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Abstract 
Realistic display of high dynamic range images is a difficult 
problem. Previous methods for high dynamic range image display 
suffer from halo artifacts or are computationally expensive. We 
present a novel method for computing local adaptation luminance 
that can be used with several different visual adaptation based 
tone-reproduction operators for displaying visually accurate high 
dynamic range images. The method uses fast image segmentation, 
grouping and graph operations to generate local adaptation 
luminance. Results on several images show excellent dynamic 
range compression while preserving detail, without the presence of 
halo artifacts. With adaptive assimilation, the method can be 
configured to bring out high dynamic range appearance in the 
display image. The method is efficient in terms of processor and 
memory use. 

 

1  Introduction 
Local adaptation allows the human visual system to perceive detail 
in an environment with a high dynamic range. For example, an 
observer indoors can look outside on a sunny day and perceive 
detail while simultaneously reading a newspaper in the shade. This 
represents a scene dynamic range of perhaps 1000:1 or more and 
yet the visual system is able to cope with the large changes in light 
intensity. 

Recently, strides have been made towards capturing high 
dynamic range digital images. Modern digital cameras are capable 
of capturing high dynamic range images directly with wide 12-bit 
analog-to-digital converters. Also, software techniques pionered 
by Debevec et al. [3] and Nayar et al. [9] allow researchers to 
reconstruct high dynamic range images from multiple 8-bit images 
taken at different exposures. Software renderers that perform 
global illumination are also capable of generating images that have 
very high dynamic range. A high dynamic range photograph or 
accurate render of a real world scene can have three orders of 
magnitude or more of dynamic range. CRT monitors and LCD 
displays have only one or two orders of magnitude of dynamic 
range. The simplest solution for displaying a high dynamic range 
image would be to uniformly scale the high dynamic range image 
with a constant and then clamp the image to bring the pixel values 
into the displayable range of the display device. The problem with 
such uniform scaling and clamping is that the detail in the darker 
portions of the image are clamped to black and the detail in the 
brighter portions of the image are clamped to white. This 
represents a loss of detail in both clamped and non-clamped areas. 

In this paper we present a simple, fast method for displaying 
high dynamic range images. We compute the local adaptation 
luminance for every pixel of a high dynamic range image by the 
use of an efficient image segmentation technique. The segmented 
image is then mapped onto an adjacency graph and simple graph 

operations are used to simplify the image by the process of 
assimilating small nodes into larger surrounds. The assimilation 
process can be configured to preserve high dynamic range 
appearance in the display image. The simplified image is then used 
in conjunction with a tone-reproduction operator to reduce the 
dynamic range of the input high dynamic range image for display. 

2  Previous Work 
Tone-reproduction operators have been used for some time to 
accurately display images of scenes with wide absolute range of 
illumination using display surfaces with low dynamic range [7] 
[11][16][19]. In general, these authors build on psychophysical 
data to derive a mapping from the dynamic range of the image 
onto a smaller range while preserving visual appearance. These 
operators can be used to display high dynamic range images and 
some of them work by multiplying each pixel value in the high 
dynamic range image with local scale factors to derive the display 
pixel value. The local scale factors are derived from the 
tone-reproduction operator’s model of the visual adaptation and 
the local adaptation luminance of the scene.  

The local scale factors for local adaptation have been 
approached from multiple directions [2][10][13][15]. Most of 
these techniques compute the local adaptation luminance by 
finding the geometric or arithmetic mean of pixel luminance in a 
local neighborhood. Some of these techniques use spatially 
averaging linear filters or even linear filter hierarchies. These 
techniques invariably produce halo artifacts around regions of high 
contrast. Halos form on the dark side of the high dynamic range 
edge because the local adaptation luminance is overestimated from 
the presence of bright pixels. Conversely, the adaptation 
luminance on the bright side is underestimated due to the presence 
of dark pixels in the local neighborhood. This causes a gradient 
reversal and hence a dark or bright halo around high contrast 
edges in the image (see the image on the 3rd row in Figure 2 for 
halo artifacts). This artifact detracts from the quality of the image.  

