Contents

1 Introduction

1.1 Modelling Light Behaviour: The first step . . . .. .. ... ... ...
1.2 Solution Strategies: State of the Art . . . . . . ... ... ... . ...
1.3 Non Deterministic Particle Tracing : A New Algorithm . . . . . .. ..
1.4 Particle Tracing in Participating Volumes : Simulation in Complex En-

vironments . . ... ... Lo
1.5 The Potential Equation : Mathematics for Performance Improvements .
1.6 Organisation of this Thesis . . . . . . . . .. ... ... ... ... ...

Light and its Interaction with the Environment
2.1 Physical Model of Light . . . . ... ... ... ... ... ...
2.2 Radiance: The Metric of Light Measurement . . . . . . . .. ... ...
2.3 Light in a Nonparticipating Medium . . . . . . . ... ... ... ...
2.3.1 Reflection . . . . . ..o
2.3.2 Reflectance: The Measure of Reflection . . . . . . ... ... ..
2.3.3 Surface Reflectivity Models . . . . . ... ... .. ... ....
2.3.4 Physically Based Models . . . . ... .. ... ... .......
2.3.5 Empirical Models . . . . .. ..o
2.4 Emission . . . . ..o
2.5 Light in a Participating Medium . . . . . . . ... ... ...
2.5.1 Scattering . . . . . . ...
2.6 The Radiance Equation. . . . . . . .. ... ... ... ... ... ..
2.6.1 Effect of Participating Medium . . . . . .. ... ... ... ..
2.6.2 The Generalised Radiance Equation . . . . . .. ... ... ...
2.7 Remarks . . . . . . L

A Review of Illumination Computation Methods

3.1 Deterministic Gathering Methods . . . . . . ... ... ... ... ...
3.1.1 Local lllumination Model and Ray Tracing . . . . . . .. .. ..
3.1.2 Radiosity . . . . . ...

3.2 Nondeterministic Gathering Methods . . . . . . . ... ... ... ...
3.2.1 Monte Carlo Solution of Radiance Equation . . .. ... .. ..
3.2.2 Random Walk Solution of Radiance Equation . . . ... .. ..

3.3 Deterministic Shooting Methods . . . . . . . .. .. ... ... .....

CoO Ot DN =

12

15
15
16
17
18
21
23
26
28
30
31
31
33
36
38
38



3.4 Remarks . . . . . . 61

Particle Tracing: A Nondeterministic Shooting Method 64
4.1 Sampling Techniques . . . . . . . . . . ... . ... . ... ... ... 67
4.1.1 Sampling Discrete Probability Distribution . . . . . . . . .. .. 67
4.1.2 Sampling Continuous Distribution . . . . . . . . .. ... .. .. 68
4.2 Particle Tracing : The Monte Carlo Simulation Method . . . . . . . .. 70
4.2.1 The Algorithm . . . . . .. ... .. 70
4.2.2 Progressive Refinement . . . . . . .. ... 73
4.2.3 Comparison with Radiosity Method . . . . . . . . ... ... .. 74
4.3 Complex Light Sources . . . . . . . . . . .. ... ... 7
4.3.1 Light Source Geometry . . . . . . . . .. ... ... 7
4.3.2 Spectral Distribution . . . . . . ... ... 0o 0L 83
4.3.3 Luminous Radiance Distribution . . . . .. .. ... ... ... 83
4.4 Ilumination of Large and Complex Receivers. . . . . . . . ... .. .. 85
4.4.1 Complex Analytical Surfaces . . . . . . .. ... ... ... ... 86
4.4.2 Complex Surface Reflectance . . . . . . . ... .. .. ... ... 86
4.5 Image Rendering Issues . . . . . . . . .. .. ... L. 87
4.6 A Variation in the Simulation Algorithm . . . . .. .. .. ... .. .. 89
4.7 Remarks . . . . ... 91
Particle Tracing in Environments with Participating Volumes 94
5.1 [Interaction in Absorbing and Scattering Medium . . . . . . . .. .. .. 95
5.2 The Simulation Algorithm . . . . . .. ... ... ... .. ... ..., 98
5.3 Implementation Strategy . . . . . . . . ... ... Lo 99
53.1 3D-DDA . . . .. 102
5.4 Modelling Participating Volumes . . . . . . . .. ... ... ... ... 105
5.5 Rendering . . . . . . ... 107
5.6 Efficiency Improvement . . . . . . . .. ..o 112
5.6.1 Forced Interaction . . . . . . ... ... .. ... ... 113
5.6.2 Absorption Suppression . . . . .. ... 115
5.6.3 Particle Divergence Method . . . . . . .. ... ... ... ... 116
5.7 Remarks . . . . . . . 117
Potential Equation : The Mathematical Basis for Particle Tracing 119
6.1 The Adjoint System of [llumination Equations . . . . . . . ... .. .. 120
6.1.1 Radiance Equation . . . . . . ... ... 0oL 120
6.1.2 Potential Equation . . . . .. ... ... 0oL 121
6.1.3 General Potential Equation . . . .. ... ... ......... 124
6.1.4 Duality . . . .. .. 125
6.2 Analytical Solution for a Diffuse Environment . . . . . . .. ... ... 127
6.3 Monte Carlo Methods and Random Walks for General Solution . . . . 129
6.4 Improved Estimation Strategies . . . . . .. .. ... ... ... .... 133
6.4.1 Next Event Estimation . . . . . . .. ... ... ... .. .... 134
6.4.2 Biasing. . . . .. ... 135

i



6.4.3 The Use of Approximate Potential for Biasing . . . . .. .. .. 137

6.5 Computation of Approximate Potential and Biasing . . . . . . ... .. 138
6.5.1 Source Position Biasing using Hemispherical Potential . . . . . . 139
6.5.2 Direction Biasing using Hemispherical Potential . . . . . . . .. 140

6.6 Remarks . . . . . . . . . . 148

Conclusions and Future Directions 150

7.1 In Retrospect . . . . . . . . . . 150
7.1.1 A Taxonomy of Illumination Computation Methods . . . . . . . 150
7.1.2 Particle Tracing Techniques . . . . . .. ... ... ... .... 153
7.1.3 The Potential Equation. . . . . . . . .. ... ... ... 155
7.1.4 Practical Implementation. . . . . . . ... ... 156

7.2 Possible Extensions . . . . . ... o oL 158

7.3 Future Directions . . . . . . . . . . ..o 159

Radiometry and Photometry for Computer Graphics 162

A1 Radiometry . . . . . . . . . . 162

A.2 Photometry . . . . . . . .. . 167
A.2.1 Luminance/Radiance the Photometric Brightness . . . . . . .. 169

i



Chapter 1

Introduction

Today computers are being increasingly used to model complex three dimensional envi-
ronments in applications such as computer aided engineering and architectural design,
computer animation and virtual environments[22, 23, 44, 51]. The modelled three di-
mensional configurations are then visualised by rendering images of these environments
as seen from different view points. Over the last three decades rendering techniques
have been continuously evolving to greater levels of sophistication in terms of the com-
plexity of environments and the realism with which the images are produced. In the
beginning it was hidden line drawings. The advent and wide spread use of raster display
technology led to the development of techniques for producing colour shaded images.
With rapid advances in high speed computing the emphasis today is on the synthesis
of realistic images[25].

In all image synthesis techniques the fundamental step is computation of the amount
and nature of the light from the three dimensional environment reaching the eye in any
given direction[29]. Computer graphics rendering techniques carry out this compu-
tation by simulating the behaviour of light in the environment. Greater degrees of
realism would mean higher correlation between the simulation and the physical world.
In the physical world lighting, reflection and scattering effects are very complicated and
subtle. Every object receives light directly from light sources, or indirectly from reflec-
tion or scattering by other neighbouring objects. For realistic image synthesis these
intra-environmental effects must be modelled in great detail. In computer graphics the

indirect lighting is often called as global illumination.



Light is a form of radiant energy and its behaviour has been extensively studied
and mathematically modelled to a very high degree of sophistication in other disciplines
such as radiative heat transfer[64] and neutron transport[43]. The prime problem that
computer graphics addresses is the derivation of computationally tractable algorithms
for carrying out the simulation based on these mathematical models.

This thesis presents the results of a detailed investigation of illumination compu-
tation and rendering techniques. From a theoretical point of view the primary con-
tribution is the development of a mathematical framework of adjoint equations which
provides the basis for all known illumination computation techniques. This mathe-
matical framework consists of two integral equations - the radiance and the potential
equation, which are duals of each other. While the radiance equation has been known
in one form or the other to computer graphics community, the potential equation for
illumination has been introduced for the first time in this thesis. The significance and
importance of this new mathematical framework stems from the fact that it not only
enables us to review and analyse existing methods but also provides the necessary han-
dles for deriving new and efficient algorithms for simulating the behaviour of light in a
manner closely correlating to the physical world.

On the practical side we describe new algorithms that simulate the particle model
of light using Monte Carlo methods. The algorithmic improvements made possible by
the use of the mathematical framework of adjoint equations are then demonstrated.
Compared to previous work these algorithms can handle more general and complex
environments. We also present the results of a straight forward implementation of

these algorithms showing that these algorithms are computationally tractable.

1.1 Modelling Light Behaviour: The first step

Even though the behaviour of light, the optical properties of solid and non-solid mate-
rial and the interaction of light with these materials have been extensively studied in
physics, the mathematical models used are not easily accessible to computer graphics

people. It becomes essential to glean through these physical models and extract and



reframe these mathematical derivations to the extent that they become amenable to
algorithmic simulations. Early image synthesis algorithms resorted to the use of very
elegantly formulated empirical models which define the outgoing light in any direction
as a function of the incoming light energy from all (i.e. global) directions. Due to the
limited nature of computer processing power then available, the rendering algorithms
applied these models locally around a surface without responding to the availability of
global illumination in any significant fashion[29]. Subsequently there have been major
shifts to the use of models that are derived from the physical behaviour of light. An
in depth study of the development of the light behaviour models used in computer
graphics has thus been the first step in our research.

As said earlier, light, a radiant form of energy originates at a light emitting source,
and travels in the environment interacting with various places in the environment along

its path. These interactions take one of two forms:

1. scattering, in which there is a change in travel path of the light at the point of

interaction,

2. absorption, in which this radiant energy is ultimately lost.

An environment is composed of objects, defined in terms of their geometry and material
properties, and a medium inside which the objects are embedded. The medium is
composed of a variety of gaseous/floating material. Light can interact anywhere in the
environment, in the medium, on the surface of an object or even inside the object. In
the case of scattering, the point of interaction may be treated as an indirect source
of light, as, for all practical purposes, when seen locally, light seems to come out of
that point. In other words, the point of interaction can be said to be illuminated. The
various scattering interactions taking place with the objects are generally classified as
being reflections or refractions. The reflection term is used when the interacting light
leaves a surface of the object from the incident side. If we define a sphere around any
point of interaction, light exiting in any one or more directions in the hemisphere on
the incident side is assumed to be due to reflection. Light exiting the other hemisphere

is assumed to be due to refraction. Opaque objects do not refract light.



These different interactions result in some particular distribution of light in the
environment. The illumination in the environment due to this distribution is global
illumination. The global illumination problem can now be restated as follows:

Given
(i) the geometry of the objects,
(ii) optical properties of the objects and the medium,
(iii) a point of the environment, and
(iv) a direction
Compute
a measure of the exact amount of light leaving or reaching that point in that
direction.
In most of the environments that we come across in real life the medium is non-
interacting in nature. There could be occasional occurrences of localised volumes such
as smoke and fire. Hence many of the illumination computation methods cater to
environments with non-participating medium. In such a situation light travels in a
straight path in the medium until it hits an object surface. Therefore it is only the
object geometry and the object surface properties that influence the light distribution.

Surface properties usually are made available in one of two forms:

1. As measured data in the form of reflection/refraction flux defined as a function of
light incident from different directions[72]. (Flux is the energy propagating per

unit time.)

2. As mathematical expressions defined in terms of various surface modelling

parameters[3, 6, 17, 32, 37, 53, 54, 72].

In illumination computation methods the light metric commonly used is radiance.
The basic reason is that the visual brightness of any point in the environment is propor-
tional to the radiance leaving the point along the view direction[4]. Also this metric is
dependent only on the direction and independent of position along the direction. Thus

light interaction properties are often expressed in terms of outgoing radiance per unit



incoming light flux. Such a property expressed for surface reflectance is termed as the
bidirectional reflection distribution function, brdf[64].

Using the brdf of a surface point we can derive a mathematical expression for the
outgoing radiance at that point as a function of the surface emission radiance and the
incident radiance from all incoming hemispherical directions around that point. This
equation, completely derived later in Chapter 2, we call as the radiance equation'.
The problem of global illumination computation may then be comprehensively seen as

solving the radiance equation for every point in the environment.

1.2 Solution Strategies: State of the Art

Right from the beginning the illumination computation problem has been and continues
to be an interesting and challenging problem widely researched in the field of computer
graphics. Literature abounds with any number of extensions to a few basic methods.
A clear and comprehensive understanding of all these methods can be obtained by
using the radiance equation as the underlying mathematical basis for carrying out the
simulation.

The radiance equation is a complex integral equation. In general there does not
exist any closed form solution for such an equation. Hence most of the illumination
computation methods are basically approximate solution methods derived under dif-
ferent simplifying assumptions. The often used simplifying assumptions are as follows:
(i) the light sources are point light sources,

(ii) surfaces are uniformly diffuse or perfect mirror reflectors,

(iii) inter-reflections are not significant,

(iv) surface geometries are generally simple.

As we reduce the number of these simplifying assumptions, the computational meth-

ods get more complex and also more expensive. The development of computationally

tractable methods for dealing with more and more general environments continues to

!The rendering equation given by Kajiya[38] is the one most often referred for illumination com-
putation in Computer Graphics. It defines a similar relationship but in terms of points rather than
directions.



be a very challenging problem.
A review of the existing computational methods show that they follow one of two

basic strategies. They are as follows:

1. The Light Gathering Strategy: In this, illumination at a point is computed by

gathering all the light incoming from the immediate surroundings of the point.

2. The Light Shooting Strategy: This strategy simulates the natural light prop-
agation process. Starting from the light sources, light is distributed into the
immediate surroundings of this point of origin. This process is continued until

finally all the light reaching the point of interest has been computed.

The radiance equation is very natural for use as the mathematical basis for the methods
based on the gathering strategy. Though not as natural it must be recognised that
the methods based on the shooting strategy can also be derived from the radiance
equation. This has to be so because both methods compute illumination of a point
in an environment and it is precisely for this that the radiance equation provides a
mathematical expression.

A secondary categorisation of illumination computation methods can be obtained
from the observation that any numerical computation method for solving the radiance
type of equation can follow either a deterministic or a nondeterministic approach. De-
terministic methods are usually more efficient but applicable to somewhat restricted
environments and limited in the global illumination that they use. The basic ray tracing
method[75] which is particularly appropriate for specular environments and the stan-
dard radiosity method[27] which is most suitable for largely ideal diffuse environments
are the most popular methods using this approach. On the other hand nondeterminis-
tic methods do not need many simplifications and hence provide easy extensibility to
more general environments. Distribution ray tracing, path tracing and Monte Carlo
based methods are typical examples[16, 14, 38, 62, 63]. However, the results obtained
using such methods often tend to have high variance associated with them. One may

have to resort to complex variance reduction techniques to reduce the variance[40].



A majority of the existing computational methods, using both deterministic and
nondeterministic approaches are based on the gathering strategy. A few that are based
on the shooting strategy mainly use the deterministic approach. Most notable of these
is the progressive radiosity method[12] in which light from light sources and other bright
surfaces is progressively shot to all other surfaces in the environment. Tracing light
rays, also sometimes called as forward ray tracing[10], is another deterministic method
based on the shooting strategy. Generally speaking these methods have received much
less attention than methods based on the gathering strategy. The prime reason put

across by many is the following:

[Nlumination computation in Computer Graphics has always been very closely
coupled to image rendering. Images of environments are usually required
from specific view points. It “looks” much more efficient and sensible to
gather illumination at the view point and not bother too much about com-

puting illumination for the rest of the environment.

The basic ray tracing techniques therefore produce only view dependent illumination
information. The standard radiosity method does produce view independent illumi-
nation information but is then restricted to strictly ideal diffuse environments. While
some methods have been proposed for extending the standard radiosity method to pro-
duce view independent illumination information in more general environments these
have yet to find real application.

If we look at methods based on the shooting strategy, at first sight, at least, it
does appear that the process may result in unnecessary illumination computations by
shooting light even into regions which are in no way connected with the view point.
Though, going strictly by the definition of global illumination, every point of the en-
vironment contributes to the illumination of another point and is equally important.
All the same, most interestingly, progressive radiosity and its derivatives are the state
of the art techniques for global illumination computation.

Progressive radiosity uses the deterministic approach. To the best of our knowledge

there have been no serious efforts earlier towards the development of a method that



uses a non-deterministic approach based on the shooting strategy. As mentioned earlier
without the use of variance reduction techniques such an approach may be computa-
tionally intractable except for simple environments. A sound mathematical basis is a
must if efficiency improvements have to be incorporated into a non-deterministic light
shooting method. The potential equation for illumination derived for the first time in
this thesis provides such a basis for all the shooting strategy methods, deterministic
and non-deterministic and enables performance/efficiency improvements to be made
to algorithms using this strategy. The potential equation is the dual of the radiance
equation and along with the radiance equation forms an adjoint system of equations

that provides the basis for all known illumination computation methods.

