of (45) ensure
‘good’ link tracking performance.

A theorem for the stability of the RLED error dynamics given parametric
uncertainty and bounded additive disturbances under the proposed controls of
§ 3.1 are now stated.

Theorem 3.1: The filtered tracking error defined in (15) is GUUB in the
following sense:

Ir(0)] < [ + Be ]2 (48)
where
£
A= m (49)
B = 2 @) - = (50)
M MA
e=¢g; + €p 51)

and x, Ay, Ay, A3 and 4 are defined in (26)—-(30), respectively.
Proof: * Starting from (33) in the Proof of Theorem 2.1, we have

V = rTwy — Kgur] + n'[wg — ug] (52)
Substituting (45) for u; and ug into (52) yields
V = —rTKrkpr/ky = nkgn + [r"wy — r"Keo kil + [n"wg — n7vg] (53)
Substituting (46) for v; and vg into (53) yields

2

. TPL
V=—xT x + rTw "I‘TK [—‘—_]k
(@) [ L T ”r“pL + g / 1]

2
NPE
+ |nTwg — T[-—” 54

[" ET M Tnlloz + 25 G4
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where
-1
o=[5 i) 9
From (10) and (54), V can be upper bounded as
1o ”

irllor + €L

2 2
- [t - | e || (56

Inllog + €&

where A, is defined as in (29). Combining the bracketed terms on the right hand
side of (56) under common denominators and applying (47) yields the new
upper bound on V

v < =l + [Iocl -

Vs —Mllx|? + ¢ (57)
where ¢ is defined in (51). From (32) and (57), we can apply Lemma 2.1 and
utilize the fact that ||[r(¢)|] < |x(#)] to yield (48). |

Remark 3.1: Given (48) through (51), we can obtain a new upper bound for
the filtered tracking error as

Ir(Oll = Vst + Vidle ™~ (58)

Applying Lemma 2.2 with (15) and (58) yields the link position tracking error

bound
A RB
e = ne=osle@)] + n L [1 — emerp 4 2V eoien ooy (59
o« 20 — A
where @, A, o4, and & are defined in (15), (30), (49), and (50), respectively.
Note that the control parameters can be arbitrarily adjusted to give a desired
transient response and an ultimate bound for the link position tracking error. O

Remark 3.2: It should be noted that we can obtain an upper bound on the link
velocity tracking error é(z) by applying a triangle inequality argument as shown
in (37) with |le(?)|| and ||r(¢)| defined by (59) and (48), respectively. O

Remark 3.3: It is important to note that the corrective robust tracking con-
troller does not require that the robot dynamics of (8) be differentiable, as was
the case for the controllers designed using exact knowledge in § 2. This is due to
the fact that the robust controller uz depends only on a bound of i, rather
than & itself. (]

3.3. Formulation of bounding functions

We now illustrate how the bounding functions given in (47) can be found.
With regard to p, (e, é) = |lwy |, it has been shown (Dawson et al. 1990) that

oL = Gle? + &illell + Lo (60)

where e(t) = [eT(¢) ¢T(1)]T, and &,, &1, and §, are positive scalar constants that
depend on estimates of the upper bounds on parametric quantities such as the
largest payload mass.
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Although we do not provide a general expression for pg, a procedure for
finding this function is outlined. It is easy to establish that the dynamics of (17)
and (22) can be bounded by combinations of constants and functions of the
measurable quantities g, ¢ and I. That is, we can compute ; from its partial
derivatives as

3
iy = P 2Dy (61

Therefore, [lizz| can be written in terms of combinations of constants and
functions of q, ¢, I. This implies that it is possible to generate a pg(e, ¢, 17) such
that pg = [wg].

4. Simulation

In this section, we give simulation results of the theoretical developments
presented in §2 and 3. The simulated rigid-link dynamics are of a planar
two-link revolute manipulator which can be found in Craig (1986). The actuator
dynamics are assumed to be the permanent magnet direct-current motor (Tarn
et al. 1991) (i.e. first-order dynamics)

LI+ RI + krg = ug (62)

The RLED system parameters are assumed identical for each link and are given
as

L=001H,R=10Q, K; = 1-0NmA™ (63)
and
D=10m, M = 1-0kg, Fd = 0-1Nmms™, and G = 9-81kgms™! (64)

which represent the motor armature winding inductance, armature winding
resistance, torque coupling/back-e.m.f. coefficient, link length, link mass, coeffi-
cient of dynamic friction, and the acceleration of gravity respectively. The
desired joint trajectories are defined to be

qq4(1) = sin(t) rad (65)

The initial joint position errors, joint velocity errors, and motor current
perturbations are set to zero. In addition, all controller gains are set to 10. For
control purposes, all parameters are assumed to be off by +50%. The position
and velocity tracking errors for the corrective tracking controller under these
assumptions are shown in Fig. 1(a), and the associated motor torques and
voltages are shown in Fig. 1(b).