In their recent work Pattanaik and Yee [12], Ashikhmin [1] and 
Reinhard et al. [14] propose techniques based on local adaptation 
that does not produce halo artifacts. Pattanaik and Yee use the 
weighted mean of pixel luminances in the neighborhood as their 
local adaptation luminance. In their method weighting is 
dependent on the ratio of the luminance of neighboring pixels and 
the pixel under consideration. Ashikhmin’s and Reinhard et al.’s 
methods use the mean of a circular neighborhood as the local 
adaptation, where the radius of the local neighborhood is 
adaptively computed based on the local contrast. For a high 
contrast neighborhood the radius is kept smaller than the radius in 
an uniform neighborhood. The adaptive per pixel computation 
used in these techniques is relatively expensive. 

Our method is based on local adaptation luminance 
computation. It is designed to avoid the gradient reversal problem 
common in many local adaptation based methods and thus avoids 
halo artifacts. The local adaptation computation in our method is 
region based instead of pixel based and is hence much faster. 
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Ward-Larson et al. [20] invented a technique that avoids halo 
artifacts by performing operations on the histogram of adaptation 
luminance values in the image. The display contrast in the 
resulting display image is sometimes reduced since the scene to 
display luminance mapping is strictly monotonic in their method. 
Our method is not limited to monotonic scene to display 
luminance mappings and hence preserves perceived contrast in 
most cases. 

Tumblin et al. [17] provided a technique that is halo-free, but 
requires that the source image be separated into different layers of 
lighting and reflectance. This might not always be possible, 
especially from images derived from photographs. Our technique 
is not limited to computer-generated images. 

By the clever use of partial differential equations from the field 
of anisotropic diffusion, Tumblin and Turk [18] came up with a 
technique called LCIS (Low Curvature Image Simplifier) that 
reduces dynamic range while preserving detail. The technique 
works very well in making details in an image visible. However, 
LCIS is computationally expensive. Our technique can be up to 50 
times faster than LCIS. At the same time, our method can operate 
in a mode that preserves detail. 

Durand and Dorsey’s recent work [5] proposes the use of 
bilateral filtering for extracting details. The resulting method is 
more efficient than the LCIS based method. Fattal et al.’s recent 
work [6] is based on computing and attenuating large luminance 
gradients that exist in high dynamic range images. Reinhard et al’s 
recent work [14] proposes a non-linear compression function for 
compressing the dynamic range. This function is very similar to 
the tone mapping function proposed by Pattanaik et al. [11] in 
their dynamic adaptation work, and is effective within a limited 
dynamic range. Reinhard et al. [14] use local adaptation luminance 
in their compression function to handle images with larger 
dynamic range. 

3  Method 
Our method attempts to reduce the dynamic range by finding the 
appropriate adaptation luminance for every pixel. This luminance 
can be used in conjunction with psychophysically derived 
tone-reproduction operators for creating an accurate display image. 
Our method can be adjusted to extract detail similar to LCIS [18]. 

Our algorithm for local adaptation proceeds in four steps, 
segmentation, grouping, assimilation and layer averaging. Now we 
define some terms before we discuss the implementation. The 
output of the segmentation process puts pixels into categories. The 
categories are then clustered by spatial contiguity into groups. A 
process called assimilation combines different groups together. 
Pixels belonging to each group are set to the group’s luminance 
value and the resulting image is called a layer. Multiple layers are 
generated by repeating the segmentation process with slightly 
different bin sizes and then are averaged together to obtain the 
local adaptation luminance image. User specified parameters are 
marked in bold. 

Step 1: Segmentation. The method begins by performing a 
simple image segmentation on the log10 luminance of the high 
dynamic range image by binning each pixel into categories which 
are spaced apart in units of bin size (see Equation 1 and Equation 
2). 

Equation 1: bin_size = bin_size1 + (bin_size2 – bin_size1) * 
( layer / (max_layers –1)); 

Equation 2: category(x,y) = ( log10 luminance(x,y) – 

minimum image log10 luminance ) / bin_size; 

where layer runs from 0 to max_layers-1, and max_layers is user 
specified. The bin size is linearly interpolated between user 
specified bin_size1 and bin_size2. 