1.3 Non Deterministic Particle Tracing : A New
Algorithm

The particle model of light is a natural choice for simulating light behaviour using a
non-deterministic method based on the light shooting strategy. In this model parti-
cles, packets of light energy, are emitted from the light emitting source in different
directions. A particle on collision with the objects in the environment either looses its
energy completely or gets rebounded (reflected) or refracted and changes its direction
of propagation. The reflected /refracted/emitted particle flux given by the number of
particles per unit time is a measure of the illumination of points in the environment.
Monte Carlo methods[31, 40, 56, 68] can be used to simulate this particle model and
obtain an estimate of the global illumination. In this thesis this simulation has been
termed as particle tracing.

In particle tracing the emission and interactions all take place in a nondeterministic
fashion by random sampling unique probability distribution functions. For example:
for the emission of particles from an emitter of uniform strength the positions of the
particles are chosen in such a way that after a reasonable number of emissions the
particle density over the surface is almost constant. The path of each particle emitted

is traced by following it along the emission direction to find the surface of interaction



and choosing the type of interaction (reflection, refraction or absorption). If the particle
is not to be absorbed then its path along its reflection or refraction direction is followed
and the process continued until the particle is eventually absorbed at some surface.
On simulating the behaviour of a sufficiently large number of particles the actual
number of particles coming out of a surface provides an estimate of the particle flux
at the surface. As the simulation progresses, with increase in the number of parti-
cles this estimate is progressively refined. We have carried out a detailed comparative
performance analysis with a straight forward implementation of standard radiosity to
show that the estimates are equally good and the computation times are comparable.
We have also carried out extensive experiments to see its usefulness in the presence
of complex environmental behaviour such as complex geometry and complex emission
and reflection behaviour and obtained encouraging results. As the demands on the
accuracy of the illumination computations increase the total number of particles whose
behaviour has to be simulated increases rapidly. The use of variance reduction tech-
niques becomes mandatory. Such techniques have been extensively studied in the ap-
plications of Monte Carlo methods in other disciplines[35, 43]. Absorption suppression
is one such technique. In this, some of the particles are not absorbed but are allowed
instead to continue their flight in the environment though with reduced illumination
capacities. The use of this technique does result in some efficiency improvements but

cannot be considered as being substantive.

1.4 Particle Tracing in Participating Volumes : Sim-
ulation in Complex Environments

The particle tracing method briefly described above considers the interaction of light
with surfaces only. An implicit assumption is that the ambient medium, generally clear
air, does not in any way affect the flight of the particles. When there is smoke, or dust,
or water vapour in the air this assumption is no longer valid. These materials par-
ticipate in the light propagation process and may emit light particles, absorb and/or

scatter particles making themselves visible. Accounting properly for such participating



volumes during illumination computation is in general very complex and also compu-
tationally expensive. There have been some extensions to the ray tracing[39, 42, 48]
and standard radiosity methods[58]. But overall the complexity involved has been such
that real application of these methods has not yet taken place.

Fortunately for us the non-deterministic particle tracing method is inherently capa-
ble of handling more general environments and is also comparatively easier to extend.
Basically we have to compute a potential point of interaction in the participating vol-
ume whenever a particle is traveling through it. The procedure for computing this
point of interaction has been derived from the physics of light-volume interaction. Us-
ing this procedure we have extended the basic particle tracing algorithm to efficiently
carry out the particle tracing in the the presence of participating volumes. These
have been implemented and tested using test environments created by using simple
volumetric modelling techniques. Once again for performance efficiency improvements
standard variance reduction techniques like forced interaction have been incorporated.
In forced interaction a particle is forced to interact with all the participating volume
sub-elements encountered in its path. The extension is straightforward and illumi-
nation results with reasonable accuracy have been obtained for participating volume
environments of moderate complexity. Overall however one comes to the conclusion
that with increasing demands on the accuracy of illumination computations much too
many particles are needed for the simulation of complex environment.

For improvements in the efficiency of the particle tracing algorithm two aspects

have to be considered.

1. The particle behaviour simulated accurately reflects the physical model.

2. In such a simulation many particle traces may be unnecessary. That is, they may

not contribute in any significant manner to the illumination computation.

We must evolve a method which without loosing the correlation with the physical
model traces particles in such a way that they all make significant contributions to the
global illumination computation. For this a sound mathematical basis has to be the

foundation.
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1.5 The Potential Equation : Mathematics for Per-
formance Improvements

Analysis of a particle trace in the particle tracing process shows that the particle can be
assumed to take a random walk among a number of possible steps with each step chosen
from its ancestor by some random sampling process. Absorption being one of the many
possible steps, the random walk is eventually terminated when the particle is absorbed.
Random walk methods are known to be used for solving integral equations[56]. Already
its use in solving the rendering equation has been propagated in Computer Graphics
by the name of path tracing[38]. Surely the particle tracing process is also solving some
integral equation. Using this insight the potential equation has been formulated. The
potential equation is an integral equation similar in nature to the radiance equation. The
name potential has been chosen because the equation expresses the potential capability
of every point in the environment towards the illumination of a given point or a given
region in the same environment. All the shooting based methods including progressive
radiosity and particle tracing are basically different methods of solving the potential
equation. The potential equation and the radiance equation are duals in the sense that
they both can define the same illumination quantities. Together they form an adjoint
system of equations for solving global illumination. It is thus conjectured that any
global illumination method is a solution method for either of these two equations or a
combination of these two.

It is known that the efficiency of random walk based solutions can be increased
by careful transformation of the underlying mathematical descriptions defining the
starting state and the transition functions to move from one state to another. Most
important among such transformations is importance biasing and the estimation pro-
cess known by the name of importance sampling. This concept is finally used in this
thesis and a highly improved and efficient particle tracing algorithm has been devised

and implemented.
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To sum up:

Our main thesis is that global illumination information which is needed for
realistic visualisation of complex three dimensional environments can be
effectively computed using the new non-deterministic particle tracing class
of algorithms, the mathematical underpinning for which is provided by the
potential equation. This new equation along with the earlier known radi-
ance equation forms an adjoint system of equations, a unified mathematical
framework that provides the foundation for all global illumination compu-
tation methods and also includes the necessary mathematical handles for

further development of efficient methods.

1.6 Organisation of this Thesis

In Chapter 2, the physics of light, its interaction with the environment, and various
empirical and physical models of light-environment interaction are presented in a man-
ner palatable to a computer graphics reader. The radiance equation, expressing the
radiance of a surface point in terms of the host surface reflectance and the radiance
of the surrounding points, is then derived as an integral equation. Lastly the general
radiance equation that takes into account participating volumes is formulated.

Chapter 3 is a comprehensive review of the current state of the art in illumination
computation. It shows how most of these light behaviour simulation techniques can be
seen as different methods of solving the radiance equation. The two basic simulation
strategies, gathering and shooting, are discussed. Within each strategy, methods are
further categorised based on whether they use a deterministic or a non-deterministic
approach. All methods based on the gathering strategy are directly seen as solutions
of the radiance equation while methods based on the shooting strategy can only be
indirectly derived from this equation. The chapter concludes with the observation
that illumination computation by the use of non-deterministic methods based on the
shooting strategy had not been throughly explored.

The particle model of light is the most natural candidate for simulation by a method

12



which uses the non-deterministic approach and is based on the shooting strategy. Chap-
ter 4 introduces the first in a class of particle tracing algorithms which simulate the
particle model of light to compute global illumination in a three dimensional environ-
ment. Monte Carlo basics and the necessary Monte Carlo sampling techniques needed
in this simulation are also presented. The results obtained from an implementation
of this algorithm are shown and its performance is compared with a simple standard
radiosity implementation. The truly progressive nature of the algorithm is illustrated
with the help of examples which show how the illumination computations get progres-
sively refined as the simulation proceeds. The algorithmic modifications necessary to
handle complex surface geometry and more complex surface emission and reflection
behaviour are presented and the various issues relating to rendering the image from
the computed illumination are discussed. Finally the variance reduction technique of
absorption suppression is used to improve the efficiency of the particle tracing algo-
rithm.

The particle tracing algorithm is inherently capable of being extended, compar-
atively easily, to more general environments. This is demonstrated in Chapter 5 by
showing the changes necessary to handle participating volumes. First the algorithms to
efficiently sample the interaction point and trace the particle in the participating vol-
ume are presented. Next various modelling techniques to model volume elements have
been proposed and used for creating representative test environments with participat-
ing volumes. A method for image rendering in the presence of participating volumes
is also discussed. Finally implementation of variance reduction techniques such as ab-
sorption suppression, forced collision, and particle divergence and their effects have
been analysed.

The primary theoretical contribution of this thesis, the potential equation and the
mathematical framework of adjoint illumination equations is the topic of Chapter 6. Us-
ing intuitive concepts the potential equation is derived and its duality with the radiance
equation is proved. That all shooting strategy methods, including progressive radiosity
and particle tracing, can be naturally derived as solutions to this potential equation is

shown next. The efficiency of the particle tracing algorithms can be increased by the
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use of suitably transformed probability distribution functions. A number of biasing
schemes are devised for this purpose. Implementation issues are discussed and the per-
formance improvements obtained from a simple straight forward implementation are
presented.

Chapter 7 is the concluding chapter. The results of the research are analysed along
a number of important dimensions such as environmental complexity, image rendering,
implementation considerations and relationship with other work. Possible extensions
to the method and potential avenues for future research are also briefly discussed.

Computation and measurement in any discipline require a thorough knowledge of
the metrics involved. Appendix A, has been devoted to a brief discussion of various
light metrics. Light being a form of radiant energy, the discussion starts with metrics
used in radiometry, i.e. the measurement of radiant energy. Light is that portion of the
vast spectrum of the electromagnetic radiation which generates a physical sensation in
the eye. Hence light is also known as visible radiation. The extent of this sensation
is dependent on the nature and the amount of visible radiation energy impinging on
the eye. The slightly different but related set of metrics that are used for photometry
i.e. the measurement of the light based on the visual responses, are then presented.
Lastly the highly intuitive term brightness is formally related to radiance/luminance,

luminance being the photometric equivalent of radiance.
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Chapter 2

Light and its Interaction with the
Environment

The appearance of objects in an environment is determined by the amount of light
coming out of that object and reaching the eye or any other optical detector. In a gen-
eral environment this light would be due to an object emitting, transmitting and/or
reflecting light energy from its surfaces. The manner in which light is emitted, trans-
mitted or reflected depends very much on the material, the geometry and other surface
properties. Also light coming out from an object may interact with the medium in the
environment before reaching the eye or the detector. This interaction is in the form of
absorption or scattering of light by the medium. It is therefore of immense interest to
understand the nature of light, its properties and interaction with objects and other
matter in the environment before one embarks upon the study and development of

methods for computing illumination.

2.1 Physical Model of Light

Electromagnetic Theory of Light : Light is basically flow of radiant energy which
is capable of exciting the retina of the eye to produce a visual sensation. The flow of
energy is in the form of electromagnetic waves[24, 60, 64]. Because of this wave nature,
light is characterised by the wavelength of the corresponding waves. The common
unit of wavelength is nanometer(nm). The range of electro-magnetic waves which

constitutes light is approximately 380nm to 770nm. The different wavelengths of light
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generate the sensation of different colours in our eye. Wavelengths for different colours
are approximately as follows: 380 to 450nm (Violet), 450 to 500nm (Blue), 500 to
550nm (Green), 550 to 600nm(Yellow), 600 to 650nm (Orange) and 650 to 770nm
(Red).

Quantum Theory of Light : Despite of the wave nature of radiation it has some
properties similar to that of a particle. In particular the energy carried by this electro-
magnetic wave at any frequency is an integral multiple of a quantum of energy specific
to the corresponding frequency[24, 60]. This quantum of energy is called a photon and
has a magnitude equal to hr, where h is Planck’s constant and v is the frequency of
the electromagnetic wave. Using this model one can completely ignore the wave nature
of the light and consider light to be flow of photons. On interacting with the surface
of an object or with the medium an integral number of photons are reflected /scattered
and the rest of the photons are absorbed.

In the study of light either of the models, the wave model or the particle model, may
be used depending on whichever one is more suitable for dealing with the behavioural
aspect that is of interest. Independent of the wave or particle nature of light, the

following assumptions hold true.
1. Light travels from one point to another in a straight line.

2. Out of all possible paths that one might take to get from one point to another,
light takes the path which requires the shortest time. This assumption is called
the Principle of Least Time.

2.2 Radiance: The Metric of Light Measurement

The rate of flow of radiant energy is termed radiant flur. Radiance! is a measure
of the radiant flux leaving a surface point in any direction and is defined as the flux

per unit projected surface area normal to that direction and per unit elemental solid

!For more details on flux, radiance, its relationship to the object brightness and other light metrics
the reader is referred to Appendix A.
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Figure 2.1: Radiance geometry.

angle, centered around the direction. Radiance is a convenient quantity for use in all
illumination computations. From its definition, the radiance from a surface in a given
direction in a noninteracting and nonemitting medium is constant for all positions along
that direction. Also it can be shown[4] that the radiance of an object is a measure of
the brightness of the object independent of the object’s size and distance.

This invariance of radiance with distance in a nonparticipating medium also makes
it a convenient metric to specify the magnitude of the interaction or emission when
the medium is of participating nature. These effects can now be given directly as the
change in radiance with distance. In the case of an interacting medium, the radiance
is considered in terms of a local area within the medium. The projected area is formed
by taking the area that the flux is passing through and projecting it normal to the
direction of travel. The unit elemental solid angle is centered around the direction of

travel and has its origin at the area of interest(Fig.2.1).

2.3 Light in a Nonparticipating Medium

An environment is assumed to be composed of solid objects and its encompassing
medium. The medium may or may not be participating. By participating we mean
the medium may contain gaseous or floating material which also interacts with the
light eg. dust, smoke or some luminescent gas. First we shall discuss the interaction

of light with objects in a nonparticipating environment. In such an environment, light
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travels between the surfaces in a straight line with no attenuation in the energy due
to the medium. Light interacts with the surface of the solid object that it hits. This
interaction is in the form of absorption, reflection and refraction. For surfaces of opaque
objects absorption and reflection are the only interactions of relevance. These will be
discussed in detail below. The quantity of light that is not reflected or refracted will

be assumed to be lost by absorption.

2.3.1 Reflection

Reflection is a general term[1] used for denoting the process by which the incident flux
leaves a stationary surface or medium from the incident side, without any change in
frequency. On reflection from a perfectly smooth surface, the reflected flux leaves in
a mirror direction which is uniquely characterised by the incident direction and the
surface normal at the point of incidence as follows(Fig.2.2):
(1) the incident angle (the angle between the incident beam and the normal to the
surface) is equal to the reflected angle (the angle between the reflected beam and the
normal to the surface),
(2) the incident line, reflected line and the normal to the point where the reflection
takes place are all in one plane.
This is the law of reflection. Surfaces with reflection properties satisfying this law are
called as specular surfaces, and such reflection is called as reqular or specular reflection.
When light goes from one medium to another it does not go in a straight line. At
the interface it bends. The light is said to refract(Fig.2.2). The extent of refraction is

” where

given by the expression “n; sin(angle of incidence)=n, sin(angle of refraction)
1m and 7, are respectively the refractive indices of the first and the second medium,
and are the ratios of the velocity of light in vacuum to that in the medium. This is the
law of refraction and the equation is Snell’s Law.

When light hits the surface of an object, none, some or all of the light may be
reflected and/or refracted from the material. If all of the light is reflected and/or

refracted then the object is said to be non-attenuating, otherwise it is said to be

attenuating. For reflection from the surfaces of a nonattenuating object, the fraction
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Meidum 1

Medium 2

Figure 2.2: Reflection and refraction geometry.

of the light flux reflected, F, is given by[64] Eq. 2.1 below.

F(6;) = 1 [(n2cosi —m cos €)? N (9 cos & — ny cos 6;)?
Y2 [ (pacosf; +micos€)? (g cos €+ my cos b;)?

(2.1)

where 6; is the angle of incidence and & is the angle of refraction. F is known as
the Fresnel Coefficient. For reflection from the surfaces of attenuating material the
expression for the Fresnel Coefficient is far more complex. When the incidence is from

air or vacuum the expression is given by Eq. 2.2 [64, page 100] below

F0) 1 a% + b* — 2a cosb; + cos®; N a® + b* — 2a sin f;tanb; + sin’0;tan’b;
Y 202 4+ b2 + 2a cosB; + cos20; a®? 4+ b% + 2a sin 6;tanb; + sin?6;tan?0);
(2.2)
where

942 — \/(772 — K2 — 5in20;)2 + 4n2k2 + () — K2 — sin26;),
op2 — \/(772 — K2 — 5in20;)2 + 4n2K2 — (n? — K% — sin?0;),

f; is the incident angle,

Kk is the coefficient of absorption (eztinction coefficient), and

7 is the refractive index of the material.

Equations 2.1 and 2.2 above giving the fraction of reflected energy can only be used for
objects with perfectly smooth surfaces. In practice, object surfaces are not perfectly

smooth and hence do not exhibit specular reflection. That means the surface finish
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is such that light hitting the surface does not reflect exactly in the mirror directions.
Rather it reflects in a range of directions. Such reflections are known[1] as diffuse reflec-
tions and corresponding surfaces are known as diffuse reflectors. Diffuse reflection may
be further categorised into: narrow-angle diffuse, and wide-angle diffuse. In narrow-
angle diffuse reflection, light flux is reflected at angles close to the direction which the
light flux would take by specular reflection. While in wide-angle diffuse reflection, light
flux is reflected at angles near and away from the specular reflection direction.

The light that is refracted at the surface of the object passes through the bulk of the
object material. During this passage some of the light may be absorbed and some may
be scattered. Depending on the composition of the material this absorption and scatter
will vary from one point to another along its path inside the material. When modelling
the optical behaviour of objects in Computer Graphics the major emphasis is on the
interaction of light at the surface of the object. The phenomenon of reflection has thus
received the maximum attention and highly sophisticated physical and mathematical
models have been evolved for reflection. On the other hand, while the behaviour of
light as it passes through optically thin gaseous material has been modelled to some
extent, not much effort has been put so far into modelling the behaviour of refracted
light as it passes through optically thicker liquid or solid material. There have been a
few attempts reported in the literature and these are for the highly restricted situations

listed below:
(i) objects of pure material like diamond[77],
(ii) objects of uniform material composition like glass[30, 75], and

(iii) very thin transparent objects like paper or cloth[57, 61], where the thickness of

the material can be ignored.

