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Abstract

An equation adjoint to the luminance equation for describing the global illumination can be
formulated using the notion of a surface potential to illuminate the region of interest. This
adjoint equation which we shall call as the potential equation, is fundamental to the adjoint
radiosity equation used to devise the importance driven radiosity algorithm. In this paper we
first briefly derive the adjoint system of integral equations and then show that the adjoint linear
equations used in the above algorithm are basically discrete formulations of the same. We
also show that the importance entity of the linear equations is basically the potential function
integrated over a patch. Further we prove that the linear operators in the two equations are
indeed transposes of each other.

1. Introduction

In a recent paper!!! Smits et al present a new importance driven radiosity algorithm for
efficiently computing global illumination solutions with respect to a constrained set of views.
The basis of this new algorithm is a pair of adjoint light transport equations. One of these is
the standard radiosity equation[?l which uses the form-factor matrix to relate the radiosity of
any surface patch to the emitting sources in the environment. The other is the adjoint equation,
which uses the transpose of the form-factor matrix to relate so called importance to the receivers.
Importance and receivers are deemed as the duals of radiosity and emitting sources respectively.
Smits et al visualise importance to be flowing out from the eye or camera and distributing itself
amongst the patches of the environment, very much like light.

In our earlier work®! we have similarly formulated a pair of integral equations as an adjoint
set for describing the light transport. The first of these equations is basically Kajiya’s rendering
equation!* defined in terms of luminance, emittance and brdfs, while the second is its adjoint
defined in terms of potential, hypothetical detector(s) and brdfs. The potential equation is
fundamental to the adjoint radiosity equation just as as much as the rendering equation is to
the standard radiosity equation. In this paper we show how the adjoint radiosity equation can
be derived from the potential equation. We show that importance is basically the potential
integrated over a patch; we derive the detector values and prove that the linear operators in the
two equations are indeed transposes of each other. In order to make the contents of this paper
self-contained we briefly derive the adjoint equations below. For a detailed discussion on the
subject the reader is referred to 3.

2. Potential Equation

Because of the optical properties of surfaces, such as reflection, transmission, etc the light
emitted from any surface in any direction can illuminate many other surfaces of an environ-
ment. Alternatively we can say that a surface can be illuminated by lights placed anywhere in
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Figure 1. Direct and Indirect Components of the Potential Function.

the environment. Suppose we place a light detector in the environment. Let the detector be
hypothetical in the sense, it does not in any way affect the flow of light in the environment.
Emission from a given point, x, along a given direction, ©,, may result in some light being
detected by the detector. The light can be detected directly from the emission point and/or
indirectly from other points of the environment due to reflection, transmission etc. (see Figure
1). The quantity of light detected will vary depending on the point of emission and at a given
point depending on the direction of emission. This quantity, may be termed as potential, W, of
a point and direction to contribute light into the detector. Further more as W is a function of
the surface position, x and the direction, ©® around z, we have in the process defined a potential
function W (z, O,).

We shall now derive an expression for such a function. Light on being emitted from (z,0;)
can enter the detector directly if the path (x,©,) leads to the detector. So to represent the
direct component we will use a function g(z,©,) which has a value 1 if the light path starting
from x along ©, reaches the detector unhidered, 0 otherwise.

The quantity of light entering the detector due to one or more reflections may be expressed
recursively as follows. The emission from any (z,©,) will reach the nearest surface point y and
then possibly be reflected. If we take the probability of the whole amount of flux getting reflected
in any one of the hemispherical directions ©, around y as p, (0, ©,)cosf,dw,, where the symbols
used are as in Figure 2, then the quantity of light entering the detector due to this reflection will
be this probability times the potential of the point y along ©,, i.e. py(©,, ©)cost,dw, W (y,0,).
Then the cumulative result of the reflection in the hemispherical direction around y will be

. py(Oy, O2) W (y, ©y)cosbydw,
Y

The complete expression for the potential function is therefore given by:

W (z,0.) = g(z, 0.) + /Q 9y(©y, 00 W (y, 0, )costydw, (1)
Y



Figure 2. Hemispherical Directions for the Outgoing illumination.

Figure 3. Hemispherical Directions for the Incoming illumination.

3. Luminance Equation

From the definition of surface bidirectional reflectance function %964l the outgoing lumi-
nance (L) at any point x of a surface in the environment in any direction Gy, due to the
luminance incident at « from direction ©;, can be given by

Lout(xa C")out) = pm(eouta G)m)Lm (:I?, ein)cosoindwin

where 6;, and dw;, are as shown in the Figure 3. Taking into account incoming luminance from
all the directions in the incoming hemisphere around the point z, the outgoing luminance can
be expressed as

Lout(wa ®out) = /Q px(gouta ®m)Lm (xa Gin)cosoindwin

where the integration range 2, represents the hemisphere around z. If we include emitting
surfaces also in the general expression for the outgoing luminance then it takes the form:

Loyt (177 eout) = 6out(xa C")out) + / ,Ox(@outa ezn)LG (177 ein)cosgindwin
Qg



For a nonparticipating environment consisting of mainly opaque solids the luminance in any
incoming direction at z must be due to the outgoing luminance from some surface point y in
an outgoing direction ©, where ©, is defined by the vector joining the point z to y. If we now
wish to rewrite the luminance equation in terms of outgoing luminance and outgoing directions
only, then by representing the outgoing directions at = and y as ©, and ©, we get:

L(z,0;) =€(z,0,) —|—/ Pz (O, Oy)L(y, ©y)cost dw, (2)
Qo

If we look back at the potential equation (Equation 1), we find a striking similarity in the
forms of these equations. In both the cases there is an implicit assumption that y represents a
surface point visible to . However it must be noted that in Equation 2 the integration is over
the incoming hemisphere around z whereas in Equation 1 the integration is over the outgoing
hemisphere around y.