Step 2: Grouping. A flood fill is performed in a breadth first 
manner so that contiguous pixels of the same category are 
assigned to a group. During the flood fill, the sum of pixel log 
luminance for the group is accumulated, as well as the list of 
locations of pixels belonging to the group. At the same time, if the 
flood fill encounters an adjacent group, the adjacency list of both 
groups are updated to reflect the fact that the groups are next to 
each other. The adjacency list is a list that keeps track of which 
groups are neighbors to the current group being flood filled. Group 
luminance is calculated as the sum of pixel log luminance values 
divided by the number of pixels in each group. 

Step 3: Assimilation. All the groups are checked to locate 
singletons that are groups with only one neighbor. The larger 
group of the two neighbors then assimilates the smaller group if 
the number of pixels in the larger group exceeds a user specified 
big_threshold and if the number of pixels in the smaller group is 
less than a user specified small_threshold. Moving the pixel 
locations from the smaller group to the larger group and discarding 
the group luminance value from the smaller group summarizes the 
assimilation process. The list of groups is again traversed and 
groups with pixel count smaller than small_threshold have their 
neighbor list traversed. The largest neighbor with a pixel count 
larger than big_threshold assimilates the smaller group. Each 
pixel is then set to the luminance value of the group it belongs to. 
The image that is formed from this segmentation, grouping and 
assimilation process is called a layer. 

Step 4: Layer Averaging. Multiple layers separated by slightly 
different bin sizes are then averaged together to obtain the final 
local adaptation luminance image which is then handed off to a 
tone-reproduction algorithm for processing. 

Figure 1 (a) – (g) below graphically depicts each step of the 
algorithm in calculating the local adaptation luminance using our 
technique. Step (h) is the local adaptation luminance calculated 
using a box filter for comparison. The image segmentation via 
binning ensures that pixels of very different luminances are not 
averaged together. Figure 1 (a) and (b) show the segmentation of 
two layers of different bin sizes. The segmentation process 
prevents halos or gradient reversals from forming. A bin size of 
one log10 unit allows the capture of contrast up to 10:1. Figure 1 
(c) and (d) show the grouping process, whereby spatially 
contiguous pixels of the same binned luminance are grouped 
together. The images are false colored by group. Figure 1 (e) and 
(f) are the result of the assimilation process. By merging small 
regions of pixels with very different luminances from the surround 
(such as specular highlights and shadows) with the surround, the 
assimilation process allows context dependent intensity mapping. 
Thus pixels with a given luminance surrounded by darker pixels 
are assigned the adaptation luminance of the darker pixels and are 
mapped to look much brighter than the same pixels surrounded by 
brighter pixels. For example, the letters to the right of the lamp on 
the wall are ‘assimilated’ into the luminance of the wall, which 
accentuates the darkness of the letters during the tone mapping 
process. This can be seen in the differences between image (c) and 
(e). The assimilation process gives a high dynamic range 
appearance to the display image. Finally, the averaging of 
luminances from different layers removes the banding caused by 
the image segmentation process. The result is show in Figure 1 (g) 
with a box filtered version in (h) as comparison. 



�
��
�����
������$��%��!
�$���������
���
���
����&��
�
�!�������%����
��	��'&������������
�����
��

�)

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 1: Graphical overview of our algorithm. (a) and (b) 
show the output of the segmentation process for two different 
bin sizes. (c) and (d) show the output after the flood fill grouping 
process. (e) and (f) show the output after the assimilation 
process. (g) is the computed local adaptation luminance from 
our algorithm and (h) is the local adaptation luminance 
computed via a box filter. 

4  Implementation 
We implemented the Segmentation and Adaptive Assimilation 
Algorithm using C++ and the Standard Template Library. See 
Table 1 for the data structures used. Each group maintains a vector 
of the coordinates of the pixels who are members of the group 
(MEMBERS), and a list of neighboring groups adjacent to it 
(NEIGHBORS). During the flood fill process, the SUM and 
COUNT variables are kept updated. We initially implemented the 
adjacency graph as a binary adjacency matrix but achieved a 
significant speedup by representing the graph as an adjacency list 
(NeighborContainer) because the flood fill process generates a 
sparse graph. As a preprocessing step, we replaced zero luminance 
values with the smallest non-zero luminance value, the minimum 
image luminance, in order to avoid taking the logarithm of zero. 