In all these three cases the behaviour of light is modelled in two parts — reflected light
and transmitted light. It is clear that in all the above cases light can be assumed to be
transmitted either in an ideal diffuse manner or in a highly directional manner. As a

result the same models as used for modelling ideal diffuse and specular reflection could
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be used for the transmitted light at the surface. However, more sophisticated models
for refraction have yet to be evolved. In the rest of this chapter we shall discuss in detail
various models for reflection. We shall also discuss the modelling of the behaviour of

light as it passes through participating volumes.

2.3.2 Reflectance: The Measure of Reflection

The most commonly used measures of reflection are reflectance, p, and bidirectional
reflectance distribution function(brdf), f,.

Reflectance is the ratio of reflected flux to the incident flux. Reflectance is a func-
tion of the spectral distribution characteristic of the incident flux and the geometry of
the incident flux and the reflected flux. Depending on the geometry of the incoming
and outgoing directions different reflectance terms are used. They are[l]: bihemi-
spherical, hemispherical-conical, hemispherical-directional, conical-hemispherical, bi-
conical, conical-directional, directional-hemispherical, directional-conical, bidirectional
and hemispherical reflectances. All of these are defined as ratios of reflected to incident
flux. Hemispherical refers to flux in a hemisphere of directions, conical refers to flux
within a specified cone, and directional refers to a specific direction only. In this context
the term directional is used for the incident flux when the incident flux is collimated,
and is used for reflected flux when the the size of the solid angle of the collecting element
is specified. If no qualifying geometric adjectives are used, reflectance for directional
incidence and hemispherical collection is assumed. The Fresnel coefficient F defined
in Section 2.3.1 provides an expression for the directional-hemispherical reflectance for
the surface of a homogeneous material.

The brdf, f., represents distribution of light in the reflection directions. It is ex-
pressed as the fraction: the reflected radiance along an outgoing direction over the
irradiance? from the incident direction. The expression for irradiance, dE;(6;, ¢;), at

any point due to the incident radiance L;(6;, ¢;), is as follows:

dE;(0;, i) = Li(0;, ¢i) cos b;dw;

2See Appendix I for definitions of irradiance etc.
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Figure 2.3: Representation of a direction.

where dw; is the differential solid angle around the incident direction.

At any surface point around the normal to the surface there is a hemisphere of directions
for incoming and outgoing light. On this hemisphere, with respect to the normal at the
point, let # denote the cone angle and ¢ the circumferential angle where 6 varies from
0 to /2 and ¢ varies from 0 to 27 (Fig.2.3). Let (6, ) denote any direction®. Then f,
is given by the expression:

_ LT‘()\797‘7¢7‘) _ LT‘()‘797‘7¢7‘)
fr()\,erad)raeia(ﬁi) — dEl()\,Hl,(bZ) — Lz()\,91,¢l) COSQidwi (23)

where A is the wavelength of the incident light,

(0;, ¢;) and (0, ¢,) are respectively incident and reflected directions,

dw; is the differential solid angle around the direction (6;,¢;),

Li(\, 0;, ¢;) is the radiance incident from (6;, ¢;) direction,

L.(\, 0, ), is the radiance reflected along (6,, ¢,) direction due to the incidence from
(0;, ¢;) direction.

It is generally true that f. is symmetric with respect to the reflection and incident
direction. That means f, is the same if we interchange the incident direction with the
outgoing direction. Also for some of the surfaces f, is independent of the reference axis
for measuring the circumferential angle of the direction of the incoming light. Such

surfaces are said to exhibit isotropic reflection behaviour. A special case of isotropic

3For conciseness instead of 8, ¢ we have often used © to represent the direction.
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wide angle diffuse reflection, called perfect diffuse reflection, is one in which f, is inde-
pendent of incoming and outgoing directions. Such surfaces are also called Lambertian*

surfaces.

2.3.3 Surface Reflectivity Models

In general it is difficult and also very expensive to measure the f, for a surface as a
function of every possible incoming and outgoing direction. Further, even if it were
possible to exactly measure the values, storage requirements for this information would
be prohibitive. To avoid these problems usually a mathematical model is used. This
model is used to predict f, for any incoming and outgoing direction. The mathematical
model approximates the behaviour of a wide range of surface materials and surface
finishes as a function of a few parameters.

The prime factor considered responsible for the hemispherical distribution of the
reflected flux is the surface roughness. The roughness can be thought of as undulations

on the surface with peaks and valleys which
e change the local surface normal at the point of incidence,
e affect the actual incidence at a point by shadowing,
e mask the actual reflection from a point.

These effects reduce the reflected flux in the specular direction and result in reflected
flux in other directions as well. In some materials like non-metals light can penetrate
some distance below the surface before getting absorbed. In such cases the multi-
ple reflections on the layers just below the surfaces of the object, also contribute to

the reflected flux in any hemispherical direction(Fig.2.4). The hemispherical reflection

4A Lambertian surface emits or reflects light in accordance with Lambert’s cosine law. The Lam-
bert’s cosine law states that the luminous intensity in any direction from an element of a perfectly
diffuse surface varies as the cosine of the angle between that direction and the perpendicular to the
surface element. However, it must be noted that in many (older) Computer Graphics books, Lambert’s
cosine law has been stated to mean the relationship that the radiance from the reflecting surface is
equal to the radiance of the point light source times the cosine of the angle made by the light source
with the reflecting point.
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Figure 2.4: Reflection from an actual surface.

component resulting from the multiple reflections on the subsurface and multiple re-
flections inside the grooves of highly rough surfaces may be approximated as perfect
diffuse reflection. Highly polished metals have very little of this kind of reflection.
All of the outgoing illumination from a metallic surface is due only to the surface re-
flection. Hence the hemispherical reflectance distribution for the surfaces of metallic
objects is attributed mainly to reflections (single or multiple) by the rough elements of
the surface.

In general it is convenient to split f,. into a perfect diffuse, a directional diffuse and

a specular component as follows(Fig:2.5):

fr - fdiffuse + fdirectional + fspecular

where fyiftuse, fairectional @0 fspecular represent the bidirectional reflection distribution
functions for perfect diffuse, directional diffuse and specular reflection respectively.
fspecular 18 a delta function with nonzero values for the mirror direction and zero for all
other directions. fgrectionas results from reflection off the rough elements of the surface
and in principle has nonzero values in all the hemispherical directions.

The functions fspecuiar for mirror direction and fgirectionar are simply given as some

factor times the Fresnel coefficient, F. This factor is the product of

1. the fraction of the effective surface area that receives flux from the incoming

direction and reflects flux in the reflected direction, and

2. the fraction of the effective surface area whose local normal is such that the
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Figure 2.5: Reflection models.

incoming direction, local normal and the reflected direction satisfy the law of

reflection.

fdiffuse 1s uniform in all the reflection directions and is represented by a constant
value. This component inherently results from the very complex process of sub-surface
penetration and multiple internal reflection of the light hitting the model. Its modelling

is generally difficult. A simple method based on experimental evaluation is as follows:

fr controls the distribution of flux in the outgoing hemispherical direction
for any incoming flux. An integration of this outgoing flux over the outgoing
hemisphere will give the total reflected flux. This reflected flux can also be
measured using an integrating reflectometer. The discrepancy between the
measured value and the value predicted using only the directional and the

specular components of the f,. provides an estimate for fgif fuse-

Various models for the analytical evaluation of fyirectionar a0d fopecuiar component of the
brdf have been cited in the literature. Some are physically based[3, 6, 17, 32, 37, 54] and
some are empirical[53, 72]. The physically based models try to model the roughness
and derive expressions based on the material property using the laws of physics. Where

as empirical models try to fit-in the experimental reflection data to some appropriate
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basis function, thereby giving a compact representation for the complex brdf. The
basis functions chosen are such that they are computationally simpler and changes in
their parameters create predictable variations in the surface reflection behaviour thus
enabling the simulation of a wide range of surface behaviours. A few of the more well

known physically based and empirical models are discussed below.

2.3.4 Physically Based Models

In these models, the physical characterisation of the roughness and the resulting re-
flections are most important. A parameter characterising the roughness effect is the
root_mean_square (rms) roughness, o. Roughness is relative to wavelength. A surface
with some o may be considered rough for light at smaller wavelength, whereas the same

surface may be considered smooth for light at much larger wavelength. For that rea-

a
>N

son, often a derived parameter called, optical roughness, is used. For any particular
surface o can be obtained by means of a profilometer® It must be kept in mind that o
does not give any information on the distribution of the size of roughness around the
rms value. Ordinarily the roughness is very irregular, and statistical models are used
to derive the distribution of the roughness. The often used distribution is Gaussian.
Other important parameters characterising the roughness effect are the auto correla-
tion distance, T, and the rms slope, m(Fig.2.6). The auto correlation distance, T, is a
measure of the spacing between roughness peaks on the surfaces and rms slope is the
root mean square slope of the undulations. Assuming isotropic reflection behaviour,
fairectional 15 expressed as:[6, 17, 32]

F GD

- 2.4
m cosB; cos b, (24)

fdirectional =

where F is the Fresnel coefficient, G is the geometrical attenuation factor, D is the
distribution of surface roughness, 6; and 6, are incident angle and reflection angle

respectively. The expressions for G and D are functions of parameters £, 7, m, the

2

incident direction ©;, outgoing direction ©, and the physical properties of the material.

A profilometer is an instrument that traverses a sharp stylus over the surface and reads out the
root mean square vertical perturbation of the stylus.
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The actual equation for each of them differs from model to model depending on the

approximations and the physical principles used to derive the equations.

Torrance-Sparrow Model : Torrance and Sparrow[6, 17] made a simplifying as-
sumption that the surface may be assumed to be composed of a collection of specular
micro facets which are oriented in random directions all over the surface and the micro-
facets exist in the form of V shaped grooves. The component of the reflected light in
any direction arises out of specular reflections occurring off the facets oriented in such a
way that their specular reflection direction with respect to the incident light coincides
with the direction of interest. Further these microfacets shadow and mask each other
thus reducing the effective number of microfacets reflecting along ©,. Blinn[6] and
Cook[17] provide a review of the various expressions derived for G and D using the

Torrance-Sparrow Model.

Kirchoff’s Tangent Plane Approximation : Kajiya[37] and He et al[32] have
used Kirchoff’s tangent plane approximation for the derivation of G and D factors for
the Eq. 2.4. In this approximation, the electro-magnetic field at any point on the
rough surface is approximated by the field which would occur if the surface were to be

replaced by a tangent plane to the surface at that point. The formulations using this
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approximation are rather complex and can be found in [32]. He et al[32] state that their
formulation for isotropic reflection behaviour compares favourably with experimental
measurements of reflected radiation for a wide variety of metal, non-metal and plastic

surfaces with varied roughness.

2.3.5 Empirical Models

As mentioned earlier empirical models are simpler to compute, intuitive and also pro-
vide a compact representation of the complex reflectance distribution. For the visu-
alisation of a realistic environment it is often possible to use these models to predict
the brdf values and avoid the rigours of the physically based models. We shall discuss
two such models by Phong[53] and Ward[72] in this section. In both these models re-
flectance is assumed to be composed of a perfectly diffuse component and a directional

component. The specular component is subsumed in the directional component.

Phong’s Model : Phong’s model[53] is one of the oldest and is a very simple empir-
ical reflectance model. This model is the most often used reflectance model in image
synthesis. This model gives an expression for bidirectional reflectance (not for brdf) to

predict reflections from shiny surfaces. The expression is as follows:
Pba(Or, ©;) = kg + ks(6;)cos" o (2.5)
where

kq and kg are called diffuse and specular reflection coefficients representing
the fraction of perfectly diffuse reflection and directional reflection, and
satisfy the condition k; + k, < 1,

a is the angle that the direction ©, makes with the specular reflection
direction of ©;(Fig.2.7) and

n is an empirical roughness parameter controlling the rate of decrease in the
reflected flux as a function of . In the extreme as n tends to oo perfectly

specular behaviour is modelled.
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Figure 2.7: Phong’s and Ward’s reflection model geometry.

As can be seen from this equation, the model tries to fit a power cosine function to the
reflection behaviour of shiny surfaces. The parameters ky and n together express the
directional reflection characteristics of a material. The parameter n may be thought
of as a measure of surface roughness and the parameter k; as a simple function of
the Fresnel coefficient. In the original model no attempt has been made to derive the
values for these parameters from physical principles. These numbers are empirically
adjusted. For more reflective materials, the values of both ks and n are larger. The
range of kg is between 10 and 80 percent and that of n is between 1 and 10. One
disadvantage that must be noted is that no attempt has been made to conform to the
law of conservation of energy. This means more energy may be reflected than it is
incident. On the merit side associating Phong’s model with a surface means choosing
only two parameter values satisfying the above mentioned simple conditions. One can

easily arrive at the required values by trial and error.

Ward’s Reflection Model : Ward[72] has recently proposed an empirical model
for anisotropic reflection. Though it is computationally more expensive than Phong’s
model, it has the following advantages:

(i) It fits the experimentally measured data for a wide range of surface reflectance data,

(ii) it has physically meaningful parameters, and
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(iii) it satisfies the law of conservation of energy.
Further the equations proposed in this model adapt easily to Monte Carlo sampling®
and hence are likely to be widely used in image synthesis.

The expression proposed for the anisotropic brdf ( fr aniso) in this model is given by:

1 e—tan%(cos%ﬁ/a%+sin2¢/a§)

v/cosB; cosB, 4oy

fr,aniso(@ia @r) = % + ps (26)

where

pq and p, are diffuse and specular reflectance coefficients,

a, and «, denote the standard deviation of the rms slope in the x and y
directions respectively,

0 is the angle between the average surface normal and the angle bisector of
the incoming and reflecting direction, and

¢ is the circumferential angle of this bisector(Fig.2.7).

For isotropic reflection «, = o, = o and hence the equation simplifies to

a2 /o2
e—tan 0/

1
_|_
Ps VecosB;cosb, 4dma?

The p terms in this equation may have spectral dependence. p; may be computed using

fr,iso(Gia 67") = % (27)

the Fresnel coefficient for the surface material. As long as the total reflectance pg + ps
is less than 1 and the a values are not too large, the above equations yield a physically
valid function. Ward[72] has fitted experimentally measured data to this parametric

equation and has tabulated py, ps, @, @, for a number of material /surface behaviours.

2.4 Emission

Light emission is the result of a process in which energy in some form, say chemical or
electrical, is converted into electromagnetic radiation in the visible wavelengths. The
emission results from the electronic transition of the molecules in the material. The

radiation emitted from a solid actually originates within the solid. Like reflection,

6Detailed discussions on Monte Carlo Sampling can be found in Chapter 4.
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emission results in a directional distribution of the emitted radiance. There has been
very little attempt in the literature to model the light source. The often used emission
distribution is the perfect diffuse or Lambertian emitter. Further the emitters are

usually treated as time independent sources of constant emission flux.

2.5 Light in a Participating Medium

So far in our discussion we have assumed that the light when propagating from one
surface to another either by emission or reflection is not attenuated. This is due to
our assumption that interaction of the visible light with the medium through which
it passes is negligible. However, if the medium interacts with the visible light, then
the light coming out of a surface and the light reaching the surfaces surrounding that
surface are no more the same. Depending on the medium through which the light has
passed it is attenuated or augmented. Such media are said to be participating media.
Attenuation is due to absorption and scattering, while augmentation could be due to

emission in the medium or due to light scattered in from other directions.

2.5.1 Scattering

Scattering is a phenomenon which occurs when light strikes the particles present in
the medium. On striking, some of the incident radiation may be reflected from the
particle surface. This is termed scattering by reflection. The remaining portions of the
radiation will penetrate into the particle, where part of the radiation can be absorbed,
transmitted, or can undergo multiple internal reflection, and refraction. The redirection
of light by these processes is called scattering by refraction. There is also scattering by
diffraction. Diffraction is the result of a slight bending of the light propagation paths
near the edge of the obstruction. For illumination computations the scattering process

of interest may be categorised as:

e [sotropic scattering : Scattering is uniform in all directions. Like diffuse reflection

this is basically the idealisation of the scattering process.
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e Anisotropic scattering : There is a distribution of scattering directions. That

means light is scattered nonuniformly in its surrounding.

It must be noted here that for the interaction at any point in the medium there is a
complete sphere of incoming and outgoing directions to consider and not a hemisphere
as was the case for reflection. So the direction is represented by #,¢ where 6 takes a
value from 0 to 7 and ¢ from 0 to 27(Fig.2.8). A phase function,P (0, ¢), is used to
describe the angular distribution of the scattered energy. The phase function gives the
scattered radiance in a direction divided by the radiance that would be scattered in
that direction if the scattering were isotropic. For isotropic scattering P(6, ¢) = 1. Two
of the models widely used for the phase function in anisotropic scattering are Rayleigh
Scattering and Mie Scattering. In these models the phase function is independent of

the circumferential angle ¢.

Rayleigh Scattering : This is applicable in situations where the scattering particles

are considerably smaller than the wavelength of light. The model predicts the phase
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function by the equation

P(O) = 2(1 + cos? 0)

where 6 is the angle the scatter direction makes with the direction of light incidence.

Rayleigh scattering is applicable when the scattering is by gas molecules.