To simulate the corrective robust tracking controller, all RLED parameters
are set to the nominal values given above. For control purposes, all parameters
are upper bounded at +50% of the nominal values. In addition, additive
disturbances are injected into the RLED dynamics as shown in (8) and (9) of
the form

Ty = Tg = 0-1[sin (¢)sin (3¢/2)] Nm and V, respectively (66)

These disturbances are also assumed to be upper bounded by +50%. The
desired joint trajectories are once again assumed to be

qq(t) = sin(¢#)rad (67)
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Figure1. (a) Link tracking errors for the corrective tracking controller; (b) motor torques
and voltages for the corrective tracking controller.
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and the initial joint position errors, joint velocity errors, and motor current
perturbations are set to zero. In addition, all controller gains are set to the
values assumed for the corrective tracking controller given above. As shown in
Figs 2(a) and 2(b), the corrective robust tracking controller out performs the
corrective tracking controller despite the greater degree of system uncertainty.

5. Conclusion

In this paper, we developed a design approach that can be used to design
robot tracking controllers which compensate for actuator dynamics in RLED
robots. Under the assumption of exact model knowledge, the design approach
yields a corrective tracking controller which is globally exponentially stable with
respect to the link tracking error. The design approach is intuitively simple in
that it is based on concepts that most control engineers can readily identify with.
The approach was then extended to the RLED robot dynamics with parametric
uncertainty and additive disturbances. A corrective robust tracking controller
was then developed which gave a globally ultimately uniformly bounded stability
result for the link tracking errors despite the uncertainty in the dynamic model.
Simulation results show that the corrective robust tracking controller effectively
compensates for uncertainty in the rigid-link and joint actuator dynamics.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science Foundation
Grants MSS-9110034 and IRI-9111258.

Appendix

Proof of Lemma 2.1: Given (1) through (3), we multiply (2) by —A = —13/4, to
obtain

=Ml (DIF < -AV(x, £) < —AAlx(Of (A1)
We can use (A 1) to place the new upper bound on V in (3) as
V(£ < —AV(x, t) + ¢ (A2)
Multiplying (A 2) by e*' and rearranging terms yields
d .
oy [eMV(x, )] = eMV(x, 1) + e¥AV(x, 1) < ee™ (A3)
or equivalently
t t
|, dle v, 0] < [ ee*ar (A4)
Evaluating (A 4) and rearranging terms yields the new upper bound on V'
V(x 1) < eMV(x(0), 0 + 5 [1 -] (A5)
To bound V in (A 5), we apply (2) to obtain
Ml < Aalr@IPe™ + - [1 = 7] (A6)

Solving (A 6) for |x(t)|| shows that the state x(¢) is GUUB in the sense of (4). O
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Figure 2. (a) Link tracking errors for the corrective robust tracking controller; (b) motor
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Proof of Lemma2.2: Given (5), we can state that the ith component of the
y(¢) and z(¢) vectors have the following frequency domain relationship

yi(s) = [sz:i(s) — z:(0)] + az(s) (A7)
where s denotes a frequency domain variable. Solving (A7) for z;(s) and
transforming the expression back to the time domain yields

2(t) = 20 + [ ey (0) do (A8)

Therefore the ith component of the vector z(¢) can be upper bounded in terms
of (A8) as

l2i(t)] < [zi(@)le™" + [ e~y (0)] do (A9)

Applying |lz(1)]l < X iL1]zi(9)] to the left-hand side of (A 9), and |z;(2)] < |z(2)]|
and |y,(r)| < |ly(1)}] to the right-hand side of (A 9) yields an upper bound on
z(1)

t

el < lz@le™ + n[ e~ (0 do (A10)

Substituting the upper bound for [y(¢)|| given by (6) into (A 10) and evaluating

the integral yields (7). O
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