 

struct Point { unsigned short x,y; } 
typedef std::vector<Point> PointVector; 

typedef std::list<unsigned short> NeighborContainer; 
struct Group_Record { 

 PointVector MEMBERS; 
 NeighborContainer NEIGHBORS; 
 double SUM; 

 unsigned int COUNT; 
} 

typedef std::vector<Group_Record *> Groups; 

Table 1: Data Structures used in the Adaptive Assimilation 
Algorithm 

The five user specified paramenters are max_layers, bin_size1, 
bin_size2, small_threshold and big_threshold. The variable 
max_layers controls how many layers to generate. It is used to 
smooth out the boundaries generated in the segmentation process. 
Typical values of max_layers are between 16 to 96, depending on 
how smoothly the luminance varies in the image. A value of 16 is 
sufficient for images with a lot of high frequency content and a 
value of 96 is appropriate for images with very smooth luminance 
gradients. Changing the bin sizes changes the contrast captured. 
Larger bin sizes increase the captured contrast. Most of the time, 
bin_size1 can be set to 0.5 log10 units while bin_size2 can be set 
to 1.0. We found out through experimentation that the bin sizes 
should be at least 0.5 log10 units apart. Also, the bin sizes should 
not be too large or else vastly different luminance values might be 
averaged together. The threshold variables determine when larger 
groups assimilate small groups. Typical values for 
small_threshold range from 0.001% to 3% of the number of 
pixels in the image. Areas occupying less than one degree of visual 
field do not significantly influence adaptation. One could set 
small_threshold value to be less than 1 degree of visual field. In 
some images, the total visual field occupied by the scene is not 
known. In these cases, a threshold value based on a small percent 
of image pixels has been found to be sufficient. Setting 
small_threshold to 0.0 turns off the assimilation process and can 
be used to capture detail similar to LCIS. Values for 
big_threshold are between 1% and 10%.  

Step 1: Segmentation. The bin size determines the maximum 
contrast of the detail that is reproduced in the display image. A bin 
size of 1.0 log10 units allows the capture of detail contrast up to 
10:1. Care should be taken not to set this parameter to too large a 
value so that pixels of vastly different dynamic range are not 
grouped together. In our implementation, we allow bin size to vary 
between user selected bin_size1 and bin_size2 log10 units. 

Step 2: Grouping. The flood fill algorithm was implemented by 
keeping a queue of neighboring pixels. The pixels are explored in 
a breadth first manner and pushed onto the queue if they have not 
been explored before.  

Step 3: Assimilation. This was implemented in the following 
manner. Suppose group G was being assimilated by group N. 
Then, 

N.SUM = (N.COUNT + G.COUNT) * N.SUM / N.COUNT 
N.COUNT = N.COUNT + G.COUNT 
N.MEMBERS = N.MEMBERS + G.MEMBERS 
G.COUNT = 0 

In this way, the average luminance values of pixels in group G are 
replaced by those in group N. The average N.SUM/N.COUNT, 
computed at the end of the assimilation process, was assigned to 
each pixel of a group. 
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In Step 4, Layer Averaging, was implemented as:  

Local adaptation luminance (x,y) = ∑Layers(x,y)/max_layers. 

5  Results 
We used the algorithm described in the previous section in 
conjunction with the tone-reproduction algorithms of Pattanaik et 
al. [11] (PTYG), Ferwerda et al. [7] (FPSG) and Tumblin and 
Rushmeier [16] (TR) for accurate display of high dynamic range 
images. Each of these tone-reproduction algorithms computes the 
display image pixel value from an input image pixel and the 
adaptation luminance for the input scene. The output of our 
segmentation and adaptive assimilation algorithm provides the per 
pixel adaptation luminance for such a display computation. The 
images shown in this paper are the output of the TR algorithm [17]. 
The TR algorithm attempts to reproduce the perceived brightness 
from the input pixel values and the adaptation luminance. The 
algorithm is very simple, and we provide the C++-code of the TR 
algorithm in appendix for convenience. The exact detail of the 
algorithm may be found in [16]. We provide the timing for 
computation using each of the three algorithms. Additionally, local 
average of the luminance of pixels in a 33×33 window around 
every pixel was computed using fast dynamic programming and 
also used in conjunction with the three tone-reproduction 
algorithms. This local average was used for comparative purposes. 
The LCIS algorithm (Tumblin et al. [18]) and WRP (Ward et al. 
[20]) algorithm were also implemented as points of comparison. 
All algorithms were re-implemented by the authors, using existing 
code for reference wherever possible. Refer to Table 2 for the 
running times of the various algorithms. Our method was found to 
be about two orders of magnitude faster than LCIS [18] and did 
not exhibit the halo artifacts that plagued the methods that use a 
geometric mean. The WRP technique was equally fast and did not 
exhibit halo artifacts. But, our algorithm is predictable in its detail 
preserving behavior and is able to provide context dependent 
mapping.  