4. Discrete Equations for a Diffuse Environment

Because of their inherently complex nature it is difficult to solve Equations 1 and 2. However,
simplified forms of these have been made amenable to analytical solutions. A simplified discrete
formulation of the Equation 2, widely known as radiosity equation!? is

N
bi=Ei+ki Yy ¢;F;

=1
where ¢; is the radiosity, i.e. flux per unit area, F; is the emission flux density, k; is the
hemispherical diffuse reflectance of patch 7 and Fj; is the form factor between patch 4 and patch
j.

This discrete formulation is derived from the continuous Equation 2 by making the following

assumptions:

1. The environment is a collection of a finite number, say N, of small diffusely reflecting
patches with uniform radiosity.

2. As the luminance from any point of any such uniformly diffuse patch is 1/7 times the flux
per unit area we shall compute this total flux from any patch leaving that patch in all the
hemispherical directions.

3. The solution is carried out in an enclosure, i.e. the hemispherical direction around any
point, x, in the environment is assumed to be covered by one or more of the patches of
that environment and every patch, j, may be assumed to occupy a solid angle, wy; (which
may be zero) in the hemisphere over a surface point.

Using this equation we arrive at a system of equations for the whole environment of the form:

Ly=F
where L is
(11— Py ... —KkiFy o ... —k1Fiy ]

__k'NFNl eo. —kyFn; ... 1_kNFNNJ



which may be solved to arrive at the equilibrium state radiosity for each patch.

Similarly we shall derive the discrete formulation using the potential equation. For this we
shall define a quantity called importance, say 1;, as the potential of the i-th patch over the full
hemispherical direction. We can arrive at an expression for ¢; by integrating W (z, ©,) for every
point of the i-th patch and over the hemisphere around each point of the patch. Thus

P = / W(z,0;)cos0dw,dz
z€A; JQy

= / /g(w,@m)cos%dwxdx—)—
:L‘GAi z

/ l Py(Oy, O2)W (y, G)y)cosﬁydwy] c080,dw,dx
:L‘GAi z Qy

Using the earlier mentioned assumptions the equation for v; may be simplified to

P = / /g(x,@m)cosﬁwdwwd:p—l—Ai/ l py(G)I,@y)W(y,G)y)cosﬁydwy] c0s0,dw,,
zeA; JQ, Q. | /o,

N
= Ri+AiZPj/

j=1 Waj

N
Ri-i-AiZPj/
j=1 ¢

l/ Wy, Gy)cosﬁydwy] cosO,dwy,
Qy

Q

Y;

> cosl,dw

= R'—i-A'g:p-ﬁ/ Vis(z y)MdA
‘ ijl TAj Jyea; ’ D2, y

%

N A
Ri+ ) ki Fy
j=1 J

N
= Ri+ ) kiFy
7=1
where k; = mp;, Vis(z,y) is the visibility between two surface points z and y, D, is the
distance between z and y, and R; = [, [o 9(%,0y)cos0dw,dz. As g(x,0,) is simply a
visibility function between detector and the point = along direction ©,, R; is related to the
detector-to-patch form-factor.
Thus the system of equations for the whole environment may be written as

L* =R

where L* is

(1—-kFy ... —kFy; ... —knFny |
_leIi l—le” _kNFNi
L _lelN N _kiFiN R kNFNN |

This set of equations may be solved to arrive at the equilibrium importance for the whole
environment.

It is easy to see that the discrete transport operators L and L* as described above are transpose
of each other.



5. Concluding Remarks

The primary use of the adjoint equations has been to increase computational efficiency. In
the area of neutron transport(® adjoint equations have been used for the estimation of flux and
to provide a good choice for importance function biasing. In 3] we have presented algorithms
for efficiently computing the global illumination in the Monte Carlo simulation of the particle
model of light. In a Monte Carlo simulation of the particle model of light[7’ 8 particles, packets
of energy, are shot out in different directions from different positions of the surface of the light
source. The interaction of each particle in the environment is traced. Global illumination is then
computed from the history of these interactions. The potential equation forms the basis for this
algorithm. Furthermore, it is used to derive biasing functions that are used to carry out im-
portance sampling of the emission and reflection functions. These biasing functions ensure that
more and more particles are directed towards those parts of the environment which are of greater
interest and need more accurate illumination computation. Similarly in 1] the importance of
patches is used to increase the efficiency of the hierarchic radiosity algorithm 1 by subdividing
patches depending on their importance. So far the application of the adjoint equations has been
restricted to global illumination computations in diffuse environments. Techniques for dealing
with global illumination in general environments with diffuse, specular and other more complex
optical behaviour 10==13] are still excessively demanding in terms of computational resources.
We believe that the benefits of using the adjoint equations to devise new algorithms in such cases
will be much more. Similarly a number of multi-pass algorithms!!4~—16] have been devised for
dealing with the problem of accurately reconstructing the luminance function with effects such
as shadows, highlights, caustics, etc.. Once again these algorithms tend to be resource intensive
and more optimal solutions could be sought by the use of these equations.
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