Mie Scattering : This is useful for explaining the directional distribution of the
light scattered from the particles larger than the wavelength of light. By this model

the phase function is represented by

300~ Lsn _ Ly
73(9)—5 (1 2COS€)+(COSH 2)

The general absorption and scattering behaviour of the medium is described by
modelling the density distribution of the particles as a function of position, the reflec-
tion, refraction and absorption behaviour of each individual particle and an appropri-
ate phase function. Computer graphics literature for this kind of modelling is rather

limited[7, 41, 45, 48].

2.6 The Radiance Equation

Radiance from any surface point in a nonparticipating environment is due to reflection
of incident radiation from the incoming hemisphere around the point and due to emis-
sion from that point. In this section we shall derive an expression for this outgoing
direction. From the definition of brdf (Eq. 2.3) the measure of the reflected radiance

as a function of the incident radiance from any direction can be written as follows:
Lo(A x,0,) = fr(\2,0,,0;,)L;(\ x,0;) cos §;dw;
where

Li(A\ x,0;), Ly(\ x,0,) are respectively the incoming and outgoing radi-
ance of wavelength A at point x,
f; is the cone angle of the incoming direction,

dw; is the differential solid angle around the incoming direction.
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Taking into account incidence from all the directions in the incoming hemisphere around

the point x, the outgoing radiance due to reflection can be expressed as
L,(\, z,0,) :/ fr(A x,0,,0;)Li(\, z,0;) cos 0;dw;
Qz

where the integration range €2, denotes the incoming hemisphere around x.
Including the radiance due to emission we arrive at the general expression for the

radiance from an opaque surface point in any nonparticipating environment.
Ly(A\x,0,) = Le(\ 2,0,) +/ fr(A x,0,,0;,)L;(A, x, 0;) cos B;dw;
Qp

where L, is the radiance due to the emission at point x. This equation is one of
the fundamental equations used in our illumination computations. In an environment
incoming radiance at z is due to the outgoing radiance at some point y visible to x

along that direction. So we may rewrite the above equation as follows:
Lo()\axa @o) - Le()\axa @o) + / fr()\axa @Oa@i)Lo()\7y7 @z) COSHidwi (28)
Qg

where L,()\, y, ©;) is the outgoing radiance at point y visible to x along the direction
©,(Fig.2.9). Eq. 2.8 shall hence forth be referred to as the Radiance Equation. To
the world of computer graphics Kajiya introduced a variant of the Radiance equation

widely known as Rendering Equation[38] in the following form:

I\ z,2") = g(z,2")

E\ z,z') +/p()\,x,x',x")]()\,x',x")dx" (2.9)
s
where

I(\, z,2") is the intensity of light passing from point 2’ to point z(Fig.2.10)
and is related to the outgoing radiance as I'(\, z, z") = L, (), 2', ©,) cos 0,dw,
g(x,z') is the visibility term which take a value of 1 if 2’ is visible to x, 0
otherwise,

E(\ x,2") is the emitted light intensity from z’ to z, and is related to
emitted radiance as E(\,z,z") = L.(\, 2, ©,) cos 8,dw,.

p(A, z, 2", 2") is the point to point transport reflectance and is related to f,
as p(\,z, o', 2") = f(\, z,0,,0;) cosb; cos §,, and

S, the range of integration, is the union of all the surface of the environment.
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Figure 2.9: Radiance equation geometry.
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Figure 2.10: Three point geometry.

The equation states that the transport intensity of light from one surface point to
another is simply the sum of the emitted light and the total light intensity which is

scattered towards x from all other visible surface points.

2.6.1 Effect of Participating Medium

The radiance in a nonparticipating medium is invariant of distance along the direction
of propagation of light. However in a participating medium various interactions that
may occur along the path may cause its variation with distance. The phenomena like
absorption, emission and scattering are responsible for this variation. Emission along
the path may cause an increase in radiance. Absorption results in a complete loss of
light and hence a decrease in radiance. Scattering distributes the light away from the
direction of propagation and hence a loss in radiance. Further light moving in another
direction may scatter into the direction of our interest and hence increase the radiance
in that direction.

If we exclude the extraneous light coming in our direction of interest, i.e. the
light due to scattering in and due to emission, and simply consider the fate of the
light originating at a point in some surface area (could be hypothetical) then only two
effects need be considered. They are the absorption losses and the scattering losses. It

has been found experimentally that the resulting change in radiance depends on the
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magnitude of the local radiance.
dL = —K(s)Lds

Where K is the extinction coefficient of the medium in the differential layer and

has a unit of reciprocal length.
K(s) = 04(s) + 0s(5)

where o, is the absorption coefficient, and o, is the scattering coefficient’.
The attenuation of light due to absorption and scattering along the path at a

distance S can be derived as follows:

dL
- = —K(s)ds
lniggi = —/OSK(s)ds
L(s) = L(0)e~Jo KOs = p(g)ers (2.10)

where K (s) is a function of local parameters of the medium, and kg = [; K(s)ds, is
the opacity or optical thickness. This equation is also known as Bouguer’s Law.
Opacity is a measure of the ability of a given pathlength S of the medium to atten-
uate the light energy of a given wavelength A. A large opacity means large attenuation.
Opacity is a dimensionless parameter. If opacity > 1 then the medium is said to be op-
tically thick, that means the mean penetration distance of light is quite small compared
to the medium dimension. If opacity < 1 then the medium is said to be optically thin
and the mean penetration distance of light is much larger than the medium dimension.
Thus in an optically thin medium light can pass entirely through the material without

significant absorption. For a medium of uniform composition kg = [’ K(s)ds = K S.

So L(s) = L(0)e= K%,

"The symbol o here should not be confused with the one used for rms roughness. Though a different
symbol could be used in either place, we shall continue with this symbol as the literature usage of o
is common for both.
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2.6.2 The Generalised Radiance Equation

Considering the change in radiance along the light propagation path in a participating
medium, the general expression for the radiance, at any point = of the environment, in
any direction ©, can be written as
Lo()\axa @o) - Le()\axa @o) + T()\,iU, @o,@i)ﬁo()\,y,@i)cos&dwi (211)
Oz

where

x is any point in the environment (not restricted any more to be only sur-
face points as in Eq. 2.8),

L, and L, are respectively the outgoing and emitted radiances,

the integration range ©, denotes the hemispherical directions for a surface
point and denotes spherical directions for a volume point,

T is f, for a surface point and is o,P for a volume point,

S denotes the distance of the nearest surface point along the direction ©; !
from z and

L,()\,y,0;) represents the cumulative outgoing radiance from every point,
y, along the ©; ! direction starting from x up to the nearest surface point

along that direction and can be expressed as L,(\, y, ©;) = fOS L,(\ y,0;)e "ds.

2.7 Remarks

The study of the physical process of light energy interacting with matter is an important
part of computer image synthesis as it forms the basis for the computation of colours
in the synthesised picture. The computationally simpler models of the early days have
all been replaced and augmented by more complex models gleaned from the work and
literature of other physical disciplines. The formulation of the radiance equation and
the generalised radiance equation (Eq. 2.8 and Eq. 2.11 above) is another step in
the direction of assimilating such knowledge. These equations are required for the
exact simulation of light interacting with complex object surfaces and participating

media in a complex 3D environment. Though similar equations have been extensively
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studied by the discipline known as Radiative Transport Theory, the highly sophisticated
mathematical methods are not easily accessible to computer graphics implementations.
Also the complexity of the environments and the expected accuracy of the results
differs. In computer graphics the prime interest in simulating the behaviour of light
in an environment is to use the simulation results for image synthesis. Often, the
geometrical complexity is very high, effects of participating volumes can be dealt with
rather lower accuracy and simpler, less physically accurate reflectance models can be
used, provided the computed images are almost realistic. In all cases, however, the
radiance equations (Eq. 2.8 and Eq. 2.11 above) are fundamental and provide a basis
for a complete simulation of the interaction of light in a complex environment with
complex optical behaviour of the surfaces and the enclosing medium. In the following
chapter, using these equations as the basis, we shall review well established illumination

computation methods in the field of computer graphics.
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Chapter 3

A Review of Illumination
Computation Methods

The radiance equations, Eq. 2.8 and Eq. 2.11 presented in the previous chapter clearly
show that the illumination at any point in a complex 3D environment is determined
not merely by the light received directly from the light sources but also by the light
received indirectly due to scattering, refraction and reflection, that is, its interaction
with the medium and the objects in the environment. And hence the term global
illumination. The radiance equation is a complex integral equation and computation
of global illumination in any 3D environment would require the solution of this equation
for that environment. Over the last few decades in the field of computer graphics we
have seen an immense body of research carried out to compute illumination in an
environment primarily for the purposes of image synthesis and rendering. Essentially
all these methods can be seen to be providing some form of a solution to the radiance
equation.

The complexity of the radiance equation is such that solving it completely and
accurately for general environments is not computationally feasible. Hence most of
the illumination computation techniques are arrived at after making some simplifying
assumptions regarding the behaviour of the environment and also relaxing the accu-
racy to which illumination results are to be computed. Early illumination methods
for example, considered only direct illumination from point light sources and approxi-

mated all indirect illumination by a constant term. In subsequent research efforts we
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therefore see a major thrust in the development of methods for capturing this indirect
illumination. Considering the fact that image synthesis has been the primary motiva-
tion for computing global illumination, computational complexity is reduced in many
of these by restricting the computation of illumination only to the visible points of the
environment. Even for these visible points application of the complete illumination
model is computationally expensive and is avoided whenever possible by interpolating
from radiance values computed at a minimal set of discrete points in the environment.

Eq. 2.8 is an expression for the outgoing radiance from a point x on a surface along
some direction ©,. O, is a direction within the outgoing hemisphere erected at = with
the normal to the surface at x. This means that for any given point and direction, say
(x,0,), solving of the radiance equation will provide us with a numeric value for the
radiance, say L(x, ©;), from that point along that direction. If we make the assumption
that the surface is diffusely reflecting (and diffusely emitting if the surface is also an
emitter) then L is the same for all the outgoing directions. In such a case it is sufficient
to solve the equation and obtain the value for radiance along any direction from that
point. If we additionally assume that the radiance is uniform in the neighbourhood
of the point, say in the small patch to which the point belongs, then we only have
to solve the radiance equation for any point on the patch and along any direction.
An illumination computation method provides a solution to the radiance equation at
one or more points in the environment. The point(s) where the computation is to
be carried out may be (i) predefined for the environment, for example as in the case
of radiosity methods where the surfaces in the environment are discretised into small
pathes and the solution is carried out so as to obtain radiance values at the centres
of the patches or (ii) determined as the illumination computation progresses by the
need to obtain radiance values at a selected set of primary points, usually belonging
to the visible surfaces in the environment. If the solution at a point is to be taken
as the representative of the solution of an area then the proper association between
the point and the area is very important. This problem of suitably defining the points
and the associated patches is generally known as the problem of discretisation of the

environment[5, 9, 34, 47].
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The radiance equation is a linear integral equation of the second kind!. A closed
form solution for a general equation of this kind does not exist. However, one may
resort to various numerical quadrature techniques to get a reasonably accurate solution
for this integral equation. Such techniques may be broadly divided into deterministic
and nondeterministic categories. Nondeterministic methods are generally based on
principles of Monte Carlo quadrature. A method specific to the solution of integral
equation of the second kind is the random walk. Monte Carlo quadrature and random
walk techniques are briefly discussed in later sections. The choice of any particular
method depends on its ability to handle a range of surface geometries, surface brdfs
and surface emission properties. The integral term of the radiance equation is an
expression that accounts for the light incoming from the hemispherical directions at
the point and represents the process of gathering illumination information coming in
from all directions of the hemisphere. As most of the methods are basically methods
for solving this integral term we shall term them as gathering methods®.

There are a few methods which compute global illumination but not by gathering.
Rather they conform to the basic physical process of light propagation in which light
originates from the source and interacts with the surfaces of the environment and
gets distributed. We shall term the methods under this category as shooting methods.
Later in this thesis, we shall show that the mathematical equation governing the basic
shooting process is another equation which has been termed as the potential equation.

Along with the radiance equation the potential equation forms an adjoint system of

!Defns of Integral Equation of First & Second Kind[19]: Let K(s,t) be a continuous
function of the two variables s and ¢ defined over the domain a < s < b, a <t <b. Let f(s) and ¢(t)
be two continuous functions of the variable s and t respectively defined over the interval a < s,t < b.

If the functions f(s), #(t) and K(s,t) are connected by the equation f(s) = [ K(s,t)¢(t)dt then
the equation is called a linear integral equation of the first kind.

If the functions f(s), ¢(t) and K (s,t) are connected by the equation f(s) = ¢(s) — X [ K (s, t)p(t)dt
where A is a scalar parameter, then the equation is called a linear integral equation of the second kind
with the kernel K (s,t).

By these equations every continuous function ¢ is transformed into another continuous function
f. The transformation is linear because the transformation of ¢y¢; + ca¢o results in ¢i fi + cofs.
The primary interest in these types of equations is in determining ¢(s) when f(s) is given, that is in
inverting the linear integral transformation.

2The terms gathering and shooting were introduced by Cohen et al in the context of explaining the
difference in the strategy used by the full radiosity solution and the progressive radiosity algorithms[12].
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equations for describing the illumination process. This adjoint system of equations
can be seen to provide the mathematical basis necessary to describe all illumination

computation methods.

3.1 Deterministic Gathering Methods
3.1.1 Local Illumination Model and Ray Tracing

The simplest approach towards solving the radiance equation is to approximate the

integration over the hemisphere by a summation as follows:
Lo(@,0.) = L(0,0,) + [ 1(62,0,)Lo(y, 0,) cos bidw
Q

N
= Le(r,0;) + 2/(,) [+(©4,0,)L,(y, ©,) cos b;dw; (3.1)
=179l

where N is the number of discrete small solid angles to which the incoming hemisphere
has been divided. A further approximation is to replace the integral term by a simpler
expression. One such approximation is given below:
N

Lo(z,0;) = Le(z,0,) + ]2_:1 Fr(5)Lo(7) cos 0(j) Aw(j) (3-2)
where L,(j) is the average radiance coming from the points visible through the discrete
solid angle Aw(j) around z, and f,(j) and 6(j) are respectively the average reflectance
and the average incident angle for incidence from j-th discrete set of directions.

Yet another simplifying assumption that can be made is that while the illumina-
tion coming from light sources in the hemisphere is significant enough for them to be
considered individually, light due to reflection from other surfaces may be summed up
to give a uniform illumination called ambient illumination. We therefore now have the

following equation:
Lo(2,0;) = Le(2,0;) + Lapa(z) + > fr(5)Aw(j) Le(5) cos 0(4) (3.3)
j=1

where L, is the hypothetical constant radiance (ambient term) from every point in the

incoming hemisphere and p, is the direction independent hemispherical reflectance of
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point x, ns denotes the number of visible light sources, and
L,(j), Aw(j) and 6(j) are all defined with respect to the j-th light source.

The earliest illumination computation methods use equations similar to Eq. 3.3
and are often said as being based on local illumination models[29]. The term local is
because the illumination predicted by the equation is due to the direct or local effects
of the light sources, with little consideration of global effects such as inter-reflection
amongst objects in the environment. Because of their computational simplicity these
methods have been used very widely for many years, to produce shaded pictures of
3D objects. The very first equation of this kind is due to Bouknight[8] who gave the

expression for the radiance?® from diffuse surfaces as follows:
ns
Lo(z) = Zl Le(j)ka(x) cos 0(5) (3.4)
j=
The sum is over ns point light sources,
L,(x) is the reflected radiance from point x, and because the reflection is assumed to
be from a perfectly diffuse surface it is independent of the outgoing direction,
k4 is the diffuse reflection coefficient, which take values from 0 to 1.
Phong[53] subsequently introduced an important improvement to this model for
supporting shiny surfaces. Reflection from every surface is assumed to have a diffuse
reflection component and an imperfect specular reflection component which is modelled

by Phong’s reflection model (Eq. 2.5). With this extension Eq. 3.4 takes the following

form:

Ly(z,0;) = Z Le(5) [kdif fuse(z) cos 0() + Especutar () cos”™ a(7)] (3.5)

where

«(j) is the angle between the mirror reflection direction of the j-th light
and the direction ©,,
kaif fuse and Kgpecuiar are the diffuse and the specular reflection coefficients,

which take values from 0 to 1 subject to the condition that Kg;fryse +

3Intensity (I) was the actual term used instead of radiance (L), but with the same meaning. The
term intensity is still used by many for radiance. However, as discussed in Appendiz A they are not
the same. In this thesis these two terms will be used in conformity with their exact definitions.
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kspecular < 17

n is the roughness measure as described in Phong’s reflectance model.

Note the directional dependence of the outgoing radiance L, because of the introduction
of non-diffuse reflection behaviour. The L, term does not appear in Eq. 3.4 and Eq.
3.5 because surfaces are assumed to be non-emitting.

Cook et al propose another equation using Phong’s reflection model for the fy ectional

term, which is very much like Eq. 3.3 and has the following form|[17]:
Lo(l', @x) = Z Le (]) [kdiffuse (x) + kspecular (x) cos” a(])] Cos Q(J)dw(]) (36)
J

If we use Eq. 3.4, evaluation of radiance requires the evaluation of the incidence
angle ¢ which in turn requires the evaluation of the surface normal at the visible
point. For a polygonal surface, the normal is the same for all points. Therefore when
illuminated by light source(s) at infinity a polygonal surface has a uniform value of
radiance for all its points, and only a single computation of radiance holds for the
entire surface. However, this simplification is not possible for non-planar surfaces.
For such surfaces, Gouraud proposed an interpolation scheme, well known as Gouraud
shading|28]. A polygonal approximation of the curved surface with values for normals
at vertex points is first obtained. Using these normals and applying Eq. 3.4, radiance
values are computed for all the vertices of this polygonal approximation. Finally for
every visible point of a polygonal face of the approximation, radiance is estimated
by carrying out bilinear interpolation using the radiance of its vertex points. Phong
also proposed a somewhat similar rendering technique using Eq. 3.5 for the visible
points of the curved surface[53]. The technique is known as Phong shading. Instead of
interpolating radiance values, vertex normals are interpolated to arrive at an estimate
for the normal at any visible point of the polygonal patch. Eq. 3.5 is then applied to
evaluate radiance. This technique is definitely more expensive than Gouraud shading as
it makes the evaluation of Eq. 3.5 necessary at every point, but saves on the complex
computation necessary for the computation of the actual normal by restricting the

expensive computations for obtaining precise normals only to a few points. However

45



surfaces are more smoothly shaded, than in Gouraud shading. Also since specular
reflection is properly simulated highlights are obtained.