Tone mapping using local 
adaptation luminance from 

(b) or (c) 

(a) 

Image 

Name & 

Resolution 

(b) 

Local 

Averaging 

(in log 

domain) 

(c) 
Segment 

and 

Assim- 

ilation 
(d) 

WRP 

(e) 

PTYG 

(f) 

FPSG 

(g) 

TR 

(h) 

LCIS 

Park 

(384x256) 

0.15 2.0 0.12 1.32 0.13 0.2 178 

Price 
Western 

(818x320) 

0.25 9.37 0.3 3.07 0.35 0.72 479 

Desk 

(768x512) 

0.71 34 0.44 4.61 0.46 0.8 796 

Bridge 

(512x384) 

0.4 21.2 0.2 2.4 0.2 0.24 415 

Table 2: Running times in seconds. Column (a) lists the 
image name and resolution. Columns (b) and (c) are the running 
times for computing the local adaptation luminance by 
averaging in the local window and by segmentation and adaptive 
assimilation (our approach) respectively. Columns (d), (e), (f) 
and (g) list the running times for tone mapping algorithms of 
WRP, PTYG, FPSG and TR respectively. The output of (b) or (c) 
are fed to (d), (e), (f) or (g) for the purpose of contrast reduction. 
The times in column (h) are for LCIS, which is a technique for 
contrast reduction. LCIS was run in three passes of 500 
iterations each. All times are for a Pentium III 1.1 GHz with 384 
MB RAM running Windows ME. Note that the adaptive 

assimilation algorithm is not constrained by power of two limits. 
The image aspect ratio can also be arbitrary. 

 

The images in Figure 2 are the display of a high dynamic range 
panoramic image of the Price Western Hotel. The first row image 
was computed using our algorithm along with TR tone- 
reproduction algorithm. It demonstrates the detail preserving, 
range compression nature of our algorithm. Figure 2 compares the 
result with the output of other high dynamic range display 
algorithms. As can be seen from the figure, we maintain the detail 
LCIS provides at a fraction of the computational time. We avoid 
the halos that arise when using the average of a local window as 
the local adaptation and we have more detail than the output of 
WRP algorithm. An image that was multiplied with a global scale 
factor is supplied for comparison. At the same time, we provide 
user control for preserving high dynamic range appearance in the 
display image. The settings for Price Western are max_layers=16, 
bin_size1 = 0.5, bin_size2 = 1.0, small_threshold = 0% and  
large_threshold = 3%. These settings were used for producing 
the first row.  

�

�

�
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Figure 2: Price Western Hotel panorama image. Techniques 
in row order from top to bottom: Our Segmentation and 
Assimilation method with TR, LCIS, Local averaging with TR, 
Local averaging with WRP, simple scaling. 

In another comparison test on a parking garage (see Figure 3), 
our technique (top 2 row images) gives superior results than local 
averaging with the TR tone mapper and WRP technique. Our 
technique shows no halos (unlike local averaging), while clearly 
displaying the row of cars (at a fraction of the computation time of 
LCIS), and has improved detail (compared to WRP). An image 
that was multiplied with a global scale factor is supplied for 
comparison. The settings for the results are max_layers=32, 
bin_size1 = 0.5, bin_size2 = 2.0, small_threshold = 0.1% and  
large_threshold = 10%. These settings maintain a sense of 
dynamic range. For only detail preserving range compression, 
small_threshold was set to 0. Note how our technique brings out 
the specular highlights on the yellow truck to the right. 

In the Desk Image, (see Figure 4) our technique does not have 
the halos compared to local averaging, and has more detail than 
the results from WRP algorithm. For example, the logo on the 
light bulb is visible with our technique and the text on the book 
can be seen clearly. The settings for this image are: max_layers = 
96, bin_size1 = 0.5, bin_size2 = 1.25, small_threshold = 2, 
big_threshold = 2%. 

�

�

�

�

�
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Figure 3: Parking Garage.  Techniques in row order from 
top to bottom: Our Segmentation method with TR (detail 
preserving), Our Segmentation and Assimilation method with 
TR (detail and high dynamic range appearance), LCIS, Local 
averaging with TR, Local averaging with WRP, simple scaling. 
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Figure 4: Desk. Top – Our method with TR. Middle – Local 
averaging with TR. Bottom – Local averaging with WRP. 

Finally, in Figure 5 we show the Bridge Image. Our technique (top 
row) does a better job in dynamic range compression than WRP 
algorithm (bottom row) while retaining the detail. The image on 
the center row shows a simple scaled version of the original. 

�

�

�
Figure 5: Bridge. Top – Our method with TR. Middle – 

Simple scaling. Bottom – WRP. 

6  Discussion 
Although our novel approach has worked successfully with several 
high dynamic range images, it has some weaknesses that could be 
addressed with further research. One problem is the number of 
parameters needed to fine-tune the algorithm to a particular image. 
For example, the number of bin sizes could perhaps be obtained 
automatically by some heuristic. Also, the algorithm has not been 
tested with user studies to see if the images produced are visually 
accurate. 

7  Conclusions 
We present a fast, efficient method of local adaptation that makes 
use of image segmentation, flood fills and graph operations. The 
method has been demonstrated with three different 
tone-reproduction algorithms with good results. Our method does 
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not suffer from halo artifacts and preserves detail while improving 
contrast over previous techniques. For our future work we plan to 
implement k-means clustering [8] for the segmentation in order to 
relieve the user from specifying bin sizes. Also, we would like to 
investigate smarter and higher-level ways of assimilating groups 
that take into account the shape as well as the size of the groups. 

Thanks go David Hart, Mahesh Ramasubramanian and Reid 
Gershbein for proof reading, and to our anonymous reviewers for 
their suggestions. Greg Ward provided the Bridge image. The 
Desk and Garage image were provided by Cornell University. The 
Price Western Hotel Panorama was from Spheron3D.  
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Appendix 
 

 

 

void TR_tonemap( 
  inR, inG, inB,        //Input pixel RGB values 
  AdaptationLuminance,//per pixel adaptation luminance computed by our algorithm 
  outR, outG, outB     //Output pixel RGB values 
){ 
  // Convert cd/m2 to Lambert 
  double L_wa = cdm2ToLambert(AdaptationLuminance); 
  double L_w = cdm2ToLambert(rgb2luminance(inR,inG,inB)); 
  // Compute Color Ratio 
  double f_r = inR/L_w, f_g = inG/L_w, f_b = inB/L_w; 
  /* 
     Stevens equation gives the Brightness in Brils. 

log10 (B) = 0.004[(S-27)(8.4-R)-108] 
where 

   S = 100 + 10 log10 (L_wa) 
   R = 10 log10 (L_wa / L_w) 
  */ 
  double S_w = 100.0 + 10.0*log10(L_wa); 
  double R_w = 10.0 * log10(L_wa/L_w); 
  /* 
     We want the brightness corresponding to the world luminance 
     to be same as that perceived from the display 
     i.e. (S_w-27)(8.4-R_w) = (S_d-27)(8.4-R_d) 
  */ 
  double L_dMax = cdm2ToLambert(MAX_DISPLAY_LUMINANCE); 
  double L_da = cdm2ToLambert(DISPLAY_ADAPTATION_LUMINANCE); 
  double S_d = 100.0 + 10.0*log10 (L_da); 
  // Solve for R_d 
  double R_d = 8.4 - (S_w-27)*(8.4-R_w)/(S_d-27); 
  /* 
     R_d = 10log10(L_da/L_d) 
     L_d (in Lambers) = L_da 10(-0.1*R_d) 
  */ 
  double L_d = lambertToCdm2(L_da * 

        pow(10,-0.1*R_d))/MAX_DISPLAY_LUMINANCE; 
  // Compute display pixels values in the range of 0 to 1. 
  outR = MIN(1.0,L_d*f_r); 
  outG = MIN(1.0,L_d*f_g); 
  outB = MIN(1.0,L_d*f_b); 
} 