Rendering a shaded picture is the process of computing shade or colour for the
surface points visible through the pixels. The shade due to a point on a surface is
proportional to its radiance. Any of the illumination computation methods may be
used for computing the radiance. For example one may use equations discussed in this
section to compute the radiance at the visible point. In the early rendering techniques
visibility computation was carried out mostly by scan-conversion techniques. Exten-
sion of these scan conversion methods to compute the visibility of light sources at the
point of interest is difficult. So rendering methods based on scan conversion technique
for visibility are not generally capable of handling shadows in the environment. Nev-
ertheless, we come across extensions for incorporating shadow computation into these
rendering methods[21, 76]. With respect to each light source Crow|[21] tagged the por-
tions of the surface patches under shadow. At rendering time these tags are referred
to for deciding on whether the contribution of a particular light source is to be added
or not. Williams also used a similar concept[76]. Instead of tagging the surfaces, with
each light source he associated a raster map of the depth of the points visible to that
light source. At rendering time, the distance of the visible point from the light source
is compared with the depth stored in the shadow map to see if the point is farther
away and hence under shadow.

The ray tracing method, geometrically speaking, is basically a visibility computa-
tion method and is ideal for handling shadows from point light sources. In the ray
tracing method, determining the surface point visible through a pixel is done by trac-
ing a ray from the viewpoint through a point within the pixel (usually the center of
the pixel). The ray is intersected with all the objects in the environment. The nearest
of all the intersections is the visible point. A point light source may be hidden to a
surface point because of one or more obstructing objects lying between the point and
the light source. This information is easily derived by tracing a ray from the point
towards the light source and checking if any intersection of the ray with objects lies

between the point and the light source.
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Ray-object intersections play a major role in the ray-tracing based methods. For-
tunately, a ray is a simple 1D linear geometric primitive. Efficient algorithms for
computing the intersection of a ray with a large number of object shapes have been
devised. That is why a ray tracing method in general does not impose many restric-
tions on the type of object shapes that it can handle. Since most of the time is spent
in computing ray-object intersection, a very large number of extensions are basically
acceleration methods for speeding up the ray object intersection computations. A good
description of various ray-object intersection and acceleration techniques may be found
in [26].

We see in the above that light is gathered accurately only from point light sources
and for gathering from everywhere else in the hemisphere a very approximate term
called ambient illumination has been used. For a better solution of the radiance equa-
tion it is essential that more precise methods of gathering illumination from everywhere
else be used. The basic ray tracing method attempts to do this by providing a mech-
anism to gather information from other dominant directions also. In particular, for
calculating illumination from a shiny surface it probes along the mirror reflection di-
rection of the direction of interest by sending a reflected ray. The basic idea behind
this extra probe is that light incident on a shiny surface from any direction is mainly
reflected along its mirror reflection direction. So if a significant reflection comes from
a mirror reflection direction then it is accounted for. Thus for computing this inter-
reflection term, a ray is traced along @y_l,(see Fig.3.1) the mirror reflection direction of
©,, where y is the visible point when viewed from z along ©'[75]. The radiance from
Y, Lo(y,0,), is added to expression of L,(z, ©,) in Eq.3.3 after taking into account the
losses due to absorption at x and we arrive at the following expression for computing

illumination using ray tracing:
Lo(2,0;) = Le(2,04) + pa(x) Lo+ ps(2) Lo (y, ©y) + D f(7) Aw(j) Le(j) cos 0(j) (3.7)
j=1

where pg(x) is the specular reflectance of the surface to which x belongs.
The difficulty with this equation is that if y does not belong to a light source then

L(y,©,) is also an unknown and hence needs to be evaluated. If this calculation is
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(Ray Tracing)

Figure 3.1: Recursive ray tracing.

carried out again using Eq. 3.7, then we say that recursive ray tracing has been used

to solve the radiance equation.

Extensions to Participating Medium: The ray-tracing paradigm is simple enough
to be extended to participating medium. In a participating medium, radiance in any
direction is attenuated by absorption and scattering by the medium, and augmented by
scattering of light propagating in other directions. A number of researchers have pre-
sented ray-tracing extensions to compute illumination in the presence of participating

medium as follows[39, 42, 48]

e The direct and indirect light reaching a reflecting surface is attenuated using

Bouguer’s equation (Eq. 2.10).

e Radiance along the view ray is the sum of attenuated surface radiance from the
nearest surface point and the integrated scattered component coming in from
every point along the direction. Light from sources is the only one considered

significant enough for scattering computations.

These methods differ primarily in the way in which the integration of the scattering

component is carried out.
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It must be understood here that very little attempt has been made to accurately
model the interaction of the light with the medium. Even with the above simplifications

computation times are prohibitively high.

3.1.2 Radiosity

The radiosity method provides a better solution to the radiance equation by accounting
for all the integral terms in the summation of Eq. 3.1. The basic radiosity method pro-
vides a solution for an environment with all surfaces exhibiting diffuse behaviour[27].
Further improvements are in the form of extensions to support specular surface be-
haviour and general surface reflectance property. While the feasibility of these ex-
tensions to support general surface reflectance property has been demonstrated their
application to real situations on a regular basis have yet to be proven[65]. As of today
the computational complexity in their implementations do not make them very easy
to use.

The basic radiosity formulation is based on the principles of flux transfer in an en-
closure. In an environment every object surface can be considered as being completely
surrounded by an envelope of surfaces of other solid objects or open areas. This enve-
lope is the enclosure for the surface and it accounts for all directions surrounding the
surface. By considering the radiation from the given surface to all parts of the enclo-
sure and the radiation arriving at the surface from all parts of the enclosure, all the
radiative contributions are accounted for. Because of this enclosure assumption every
solid angle in the incoming or outgoing hemisphere around a point will be covered by
a surface. If the environment is discretised to a number of small surface patches then
the hemisphere around any surface point can be represented as a sum of solid angles
occupied by each visible surface patch on the hemisphere(Fig.3.2). In particular we
may represent it as a sum of solid angles due to each of the surface patches, E;yzl Aw(j)
where N is the total number of surface patches. A surface completely hidden to a point
will have Aw(j) = 0. With the assumption of diffuse reflection behaviour and the fur-

ther assumption of uniformity of radiance over a patch we get the following simplified
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Figure 3.2: Solid angle subtended by a patch over a surface point.

form of Eq. 3.1:

=

Lo(i) = Le(i) + faifruse(?) D Lo(j) /Aw(j) cos Odw

<
Il
-

™ =

- Le(l) + fdiffuse(i) Lo(])’/TF(Z]) (38)

<.
Il
-

where F(ij) = 1 [a,; cosfdw.

We may interpret F'(ij) as the fraction of the total outgoing flux from the i-th patch
reaching the j-th patch. So Ej-vzl F(ij) = 1. F(ij) contains only geometry related
terms and hence is termed as geometric factor, or form-factor. Eq. 3.8 is a simple
linear equation, containing geometry dependent and geometry independent terms for
obtaining the radiance value at a point on the i-th patch of a diffuse 3D environment.
The original equations used in radiosity methods contain radiosity, B, in the equation
instead of the outgoing radiance L,. The term radiosity means the rate of radiant
energy outgoing per unit area from a surface. For a diffuse surface radiosity and
radiance are related by the expression : B = 7wL,. So we can easily convert the
radiance equation (Eq. 3.8) to the radiosity equation by multiplying 7 on both sides

to obtain:

WLo(i) = WLe(i) +7rfdiffuse(i) ;Lo(])’”F(U)

B(i) = E(@i)+ pa(i) Y B(j)F (i) (3.9)

j=1
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where B(i) and E(i) are respectively the total radiosity and the radiosity due to emis-

sion from the i-th surface patch, and pg(i) = 7 faif fuse(¢) is the diffuse surface reflectance

of the i-th patch.

Writing down one equation for each of the surfaces in the environment results in a set

of linear equations which can be solved for obtaining the equilibrium radiosity values.
If the environment consists of /N patches, then we get a system of N linear equations

with NV unknowns of the form:

(1 —pa(DF(1) ... —pa(DF(17) ... —pa(1)F(1N) B(1) E(1)
CpF(L) . 1 pa@)FG) ... —paFGN) || BG) | =] E@)
| p(NE(N1) . —paN)E(Ni) ... 1—pa(NE(NN) | | BIV) | | B(V)

or in short AB = F.

This set of equations has the unique characteristic of being diagonally dominant and
hence is amenable to efficient solution by iterative methods such as Gauss-Seidel’s. The
major problem in using this method is the setting up of the system of equations. This
requires the calculation of all the F'(ij) values.

The simplification of Eq. 3.1 to a system of linear set of equations with geometry
dependent and geometry independent terms was possible only due to the assumption
of the diffuse reflecting nature of the surface patches. Such a simplification cannot be
made if we assume a more general form for the surface brdf as it will no more be possible
to take out the f, term from inside the integration. Further, because of the diffuse
nature there existed a simple relation between radiosity and radiance viz L = B/,
and hence a single radiosity value was good enough to represent the outgoing radiance
in any direction. However this does not hold for surface patches with general reflectance
behaviour because the complex brdf gives rise to complex radiance distribution over
the surface patches. Thus it is generally much more difficult to compute the global
illumination for general environments using radiosity methods. We shall briefly discuss
below a few of the computational strategies that have been suggested for extending the

radiosity method to environments with non-diffuse surfaces.

51




Extensions to Non-Diffuse environment

(i) Two-Pass Solutions : Two-pass solutions[11, 66, 71] are based on the assumption
that a majority of the surfaces in an environment are diffuse and only a few of the
surfaces are non-diffuse. For a non-diffuse surface the radiance distribution is direction
dependent. Hence a single radiosity value is not an adequate representation. The
strategy adopted is not to associate any radiosity values with the non-diffuse surfaces
in the initial pass but to only use them for proper light propagation. That is, use the
non-diffuse surfaces to provide indirect light transport paths between diffuse surfaces.
As and when needed radiance values for specific directions are computed for non-diffuse
surfaces from the surrounding diffuse patches. With this strategy it is possible to
formulate a set of linear radiosity equations for the diffuse surfaces of the environment.
However the radiosity equations must now include geometry terms, called as extended
form-factors. The extended form-factor is the fraction of total outgoing flux from
the i-th surface patch reaching j-th surface patch directly and indirectly due to one
or multiple reflections of this light by non-diffuse surfaces in its propagation path.
Though not computationally simple it is possible to compute these extended form
factors if we assume that the non-diffuse surfaces in the environment exhibit perfect
specular behaviour.

The solution proceeds in two passes. In the first pass the equilibrium radiosity
values for the diffuse surfaces of the environment are computed by solving the linear
set of equations corresponding to the diffuse patches. In the second pass the radiance
values for the non-diffuse surfaces in specific directions are computed by sampling the
brdf of the non-diffuse surfaces. As most of the surfaces in the environment are diffuse,
the sampled directions mostly lead to diffuse surfaces whose radiance values are already
known as a result of the first pass.

(ii) Direction Discretisation : This method[36] attempts to solve the directional
distribution problem by discretising the hemispherical directions around a non-diffuse
patch into a finite number of solid angles, within which uniform brightness is assumed.

Surfaces are also divided into small discrete patches. For each discrete direction around
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the patch, a radiosity like linear equation is formulated. Energy leaving every discrete
solid angle is obtained by solving the linear set of equations.

For an accurate solution by this method one has to resort to very fine discretisation
of the surfaces and also the directions around the patch. Memory requirements are very
high thus making it practically impossible for even moderately complex environments.

The discrete representation of directions also gives rise to severe aliasing problems.

Extensions to Participating Medium An environment with a participating medium
can be assumed to be consisting of surface and volume elements. Rushmeier et al[58]
have extended the radiosity method to include surface-volume, volume-surface and
volume-volume interaction. Illumination is computed by solving a set of linear equa-
tions which in addition to the terms for surface radiosity include terms for volume
radiosity.

The enclosing medium is subdivided into a number of volumes each of which can be
considered essentially to be homogeneous and to be of uniform brightness, similar to
the concept of dividing surfaces into smaller patches of uniform brightness. The total
energy flux incident upon the patch/volume can be obtained as the sum of contributions
from all patches and from all volumes. An energy balance equation is then written
for each patch and each volume. This results in a set of simultaneous equations for
the unknown fluxes which can be solved. In addition to the geometric terms F(ij)
which account for surface-surface transfer, in this extension, we need terms for surface-
volume, volume-surface and volume-volume as well. These latter three terms involve
computationally intensive integrations. In [58] an approximate evaluation for these
terms has been carried out and the results used to compute a rough estimate for
the global illumination in the environment. The environment is restricted to contain
diffuse emitting and/or reflecting surfaces, and isotropically scattering and nonemitting

volumes.
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3.2 Nondeterministic Gathering Methods

As mentioned earlier, Monte Carlo quadrature and Random Walk are the two main
non-deterministic methods that have been used for gathering illumination from the
incoming hemisphere. These methods are called nondeterministic or probabilistic be-
cause repeated application of a solution method to the same problem is not guaranteed
to give identical results. The methods include steps that depend not only on the input

but also on results of some random events.

3.2.1 Monte Carlo Solution of Radiance Equation

The main principle behind a Monte Carlo quadrature for computing the integral

[ F(z)dx is as follows[40]:
1. Rewrite F(z) as a product fi(z)fo(z) such that [ fi(z)dx =1, i.e. fi(z) is a pdf.
2. Sample f; for a z;.
3. For each such sample z; evaluate fy(x;).

4. Carry out the steps (2) and (3) for a number of times, say n. The average,

L3 1 fa(x;), is the estimate of the integral. Larger the n more accurate is the
estimate.

The principles of pdf sampling are discussed briefly later in Chapter 4.

Using the Monte Carlo quadrature techniques, estimates for the integral part of the
radiance equation can be arrived at by simply averaging the radiance from a number
of sampled directions from the incoming hemisphere. However, there are a number of
problems in this approach. Illumination from the hemispherical directions is due to
emission and reflection. Contribution due to reflection is not known and can only be
obtained by a similar integration of the hemispherical contributions at the point that
is visible along the sampled direction. Along any sample direction only the contribu-
tion due to emission is known. The light sources are often localised and contribution

from any point on the source is almost always significantly more as compared to the
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contribution from a reflector. Hence, it is preferable to separate out the hemispherical
contribution due to emitters and reflectors in the radiance equation and to use differ-
ent sampling techniques when evaluating the contributions from the light sources and
contributions due to inter-reflection.

Cook et al[15, 16] have presented a Monte Carlo solution by using such a breakup
and choosing different pdfs for different sampling directions for the Monte Carlo eval-

uation of each term. The modified equation used by them is given below:
Lo(2,0;) = L¢(r,0;)+ L.(z,0,)
Lo(@,0.) = [ f(2,6,,0,)Lely, ©:) cos fidw
Q

+ /Q Fu(@, O, 0,) L (y, ;) cos Odeo; (3.10)

where L,(z,0,) is the radiance due to reflection only.
The first integral term of Eq. 3.10 accounts for the contribution due to sources and the
second term accounts for inter-reflection. The source term is estimated by sampling the
light source surfaces and the second term, the inter-reflection term is estimated by sam-
pling the surface brdf. This technique is widely known as distributed or distribution?
ray tracing. Radiance, emitted or reflected, from a sampled direction is arrived at by
tracing a ray in that direction, finding the nearest surface point along that direction
and computing the appropriate radiance at that point. Thus the distribution ray trac-
ing method is a modified recursive ray tracing method, where:
(i) For gathering the contribution from each light source, illumination rays are not
traced towards a single light direction, but are distributed according to the emission
distribution function of the light source.
(ii) Again for the inter-reflection component, reflected rays are not traced in a sin-
gle mirror direction but are distributed in the incoming hemisphere according to the
bidirectional reflectance distribution function of the surface point.

Distribution ray tracing results in a very accurate solution to the radiance equation

albeit, at a very high cost due to the excessively large number of rays that need to be

4QOriginally the technique was known as distributed ray tracing. However to avoid any confusion
with the distributed term normally used for distributed computations in parallel processing, many
researchers today including the authors, prefer to refer to it as distribution ray tracing[63].
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traced. A number of attempts have been made to increase the efficiency of distribution
ray tracing. One such attempt is the caching mechanism proposed by Ward et al[73]
for diffuse environments. In a diffuse environment the brdf over a point is uniform in all
the hemispherical directions. So the inter-reflection integration component of Eq. 3.7
can be written as a product of the surface reflectance and the incident hemispherical

irradiance given below:

/Qf,n(x, O4,0,)L,(y,0,) cos fdw = fdz-ffusex/QLr(y, 0,) cos Odw = faif fuse Xirradiance

(3.11)
So computation of the inter-reflection component at any point requires the evaluation
of the incident hemispherical irradiance by distribution ray tracing. A cache is used
to store previously computed irradiance values at various points in the environment.
When calculating radiance at any point the stored irradiance of the nearby cached
point(s) is used. Wherever possible, pixel to pixel illumination coherence is used to

estimate the irradiance at any point from the stored irradiance.

3.2.2 Random Walk Solution of Radiance Equation

The radiance equation is an integral equation of the second kind. Estimates of the
solutions of such equations can also be obtained by random walk methods. A random
walk is basically a sequence of steps. Each step is a random sample of the probability
distribution function defined over its previous step. Given an integral equation of the
second kind, say ¢(s) = f(s)+ [ K(s,t)p(t)dt, if [ K(s,t)dt =1, then K(s,t) at s can
be used as a pdf . Given a starting point s, the random walk can proceed by sampling
the pdf to arrive at a random ¢, and at the point ¢ sample its associated pdf, K(t,u) to
arrive at a random point u and so on. Based on this we can provide an estimate for

¢(s) as follows:
0s) = f(5)+ [ K(s,)6dt = 1()+ F() + [ K(tuw)g(u)du
= f(s)+ f(t)+ flu)+...

If [ K(s,t)dt < 1 then also one can use the same method by introducing an additional

event of absorption into the pdf. That means at every step either a next step is
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chosen according to the probability K(s,t) or no next step is chosen according to
the probability 1 — [ K(s,t)dt. The random walk is bound to terminate and hence
the sequence of steps is always finite. The sum of these finite number of f terms then
provides an estimate of ¢(s). Applying this technique to the radiance equation where
Jo fr(x,0,4,0;) cos b;dw; < 1 gives us the estimate of the radiance as a sum of a finite

number of emission radiance values as follows:
L(l’, Gw) = Le(l’, Gw) + Le(l’l, 91’) + Le(l‘”, @m”) + ... (312)

where O,/ is chosen by sampling pdf at x and 2’ is the surface position visible to x
along ©,., O, is chosen by sampling pdf at 2’ and z” is the surface position visible to
2’ along ©,~, and so on. The average of such estimates computed over a large number
of paths is used to obtain a more accurate estimate of the radiance value.

Kajiya proposed such a solution to the rendering equation (Eq. 2.9), a variant of
the radiance equation, and called this type of solution strategy as path tracing. The
random walk traces a path x,2’, 2", ... by starting the walk from z to z’ where 2’ is
chosen by shooting a ray at a chosen angle (see Fig.2.10) and finding the closest point

of interaction and the estimated solution is given by:
I(z,2") = L(x,2")+p(z, 2, 2" (2", ") +p(z, &', ") p(a', 2", 2" ) L (2", 2" ) +. .. (3.13)

I(xz,2") , I.(z,2") are transport intensity terms, and p(z,2’,2") denotes a three point
reflectance value.

Path tracing differs from distribution ray tracing. In path tracing a single ray
emerges from each point where as in distribution ray tracing a large number of rays
emerge from a single point. However, the requirement of tracing a large number of
paths to get a reasonable estimate of the solution makes it as expensive as distribution
ray tracing. A slightly different implementation of the random walk may be carried

out by using Eq. 3.10 as the base equation. This is as follows:
1. estimate the source contribution by distribution sampling,

2. estimate the inter-reflection by the random walk.
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For this implementation the estimate of L(x,©,) takes the following form:

L(w,0,) = Lo(2,0,) + [ f(2,0,,0,)Lc(y,0,) cos b,

+ [ 10,0,0:)Le(z, 02) cos bz

_|_

This implies that at every step of the random walk we have to compute the hemispher-
ical integration to account for direct contributions. These integrations may be carried
out by approximations as used in the local illumination model or may be carried out
by multiple sample rays towards each light source as in distribution ray tracing.

Though path tracing in general cannot be considered as being very efficient, Kajiya[39]
suggests careful use of various variance reduction techniques such as hierarchical and
nonuniform sampling to make path tracing an efficient and acceptable alternative for

accurate illumination computations.

3.3 Deterministic Shooting Methods

As we said earlier the shooting strategy is a direct simulation of the physical process
of light propagation. Sources are primarily responsible for illumination of the envi-
ronment. If the need is to compute radiance values at a large number of points and
not just a selected set, like say points on visible surfaces, then the shooting strategy
appears to be natural. In one of the early attempts two pass ray tracing was proposed.
The first pass was essentially shooting light from one light source to points arranged
in a 3D grid fashion covering the entire volume of the environment[10]. The second
pass then was the normal gathering by ray tracing with additional rays for gathering
from the 3D grid points. However, the very first proper strategy of shooting light
and simulating light propagation for illumination computation was proposed only in
1988[12]. The method widely known as progressive radiosity was proposed primarily
as an extension to standard radiosity method to make it computationally efficient. In
progressive radiosity the argument in favour of the shooting strategy is stated rather

indirectly as follows:
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Radiosity computation of any patch requires the gathering of radiosity from
every other patch in the environment. However, only a few of these gath-
ered values are significant enough to contribute towards the brightness of
the patch of interest. The significant contributions are mainly due to light
sources and bright reflector surfaces (often highly reflecting surfaces which
receive light directly from the light sources). So a method which can con-
sider only those significant patches and ignore the rest is likely to be more
efficient. This makes finding the set of major contributors important. Light
sources are undoubtedly part of the set of such contributors. The other
contributors are the ones receiving maximum emitted light directly or indi-
rectly and hence can be found by shooting the light from the source(s) and
keeping track of the quantity of light reaching every other surface patch of

the environment.

The distinguishing feature of this method is that while one surface is shooting light the
outgoing flux of all other surfaces are simultaneously updated. For shooting purposes
the surfaces are processed in sorted order according to their flux contribution to the
environment. The sorted list of surfaces initially contains only the emitters. As the
shooting progresses, the receivers with acquired flux are added into the list. From the
radiosity equation, Eq. 3.9, the amount of light received by the i-th patch after a single
shooting operation from a bright patch, say 7, is given by

AB(i) = pa(i) F (i) B(j)

where AB(i) is the amount of radiosity reflected by the i-th surface patch due to the
light reaching from the j-th patch, and F' is the geometric factor. By progressively
shooting light from all the light sources and bright surfaces of the environment the
radiosity accumulated at each of the surface patches in the environment approaches

the actual equilibrium radiosity value. This is easily shown by the derivations below:

B(i) = BE(i)+ pa(i) Y F(ij)B(j)
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= E(i) + pali ZFU< ) +pa(j) D F(ik )
k
= E(i) + pa(i ZFU J) + pali Z(Fzypd )Y F(jk )
k

J

= BE(i) + pali ZFU J) + pali Z( ij)pa(j) D F(jk >+
k

J

Extensions to Nondiffuse Environment The shooting strategy can also be used
for two pass methods and the directional discretisation method discussed in the earlier
section. A recent extension[65] that has been proposed for dealing with non-diffuse
surface reflectance behaviour is the use of spherical harmonics for the representation of
the directional variation in the outgoing radiance of a point on a non-diffuse surface.
It uses a continuous representation of the radiance distribution around a point, instead

of resorting only to discrete approximation.

Brief Note on Spherical Harmonics: Spherical harmonics are the elements of
an infinite set of orthonormal functions[55], ¥;,, (0, ¢) of two variables #, ¢ defined over

the sphere, where 0 <[ < oo and ,—[ < m < +[ such that for m > 0

2041 (L —m)! . im
Vin(0.6) = J R cost) exp™

and for m <0
Yi,m(ea ¢) = (_ )\m\ l|m|(9 ¢)

where P/" are associated Legendre polynomials. Given an arbitrary function in 6, ¢ it

is possible to represent it as a linear combination of these spherical harmonics i.e.

00 N+l
f0,9) = chlmlm ~Y Y CrnYim(8,9)
=0 m=-1 =0 m=-1

Com = [ [ 16,0

The number of terms N depends on the type of function f and degree of approximation.
Thus the function f(#, ¢) can be represented as aset {Cj,, | 0 <I < N, =1 <m < +1}.

Using this technique the f, of a surface can be approximated as a set of coefficients.
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However f, is a function of 8, ¢, 8;, ¢; where 6;, ¢; represent the incoming directions and
0, ¢ represent the outgoing directions. As one is interested in the outgoing distribution
of the reflected radiance, it is more appropriate to represent f,.(0,¢,0;, ;) as a set of
{Cim(0i,0i) |0 <1< N, =l <m < +[}. For surfaces with isotropic reflections i.e.,
those surfaces with f, independent of the circumferential angle of the incoming direc-
tion, the coefficients will only be dependent on #; and hence will be represented as a

set of {C),(6;) |0 <I< N, =l <m < +l}.

3.4 Remarks

Illumination computation has been one of the most extensively researched subjects in
the field of computer graphics. The total amount of published work is enormously
large and it would not have been feasible or beneficial to attempt to accommodate all
of these in our review. However the treatment of these methods as being algorithmic
solutions to the radiance equation, and the categorisation of strategies into gathering
vs shooting in one dimension and deterministic vs nondeterministic along another is
the first of its kind and has ensured that the more significant contributions have all
been adequately covered.

There are three important observations which must be put on record:

(1) In the early days of illumination computation, simulation of light propagation was
tightly coupled with rendering and in many places indistinguishable. As methods
evolved to greater degrees of sophistication the need for decoupling these two aspects
of the problem was clear. With the introduction to the graphics community of the
radiosity method and of the rendering equation this decoupling was complete. The
radiosity method showed that for completely diffuse emission/reflection behaviour, il-
lumination computations are independent of viewing parameters and can be performed
on a number of wavelength bands. If the lighting conditions do not change the com-
puted radiosities also do not change and hence any number of views can be generated

once the radiosities of all the surfaces are computed and known.
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(2) By taking into consideration all light interacting elements of the complete dif-
fuse environment the radiosity method yields accurate global illumination effects with
greater computational efficiency than other non-deterministic gathering methods like
distribution ray tracing and path tracing. Colour bleeding across surfaces, area light
sources, variable shading within shadow envelopes, penumbra effects along shadow
boundaries etc. are some of the effects which can be properly captured resulting in
highly realistic imagery when rendered. However as this computational efficiency is
derived directly from the deterministic approach, it must be recognised that the solu-
tion is only as accurate as the discretisation of the environment. In particular, when
we consider extensions to the radiosity based solution for general environments with
non-diffuse behaviour as well, the discretisation of the environment has to be extended
to accurately accommodate directional dependence of radiosity. The problem of au-
tomatically carrying out accurate discretisation of an environment is being separately
addressed by many but the fact remains that in spite of all the extensions and the
fantastic quality of the sample scenes rendered using these methods, the basic deter-
ministic approach is still a restrictive solution to the integral equations characterising

the simulation of light propagation globally in an environment.

(3) The strategy of shooting light starting from light sources can be seen as very
natural for simulating the propagation of light in an environment. The accuracy of
the computed illumination is continuously refined as the simulation progresses. De-
pending on the need in any situation, the computation can be terminated resulting in
dramatic reduction in computation times for reasonably accurate solutions. However,
the requirements of accurate discretisation remain and hence the difficulties to deal
with more general environments continue.

It is important to emphasise here that the gathering strategy based methods can
all be treated as methods providing solutions to the basic radiance equation required
to simulate the light propagation process. The nondeterministic gathering methods
are general solutions to the radiance equations and hence in principle can deal with

all kinds of general environments in the same manner. Also when seen as solutions
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to the governing radiance equation it is possible to deviate from the requirement of
physical simulation and derive more efficient solution techniques where the intermediate
steps no longer have physical equivalents. Such efficiency improvements are already in
extensive use in other disciplines where similar equations are required for simulations.
The non-deterministic solution strategies are usually termed as Monte Carlo methods
and the efficiency improvement techniques usually go by the name of variance reduction
techniques.

The shooting strategy on the other hand cannot be seen directly as a solution to the
radiance equation. It is true that it physically simulates the light propagation process
and it is also true that it is intuitively clear that in the limit as the simulation progresses
the resulting radiance values accumulated at different points of the environment do
approach the physical equilibrium values. However, so far there has been hardly any
serious attempt to consider the non-deterministic shooting strategy as an alternative for
view independent illumination computations in a general environment. In this thesis
we shall primarily explore this strategy and examine its computational feasibility. Later
in this thesis we shall also derive the governing equation which has been termed as the
potential equation that is required for simulating light propagation using the shooting
strategy. Naturally, variance reduction techniques for efficiency improvements are also
explored. The potential equation and the radiance equation form an adjoint system of

equations which together characterise all the illumination computation methods.
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Chapter 4

Particle Tracing: A
Nondeterministic Shooting Method

The particle model of light is a natural candidate for use when simulating the propaga-
tion of light using the shooting strategy. In this model packets of energy, particles, are
shot out or emitted in different directions from different positions on the surfaces of the
light sources. Particles move in a straight path and hit other objects, hence forward
termed receivers. At the surface of the receiver a particle is either absorbed, thereby
loosing all its energy to the receiver or is reflected thereby changing its direction. The
new direction acquired by the particle is determined by the direction from which the
particle hits the receiver and the brdf of the receiver surface. The particle continues
its flight until it is eventually absorbed. If we assume that there is no change in the
emissive behaviour of a light source over a period of time then because of the above
mentioned process an equilibrium is established in the rate at which particles leave the
surfaces in an environment. This rate (flux) determines the brightness of the objects.
The distribution of the wavelengths among the outgoing particles from the surface of an
object determine the colour of the object. Using this model, illumination is determined
by finding the particle flux per unit area at different wavelengths for each surface of
each object in the environment.

In complex environments, as already mentioned, where the radiance equation gets
extremely complex to solve, this particle flux can be estimated by carrying out a time-

independent simulation of the behaviour of a sufficiently large sample of particles and
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keeping track of their histories. As has been shown in other disciplines such as Neutron
Transport [43] and Heat Transfer [35], such simulations are best carried out using
Monte Carlo methods. We shall discuss here the use of these methods for simulating
the distribution of light. We term the process as particle tracing.

Monte Carlo methods are based on the random sampling process. In all Monte
Carlo calculations it is necessary to draw samples from some parent population through
sampling procedures governed by specified probability laws. In particle tracing the sim-
ulation is carried out using a finite number of particles. Each particle originates from
a light source. It therefore has to be first assigned an emitter surface, then a posi-
tion on the emitter surface, then a wavelength and finally a direction of emission. All
assignments are done making random choices which over a sufficiently large sample
would match the emission behaviour of the emitters in the environment. If we take
the example of assigning the emitter surface to the particle, the random choice should
be such that the number of particles assigned to the light sources are in proportion to
their emissive power. In other words it can be said that the probability of a particle
being associated with a more powerful light source is higher than its being associated
with a light source of lesser power. Similarly the other assignments above. A uni-
form way of carrying out this sampling is to associate all the possible outcomes with a
proability value. In other words associate with each each behaviour a probability distri-
bution function. Then random sample this probability distribution function. Usually
the probability function is either a cumulative function, called cumulative distribution

function(cdf), F(z), or a density function called a probability density function(pdy),

dF (z)
de °

f(z). Both of these functions are related to each other by the equation f(z) =
If we assume that an event is the outcome of some stochastic experiment then F'(x) is
the probability of the event taking any value less than x and f(z)dz is the probabil-
ity of the event taking any value in the range dx around z. F(z) is a monotonically
increasing function of x and 0 < F' < 1. If the outcome of the events is bounded, i.e.

a < x < b then the following equations are satisfied:
T b
/ f()dz = F(z) >0, F(a)=0, / f(@)dz = F(b) = 1
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For example in simulating the emission of light particles from a diffusely emitting
surface the cone angle, 8, of the emission direction is governed by the pdf, 2sin 6 cos ),
with cdf given by sin? 6.

For each emitted particle, the nearest receiver in the environment along its associ-
ated direction is then determined. At the receiver surface the particle is absorbed or
reflected. The probability of either of these happening is determined by the surface
reflectance. If the particle gets reflected then the particle is registered in the outgoing
flux of the receiver surface. The particle is then assigned a new direction and once
again the nearest receiver surface along its new path is determined. This process is
termed particle tracing. For every particle generated this particle tracing is continued
till it is absorbed.

On completion of tracing of all the particles we get a simulated particle flux for each
of the surfaces in the environment. This simulated flux is an estimate of the actual
flux in the real environment. From the law of large numbers' we know that larger the
number of samples better is the agreement of the estimator with the actual value. It is
not clear how large is large. Certainly the number of particles beyond which appreciable
improvements in the simulation results are not obtained would depend on the actual
configuration and complexity of the 3D environment. There does not seem any simple
analytical method for determining this number either. An acceptable solution would
be one in which this number is determined as the simulation progresses based on the
actual changes that occur in the simulation results for any given 3D environment. And
such a strategy is discussed in greater detail later in this thesis. It is important however
to get some idea of these numbers in order to be assured that the simulation strategy
is practical for reasonably complex environments with the kind of computer power
available today. And so for the present we shall just get a feel for this number based

on extensive experiments that have been carried out with an actual implementation of

Law of Large Numbers : In a stochastic experiment with probability density function f(z),
the expected outcome, p, of the experiment is defined as fab zf(xz)dz. If, in this stochastic experiment,
x1,Ta,...,%, are all randomly drawn events then the law of large numbers states that the probability
of the the arithmetic mean of these random variables becoming equal to p tends to 1, i.e. P(>_ x;/n =
u) — 1, as n — oo.
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this algorithm.
Another issue that needs to be addressed is as follows:
How good or accurate are the simulation results?

Carrying out the simulation for a large number of representative 3D environments and
then visualising the rendered images is one possible way. However, a more quantita-
tive approach would be to compare results for identical 3D configurations with a more
analytically accurate method such as the full radiosity method. A straight forward im-
plementation of the full radiosity method was undertaken and the comparative results

obtained for a simple test environment are also presented in this chapter.

4.1 Sampling Techniques

As discussed earlier, a stochastic or random behaviour can be characterised by a math-
ematical function, called probability density function, f or cumulative distribution
function, F'. If such behaviour has to be simulated then one requires a method of

generating events such that
e cach event is independent of the other,
e cach event is representative of the behaviour simulated, and
e a large number of such events approximate the total behaviour.

This is termed as sampling. We give below the description of the sampling methods
used in our simulation. For the details of various sampling methods, the interested
reader is referred to standard Monte Carlo texts[31, 40, 43, 56, 68]. All these methods
depend mainly on a uniform random number generator, one which generates random

values in the range 0 to 1 with uniform probability.

4.1.1 Sampling Discrete Probability Distribution

If the outcome of a stochastic experiment can take only a finite number of values, say L,

then the probability distribution of the outcomes is said to be discrete. The probability
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of an outcome taking a discrete value [ is given by f; where 0 < f; < 1and 1, f; = L.
For random sampling such distributions the following method can be used.

It is possible to take the interval (0,1) and exhaust it by dividing it into L segments
each of which has a length equal to some f;. If ¢ is the uniform random variable in the
range (0,1) then the interval into which £ falls determines the identity of the event. So

the procedure is as follows:

Generate a uniform random variable, &.

Find the smallest m < L for which 1" f; > &, i.e.

m—1 m
SN h<ESD N
1 1

Then m is the necessary sample.

Whenever 0 < £ < fi, event 1 takes place, if fi < & < f; + fy then event 2 takes
place and so on. For example the interaction of the light particle on a opaque surface
may be thought of as a discrete event with two possible outcomes, either absorption
or reflection. If p is the directional hemispherical reflectance, then we can assume p
to be the probability of reflection and (1 — p) the probability of absorption. So the
discrete pdfis {p, (1 — p)}. By the above method, if 0 < & < p then the sampled event

is reflection otherwise the event is absorption.

4.1.2 Sampling Continuous Distribution

Transformations of Random Variables : As in the case of the discrete distribu-
tion sampling, the basic idea behind this method is to provide a mechanism to trans-
form a uniform random variable into a random sample in the required distribution.

The sampling method is as follows:

Generate a uniform random value, € in the range (0,1).

Find X such that [~ f(z)de = F(X) =€, ie. X = F'¢.

In fact this method can be seen as the direct extension of the discrete distribution

sampling technique in which the summation has been substituted by integration.
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This method is applicable where an explicit analytical form of the distribution
function exists and it is possible to derive the inverse of the cumulative distribution
function. For example: in the assigning of a direction to the emitted particle from a
diffuse emitter the pdf for @ in the range 0 to /2 is sin 20 and so the cdf is sin?#. So

by the sampling method given above

sin?f =¢ or @ =sin™! \/E

Thus the angle # for the sampled emission direction from a diffuse emitter is simply

the sine inverse of the square root of a uniform random number in the range 0 to 1.

Rejection Technique : This technique is computationally expensive and is to be
used as the last resort. It can be applied to any distribution function. The general idea

behind the method is as follows:

Propose a trial value for the event.

Subject this trial value to one or more tests. On the basis of the outcome
of the test either accept or reject the proposed value as the sample.

If the proposed value is to be rejected, then repeat the process till a value

gets accepted.

The commonly used method for rejection sampling a density function f(z), bounded

in the interval (a,b), is as follows:

Generate a pair of uniform random numbers (&, &) in the range 0 to 1.
If [€.sup f(z)] < f(a+&i(b—a))
then accept a + & (b — a) as a sample from f(z).

If not reject the random pair and repeat the process.

In order to use the rejection method it is necessary to find fi(x) = sup f(x), the
lowest upper bound for f(z), or at least an upper bound for f(x). However, if only a
weak upper bound is found, the efficiency of the rejection method suffers considerably.

Also it is necessary that the function f(z) be bounded. The rejection technique suffers
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from the defect that not all of the random pairs (£, &) result in a sample point drawn
from f(z). The efficiency of such a method is the ratio of the area under the curve
fi(z) to the area of the enclosing rectangle. As the area under the original function

f(z) is 1, the ratio and hence the efficiency is at best 7(1)7&)1}01(:5)-

4.2 Particle Tracing : The Monte Carlo Simulation
Method

4.2.1 The Algorithm

To start with we shall make the following assumptions:
e The medium in the environment does not interact with the particles?.

e The objects are all opaque and are described by their bounding surfaces and

associated optical properties such as emission flux distribution, emission spectrum

and brdf.

Then the algorithm is as follows:

Decide on the number of particles to be traced and for each particle carry out steps

(1) to (3) below:
1. Choose

(a) Wavelength of the particle by sampling the emission spectrum.

(b) Position of the particle on the emitter surface by sampling positional emis-

sion strength distribution.

(c) Initial direction of the path of the particle by sampling directional strength

distribution.

2. Update the outgoing particle flux at the emitter surface.

In the next chapter we shall discuss the extensions of this algorithm to environments where this
simplifying assumption is not necessary.
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3. Repeat steps (a) to (c) below until the particle is absorbed.

(a) Find the nearest surface along the particle path.

(b) Choose the type of interaction i.e. absorption or reflection by sampling the

discrete interaction distribution function {p, 1 — p}.
(c) If the interaction is reflection

i. Update the outgoing particle flux on the reflecting surface.

ii. Assign a reflected direction to the particle by sampling the brdf.

Section 4.3 discusses in detail the position sampling formulae and methods for differ-
ent emitter surface types and direction sampling for emitted particles based on the
directional emission flux distribution of the source. The path of a particle is assumed
straight. So finding the nearest surface hit by the particle (step 3.a) is done by car-
rying out ray-surface intersections. This has been researched extensively in computer
graphics [26]. Methods for sampling different bdrfs (step 3.c.ii) are discussed in Section
4.4.2.

Computing Flux Density

To start with we shall record the outgoing flux at each surface patch by simply keeping
a count of the outgoing particles from that patch during emission or reflection. This
count is the direct estimator of the equilibrium particle flux density of that subpatch.

The relation is as follows:

Outgoing Flux = Number of Particles leaving the patch * Particle Strength

Total Source Strength
Total Number of Simulation Particles”

where Particle Strength =

From this the outgoing flux density is computed as: Flux Density = T"t“ijzzfg"iﬁge aF luz

In the process of simulation a region of the surface under shadow will have very
few particles while another region of the same surface directly facing a light source will
have a very large number of particles reflected from that region. Thus the positional

distribution of the reflected particles directly gives us the variation of brightness over
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Figure 4.1: Particle distribution on a suface of an example scene.

the surface. This is clearly illustrated by the example scene shown in Fig.4.1(a) along
with Fig.4.1(b) showing the scatter plot of the particles reflected from a surface on the
scene. Therefore if in the process of simulation we capture the positional distribution
of particles then these simulation results can be interpreted not only to determine
radiance in a region but also to determine how its gradient varies over the surface.

A naive approach to the capture of this distribution would be to record for every
reflected particle the position on the surface. The storage requirements in such an
approach would however be prohibitive. If the total number of samples is say a million
and the average number of reflections undergone by a particle is k, then in total, k
million positions would have to be recorded. Interpretation of these simulation results
for the purpose of image synthesis would translate to the problem of computing the
particle flux for a region of the surface visible through a pixel. If this has to be solved
accurately then this is the equivalent of locating all points within a region and once
again could make excessive demands on computational resources.

The other approach will be that which is followed in the radiosity methods. We
have a predefined mesh structure associated with the receiver surface. The particle

flux is assumed to be uniform over a single mesh element and hence a simple count
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of the number of particles emitted /reflected is sufficient. However in such a case, the
choice of the mesh is important for eventually it is this which determines how well the
illumination gradient over a surface has been captured. The automatic discretisation
problem is being researched extensively[5, 9, 47] and any of these methods could be
used. It is however important to note that in the Monte Carlo simulation the mesh
structure only stores simulation results and plays no role in the actual simulation
process which is carried out by dealing with the surfaces and reflectance behaviour
without any simplifications or approximations. A further point to be noted is that in
the Monte Carlo simulation, computation time depends only on the number of particles
and the environmental complexity and is independent of the mesh structure. For the
present let us assume that the particle distribution is accumulated over a rectangular

mesh (in uv space) imposed over each surface.

4.2.2 Progressive Refinement

The complexity of the environment as well as the nature of the values that are to
be estimated would both determine the number of samples that are needed to make
reasonably accurate estimates. Hence deciding on an optimal number of samples for
carrying out the simulation is not only difficult but also highly dependent on what
interpretations of the simulation results are needed. However, a distinguishing feature
in the design of the above algorithm is that it is truly progressive in nature. At any
instant of time, after a couple of thousand particles or so have been traced, all the light
sources and the other bright surfaces in the environment would have made contributions
corresponding to their actual behaviour. Thus after a reasonable number of particles
have been traced we have illumination information which is not likely to be drastically
different from the result derived after a larger number of particles are traced. This
could be used to great advantage in adaptively deciding on the number of samples to
be used in the simulation.

If we visualise the simulation and the interpretation of simulation results as two
different processes communicating with each other then the simulator process could

transfer simulation results to the interpreter process, say, in bundles of a thousand
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Photons Adjacent Faces Opposite Face
1000 0.6175 | 0.6216 | 0.6131 | 0.6143 0.6038
10000 0.6258 | 0.6278 | 0.6250 | 0.6302 0.6110
100000 0.6299 | 0.6306 | 0.6278 | 0.6294 0.6191
1000000 0.6288 | 0.6288 | 0.6283 | 0.6285 0.6140

| Radiosity Method | 0.6265 | 0.6265 | 0.6266 | 0.6265 |  0.6093 |

Table 4.1: Comparison of photon flux densities obtained from Monte Carlo Simulation
method and Radiosity method.

particles or so. The interpreter process could in turn check if there is no appreciable
change over a period of time and signal back to the simulator process to terminate the
simulation. Similarly, we can create images at intermediate stages of the simulation
and each image will be more refined than its predecessors. If the main purpose of
the simulation is image synthesis then the process can be terminated when visually

satisfactory results have been arrived at.

4.2.3 Comparison with Radiosity Method

For comparison purposes, we have carried out a simple implementation[50] of Full Ra-
diosity solution using the hemicube method [13] for form-factor computation and the
iterative matrix solution method for carrying out final radiosity computation to pro-
duce radiosity values over the surface patches in the environment. In order to be able
to carry out the comparison by tabulating the results we have chosen a simple convex
environment, a cubical enclosure with one surface as an emitter emitting at a single
wavelength and all surfaces having a uniform reflectance of 0.9 at that wavelength. We
have uniformly subdivided each face to a 10 x 10 grid for more accurate form-factor
computation for use in the radiosity method. In both the cases we have computed the
average radiosity at each of the faces of the cube. Table 4.1 compares the results ob-
tained from simulation with different number of samples with results from the radiosity
methods. Flux density for the faces has been normalised to a maximum of 1 at the
emitter surface. In Fig.4.2 we have shown the comparison of a test environment in the

form of images rendered by the radiosity method and the Monte Carlo method. The
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(a) Radiosity (303 Patches, 4:42 mins).
(b) Monte Carlo with 100,000 Photons (113 Surfaces, 5:09 mins).

Figure 4.2: Sample results from radiosity and particle tracing.

environment contains a total of 113 polygonal surfaces with larger surfaces selectively
broken down to a 10 x 10 grid of patches. Fig.4.3 shows the images rendered using the
simulation results after the tracing of 1000, 10,000 and 100,000 particles respectively.
As can be seen from these images the Monte Carlo simulation method produces
results which compare very well with those of the radiosity method. The computation
times® also are of the same order (282 seconds for radiosity vs 309 seconds for the
100,000 sample Monte Carlo simulation). In fact we expect that as the number of
surfaces in the environment increases, the performance of the Monte Carlo simulation
method will be generally superior. The more significant advantages stem from the fact
that the Monte Carlo method is inherently capable of handling far more complex three
dimensional configurations (both in geometrical and optical complexity) with greater

flexibility, simplicity and speed.

3These times would certainly improve if hardware acceleration techniques were to be used for scan
conversion and ray tracing.
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(a) 1000 particle (113 Surfaces, 0:03 mins).
(b) 10,000 particle (113 Surfaces, 0:31 mins).
(c) 100,000 particle (113 Surfaces, 5:09 mins).

Figure 4.3: Progressive refinement in particle tracing.
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4.3 Complex Light Sources

Light sources, i.e., emitters play a crucial role in the illumination of the environment.
There are mainly three important characteristics of the emitter that influence the illu-
mination [70]. They are geometry (emitter surface shape), spectral distribution (emitter
strength at different wavelengths) and luminous radiance distribution (emitter strength
in different directions). Light source geometries are varied and determine the distribu-
tion of light in the environment and also control the nature of the shadows generated.
Spectral distribution controls the colour of the objects in the environment. Luminous
radiance distribution influences the relative brightness of the objects positioned around
the emitters. So far only spectral distribution is handled reasonably well by the exist-
ing rendering methods. Though it is common practice to carry out the illumination
computation only with red, green and blue wavelength strengths of the emitter, in
principle, one can carry out the computation for more number of wavelengths[29]. The
effects of extended light source geometry and anisotropic luminous radiance distribu-
tion cannot in general be determined by most of the existing methods. On the other
hand Monte Carlo simulation is inherently capable of including the above effects. We

explore some of these below.

4.3.1 Light Source Geometry

Traditionally in computer graphics the visible shape of the light source and its emis-
sive geometry have been treated differently. For emissive geometry highly simplified
assumptions are made. The light source is assumed to be a point or a line[49] and if
more realistic appearance is called for then area sources are simulated by a large collec-
tion of points or lines. The very first treatment of real area geometry has been in the
radiosity method [27]. As discussed earlier in Chapter 3, in the radiosity method any
large or complex surface must be first broken down into small planar patches before its
use in illumination computation. Considering that the worst case performance of the
radiosity method is O(N?) for computation time and O(N?) for storage, where N is

the number of surfaces in the environment, this requirement of discretisation into small
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planar surfaces imposes tremendous computational burdens if complex light source ge-
ometries have to be dealt with accurately.

On the other hand in the Monte Carlo simulation method there is not much difficulty
in dealing with complex emitter surface shapes directly. In our implementation we have
successfully incorporated the following emitter surface geometries: triangles, rectangles,
parallelograms, spheres, cylinders, cones and discs. The strategy used is described
below in detail. We also believe that more complex shapes such as surfaces of revolution

or doubly curved surfaces can also be easily incorporated.
Sampling of Position for Emission

As stated earlier, during the simulation process all the particles are assigned positions
on the emitter surface. If we assume that the emission strength is uniform over the
surface of the emitter?, then the only requirement for using any arbitrary geometry is
that we must be able to generate particles uniformly over the surfaces. In other words
the particle density (particles/unit area) must be the same throughout the emitter’s
surface. So the essence lies in devising the proper sampling strategy. In the following
discussion each point on a surface is uniquely represented by two parameters (u and
v) which are independent of the position of the light source.

A rectangle or parallelogram shaped surface is one of the simplest of surfaces to
sample. Consider a rectangle or parallelogram with its four corner points defined by
Pyo, Pig, P11, and Py all positions in three dimension. Every point on the bounded

rectangular surface is given by the vector equation:
P = (1—U—'U)P00—|—UP10+UP01 (OSU,US 1)

It is easy to see that by choosing uniform random numbers in the range 0 to 1 for u
and for v, automatically results in uniform distribution of particles over the surface of
the emitter. The exact position in 3D space is computed by substituting the values for

u and v in the above equation.

“In almost all situations this will be true. Otherwise a single emitter could be suitably treated as
an ensemble of smaller emitters with that property.
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Similarly a cylinder with base radius R and height H can be described as a bi-
parametric surface with each point represented by (u,v) where u is related to the
circumferential angle ¢, by u = ¢/27r and v is related to the height, h, at that point by
v =h/H. As the surface is symmetric along the circumferential direction and uniform
along the height, uniform random numbers in the range of 0 to 1 for u and for v will
give uniform density of particles. For a cylinder positioned at the origin with its axis
along the positive Z-direction, the exact point on the surface is given by substituting

the values of v and v in the equation below:
P =< R.cos2mu, R.sin2nu,v.H >

The generic method used to derive the sampling equations from biparametric rep-
resentations of the triangle, sphere, cone and disc is as follows: (The u and v parameter
directions for each of these are shown in Fig.4.4)

i) Sample along the u parameter by assigning a uniform random number to u in the
range 0 to 1.

ii) Sample along the v parameter using the principle of transformation of random vari-
able. In this method the first task is to formulate the pdf of v. For this each of these
geometries is assumed to be composed of differential strips. As shown in Fig.4.4, for
the triangle the strip is rectangular with width b and height dh, for the sphere, and
for the cone the strip is cylindrical with base radius r and height dL, and for the disc
the strip is an anular ring with radius r and thickness dr. The probability of a particle

coming out from within a strip is:

Area of the strip

do —
p(v)dv Area of the Whole Sur face

1
and / p(v)dv =1
0

Thus p(v) is the pdf of the v parameter. So from the principle of transformation of

random variable
Uniform Random Variable(§,) = cdf = /U pdf dv
0

The solution to this equation gives the value of v in terms of the uniform random

number &,.
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Figure 4.4: Parameter directions for different geometric shapes.
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Using these principles sampling a spherical surface for uniform points is done as fol-
lows. The spherical co-ordinates of a point on the sphere, (0, ¢), are used as parameters

instead of v and v. The circumferential angle ¢ is sampled uniformly by:
¢ = 27TR¢

To satisfy the uniform sample density requirement the probability of a sample appear-
ing in the ring of width df and radius r is its area divided by the unit hemisphere area.
Area of the ring = 27r = 27 sin 0 df.

Area of the unit hemisphere = 27.

The probability p(6)df = sin @ df in the 6 range of 0 to 7/2. Using sample transforma-

tion principle:

0 [4
/ p(0)dd = / sinfd6 = Ry
0 0
| —cosflf = Ry

cosl = 1— Ry
For the triangle the derivations are as follows:
e Area of the Triangle = 1/2 B . H

e Area of the strip = b . dh

e From similar triangle principle : % =1- % or b= B(1— %)

For the triangle the v parameter is along the height and can be defined by the
relation v = . Substituting » and dh we have the area of the strip = B(1 —

"
v)H.dv
e So p(v)dv =2(1 —v)dv and cdf = [ 2(1 — v)dv

e Sov=1—+/1-¢&, However, & being a uniform random variable in the range

of 0 to 1, (1 —&,) is also an uniform random variable in the same range. So we

can write v = 1 — +/&,.
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Geometry pdf, Equation for Sampling v | Equation for Computing Position
Triangle 2(1 —v) 1 -6, Po+ (1 —v)u(P, — Py) + v(P, — P)
Rectangle 1 & (1 —u—v)Py + uPry+ vPy
(R sin v cos 2mmu, R sin 7o sin 27w,
Sphere sTsinmo M R cos ),
for a sphere with centre at origin.
(R cos 2mu, Rsin 2ru, vH)
Cylinder 1 & for a cylinder with one end at origin

and axis along the +Z-direction

Cone

2(Ro+(R1—Ro)v)

(-rosv/ v )

(r.cos2mu, r.sin2mu, v.H) where

r = Ry+v(Ry— Ry), for a cone with

Ro+Ry Ri1—Ro
one end at origin and axis along
+7 direction.
(r.cos2mu, r.sin2mwu, 0) where
—Ro++/R}+& (R —R?)
Disc 2Ro+ (R~ Fo)v) ( ° i ) r = Ry +v(R; — Ry),for a disc with

Ro+Ry

Ri1—Ro

center at origin and normal along
+7 direction.

Table 4.2: Position sampling equations.
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For each of the shapes supported in our implementation Table 4.2 shows the pdf,,
the sampling equation for v and the equation for computing the exact position on the
surface. Extension of this generic method to more analytically complex surfaces is
based on the observation that a uniform particle density over the entire surface also
means uniform particle density over the smaller parts of the surface. The distribution
of particles amongst the various parts constituting a surface will be in proportion to the
individual area. So the strategy for these surfaces is to first subdivide into smaller parts
of supported shapes, then compute their fractional area, carry out discrete sampling of
the fractional area distribution among the parts to choose the part and finally carry
out uniform position sampling in the selected part to choose the exact position from

which the particle will originate.

4.3.2 Spectral Distribution

The emission spectrum of the light source gives the spectral density function of the
emitted light. The emission spectrum is the radiance vs wavelength curve and describes
the relative proportion of the wavelength packets emitted at any given time. This
information is usually associated with a source specification. Given this spectral density
function, in the form of emission spectrum, rejection sampling can be used to decide on
the wavelength of a packet emitted at random. In the limit, if the source has an equal
energy spectrum one simply uses uniform sampling of wavelengths from the 380nm to

770nm.

4.3.3 Luminous Radiance Distribution

Generally in computer graphics emitters are restricted to have uniform radiance distri-
bution in the hemispherical direction. Assuming point light sources, extensions have
been proposed in the published literature to support emission in a small range of di-
rections or to support emission following a cosine law for attenuation [74]. However,
we are not aware of any such extensions to the radiosity method which deals with area
light sources. Just as in the case of complex light source geometry, directional radiance

distribution can also be supported quite easily in Monte Carlo simulation. Supporting
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any complex emission distribution means assigning a direction to each emitted particle
in such a way that the distribution of the particle samples match with the emitter’s
radiance distribution.

A direction is defined by a pair (¢, ) where ¢ is the circumferential angle and @ is
the cone angle. Generally it is assumed that the emission around a point is circular
symmetric, ¢.e. is independent of the circumferential angle ¢ and hence radiance dis-
tribution is specified as a function of the cone angle by goniometric diagrams [70]. In
such a case ¢ can be sampled as ¢ = 27wy where {4 is a uniform random number chosen
from the range 0 and 1, and 0 is sampled by Rejection Sampling of the Goniometer
Curve.

A particular case is fized directional emission. In this distribution the emission is
only along one direction and hence in such an emitter the generated particle is assigned
directly the only predefined direction associated with the emitter surface. Such type

of emitters may be used for modeling sun light coming through, say, a window pane.

Direction Sampling for Diffuse Emitters : Yet another special case is diffuse
emission wherein the emitted radiance is uniform in all directions and total emmissive
power per unit area is 7 times the emission radiance. With ¢ sampled as explained in
the above paragraph, the sampling procedure for 6 is as follows:

Let the hemisphere in Fig.4.4 represent the hemispherical emission direction around
the differential patch, P, with area dA positioned at the center of the hemisphere. The
probability p(#)df of the light particle reaching the differential cylinder, C, at # which
makes a solid angle dw at the centre of P is the fraction of the light energy that reaches
C' on being diffusely emitted from the patch.

Area of the differential strip : 27 sin 6df

The light reaching C from P= 27 L.dA cos 6 sin 0df

The total light emitted from P = nwL.dA. So

2n L.dA cos 6 sin 0db
mL.dA

p(0)do = = 2 cos f sin Hdf
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By the principle of Transformation of Random Variables:

0 0
& = /p(ﬁ)d& = 2/Cosﬁsin 0df = sin? 0 or sinh = \/gg
0 0

Thus for the particle emitted from a diffuse emitter the direction assigned is given by

-1

the pair (27&,,sin &) where &, and & are uniform random variables in the range 0

to 1.

4.4 Illumination of Large and Complex Receivers

Any 3D environment would include large surfaces like walls, floors, ceilings, table tops
etc. as well as complex surfaces like lamp shades, chair backs, flower vases and other
such objects. And all these surfaces, large or small, simple or complex, receive and
reflect light. In fact light sources themselves may receive light emitted or reflected by
other surfaces. In general the reflectance properties of different objects would not be
the same and hence a wide variety of reflectance behaviours have to be considered when
determining global illumination. It is extremely important to recognise here that in
most situations, the surfaces in a 3D environment would not be uniformly illuminated.
There could be shadows and there could be continuous change in illumination over
the entire surface. Hence a global illumination method must be able to deal with the

following:
e A range of surface geometries.
e A variety of reflectance properties.
e Non uniform illumination over surfaces.

In the rest of this section we show how in the Monte Carlo simulation method we deal
with geometrical and reflection complexity and also discuss how to maintain the flux

so that accurate illumination gradient computation is facilitated.
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4.4.1 Complex Analytical Surfaces

The main issue involved in handling analytically complex surfaces in the Monte Carlo
method is that it should be possible to find the nearest surface along the particle’s
path. As the particle travels in a straight line during its flight, finding the nearest
receiver, as stated earlier, amounts to computing ray-surface intersection. The ray
tracing literature abounds with methods for ray-surface intersection for a large variety
of surface shapes [26]. All such surfaces in principle can be therefore used as receivers in
the simulation process. In our implementation, we have considered polygons, spheres,
cylinders, cones and discs. Other surface geometries can also be added without too

much effort.

4.4.2 Complex Surface Reflectance

The brdf of a receiver determines the distribution of reflected radiance around its sur-
face. In the simulation, surface brdf is used to choose the reflection direction for a
particle. We consider the two idealised reflectance behaviours - diffuse reflectance and
mirror reflectance. In diffuse reflectance the reflected radiance distribution is uniform
around the surface similar to the diffuse emission process discussed in Section 4.3.3.
Hence the direction for a reflected particle is: (27, sin '\/&p) where &, and & are
uniform random variables in the range 0 to 1, similar to the direction chosen for a dif-
fusely emitted particle. For mirror reflectance the choice of direction is simpler. There
is only one direction to consider for a given incident direction. So at the position where
the particle hits the receiver surface the reflection direction is computed from the inci-
dent direction and the normal to the surface at that point. For a surface whose brdf is
given by Phong’s specular model the sampled reflection direction is given by the vector
which makes angle (cos (1 — fl)#l, 21&y) with the mirror reflection of the incident
vector[61]. In the above formula n is the empirical surface roughness parameter.

The complex reflectance modelled by Ward’s anisotropics reflectance model[72] (Eq.

2.6) could be sampled by assigning

5 = - log 61
cos? /a2 +sin® p/a?
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¢ = tan”’ {%tan(%rgg)]

T

where (0, ¢) represent the direction of the bisector vector of the incident and sampled
outgoing direction,

oy, oy are the standard deviation of the surface slope in the x and y directions respec-
tively.

For sampling more complex brdfs one may need to use rejection sampling.

4.5 Image Rendering Issues

In computer graphics the primary purpose of computing global illumination is for use
in rendering images. To render the image we must be able to compute the radiance of
the light emitted or reflected by a surface and reaching the eye along the view direction.
As discussed earlier, the simulation provides us with flux densities over the surfaces of

the scene. The flux density and radiance are related by the general equation:

(D:/QL(Q, o)cos(0)dw

where L(6, ¢) is the radiance along the (0, ¢) outgoing direction. For a diffuse surface
the radiance of reflected light is constant in all directions. With L(6, ¢) independent of
6, ¢ the above equation simplifies and we get L = %. However, such simplifications are
not possible for other types of surfaces. Computing L(6, ¢) requires the knowledge of
directional distribution of the computed flux density. This would require the capture of
outgoing particles from a receiver/emitter surface as a function of direction. Though in
principle this may be possible, in practice it will require a very large number of simula-
tion particles for accurately capturing both positional and directional distribution and
hence computation and memory overheads will be prohibitive. In order to overcome

this problem we too have adopted the two pass strategy in which:

e The positionally distributed particle flux is maintained in a direction independent

manner only over diffuse surfaces in the environment.

e Non-diffuse surfaces do participate in full in the simulation. Particles hitting a

non-diffuse surface are absorbed or reflected in a manner matching the behaviour
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of the bdrf of the surface. Thus even if the reflected particle flux is not main-
tained for these surfaces their contributions in the lighting of other surfaces in

the environment is properly accounted for.

e At the time of rendering, for visible parts of non-diffuse surfaces, the illumina-
tion is computed only in the view direction. This computation is based on the
observation that the illumination of a surface which is not an emitter can be de-
termined if the illumination of all the surrounding surfaces is known[38]. Any of
the established techniques of scan conversion, subdivision(dicing) or ray tracing
could be used for determining visible parts [25]. However, once it is established
that through a particular pixel a non diffuse surface is visible then from that

surface, radiance in the view direction must be estimated.

e If we assume that non-diffuse surfaces are ideal specular surfaces i.e. mirrors, then
the technique used in [71] could be adopted. A ray in the direction mirroring the
view direction is shot. If the nearest surface in that direction is a diffuse surface

then the illumination is known. Otherwise the process is continued.

e For non-diffuse surfaces with more general reflectance behaviours the reflectance
distribution sampling for the incoming diffuse radiance from each surrounding
direction can be carried out. The mirror surface case discussed above is a special
case of this method as the value of bidirectional reflection function is non-zero only
when the sampled direction is the mirror reflection direction of the view direction.
If some of the objects in the sampled directions around the nondiffuse surfaces
are also nondiffuse then the radiance from such surfaces has to be computed
by applying the sampling method recursively®. As in all two pass methods the
strategy works quite well if we assume that the environment is composed of
mainly diffuse surfaces with only a few non-diffuse surfaces so that the recursive

computations are kept to a minimum.

>This strategy of estimating the radiance in the view direction from the surrounding surface illu-
mination would obviously get into trouble if we had two mirrors parallel to each other and the view
direction is perpendicular to one of them. However, such a situation would be equally problematic for
the ray-tracing and the radiosity techniques as well.
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Photons | Simple Absorption(SA) | Russian Roulette(RR) || RR with Equiv Work of SA
100 10.35 9.998 9.996
1000 9.852 10.00 9.998
10000 10.06 10.00 10.00
100000 9.957 10.00 10.00
1000000 9.991 10.00 10.00

Table 4.3: Relative performances of simulations based on Simple Absorption and Ab-
sorption Suppression models.

4.6 A Variation in the Simulation Algorithm

In the algorithm presented in Section 4.2.1, a particle intersecting a surface is absorbed
if a uniform random number drawn at that point is greater than p. This is based on the
assumption that the interaction is a discrete distribution of two events: reflection and
absorption with distributions (p, 1 — p) respectively. Hence the method of absorbing
the particle is in accordance to the principle of Discrete Distribution Sampling. Every
time a particle is reflected it contributes the equivalent of 100% of its energy to the
receiver surface brightness and then continues its flight in the reflected direction. If we
consider an enclosure with all surfaces having uniform reflectance p, the probability of a
particle undergoing the first reflection is p, the second reflection p?, the third reflection
p* and so on. So the average relative brightness contribution made by each particle to

the given enclosure is given ideally by the factor:

1
B(w == 1+P+p2+P3+:?p

If this value of B,, has to result from simulation then in principle one needs an infinite
number of samples. Simulation using a finite number of samples may suffer from
statistical uncertainty in the computed equilibrium illumination of the environment.
This uncertainty is called variance.

In column II of Table 4.3 we have summarised the average brightness contribution
made by a particle in our test environment of Section 4.2.3, a cube with all surfaces
having a surface reflectance of 0.9. It must be noted that this contribution factor should
ideally be 10. As evident from Table 4.3 the variation from this ideal value reduces

with increasing number of samples and only by about a million samples is the ideal
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value almost reached.

A variance reduction technique that is used by many Monte Carlo programs in
other disciplines [35, 43] is based on the following idea: On every interaction instead of
choosing to absorb the particle its brightness contributing capacity (weight) is reduced
and the particle is always allowed to continue. The particle starts with a weight of 1
from the source. On every encounter with a surface its weight is reduced by a factor of
p and this modified fractional weight is contributed to the brightness of the reflecting
surface. However, direct use of this method is impractical, as the tracing of a single
particle never terminates. Termination of this process after the particle’s weight falls
below a threshold is a practical solution, but will introduce a systematic negative bias
into the system. A statistical technique called Russian Roulette® may be used to reduce

this bias. The technique is as follows:

As the weight of the particle falls below the threshold Russian Roulette is
played to decide whether it should be terminated or not. If the particle is

not removed then the particle is allowed to continue with increased weight.

The computational equivalent of the Russian Roulette [43] is to choose a predefined
number N between 2 to 10. Once the weight of the particle reduces below a sufficiently
small threshold a uniform random number £ is generated. The particle is removed from
the system only if £ > 1/A. The particle which survives the termination is continued
with its weight increased by a factor of N.

With this method a slight change is required in the particle flux capture and the
interpretation processes. Instead of keeping a count of the outgoing particles, a cumu-
lative value of weight is maintained for each outgoing particle leaving the surface and
on each interaction with a surface the particle’s weight is scaled down by a factor equal
to the reflectance of the surface. Thus in the computation of flux density the outgoing

flux due to an emitter is given by the modified equation below:

Outgoing Flux = Total weight of the Particles Leaving the PatchxParticle Strength

6New Webster Dictionary meaning: “A suicidal game or stunt in which the participants take turns
spinning the cylinder of a revolver loaded with one bullet, placing the muzzle against the head and
pulling the trigger”.
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The result of this technique for the test enclosure with 0.001 as threshold for cutoff
and N as 2 has been shown in column III of Table 4.3. The results show a major im-
provement in the average particle contribution, specially when compared to the results
computed with smaller number of samples. However, it is intuitively clear that this
method of absorption suppression is computation intensive as each particle is always
carried through its reflection history till its weight reaches the threshold and is carried
further if it survives the Russian Roulette. It is therefore more appropriate to compare
the result produced with equal computational efforts (Column IV of Table 4.3). The
computational efforts have been measured by the number of ray-surface intersections.
These results too show an improvement over the simple absorption method.

Both methods have been incorporated in the implementation. Either one may
be chosen for any simulation run. Our experience so far has been that for equivalent
computational efforts there is not much qualitative visual difference between the images
created using simple particle absorption model and Russian Roulette model. This may
perhaps be attributed to the fact that the total number of particles chosen for the
simulation is sufficiently large so that the variance in the simple absorption method
is kept low and does not result in any significant visual differences. We however do
feel that as the complexity of the 3D configuration increases this variance reduction

technique will yield better results for the same computational effort.

4.7 Remarks

As with all Monte Carlo based methods the global illumination computed will fluctuate
around the real value. The fluctuation can be reduced by increasing the number of
particles used in the simulation. Thus it is not possible to ascribe a 100% confidence
to the values that we obtain due to the stochastic uncertainty inherent in the methods.
Although in principle given the necessary computational resources we can approach
such confidence. The analytical methods also are not free of this problem. Numerical
uncertainties arise not only due to the discretisation of the shapes and directions but

also from the fact that various simplifying assumptions regarding the environment have
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to be made to make the analytical solutions applicable. There are no known methods
to estimate such numerical uncertainties either.

With our implementation we have traced around a million particles for the environ-
ment shown in Fig.4.5 which has 661 surfaces, small and large”. So far we have found
that for the simple absorption model one million is adequate for such an environment
and gives us highly satisfactory results. Also with the computing power available today
tracing of a million particles is not at all prohibitive. For the given environment the
average number of reflections that a particle undergoes is about 3.57. This means that
the tracing of one million particles would require about three and a half million rays
to be traced in the environment. By using a suitable acceleration technique this ray
tracing can be generally contained on the average. In fact we have found that with the
spatial subdivision based acceleration technique that has been implemented the aver-
age time for particle tracing is more or less independent of the geometric complexity of
the environmental configuration.

Particle tracing, thus, provides a very simple method for the computation of global
illumination in a three dimensional environment. As the mathematics describing it is
not highly sophisticated, the method is quite straight forward to implement. Further it
appears to have a definite advantage over the other analytical computation techniques
when the behavioural complexity of the environment goes up beyond the ideal diffuse or
ideal specular behaviour largely assumed in the analytical methods. Thus environments
with complex light sources or unevenly illuminated large and curved surfaces can be

treated with greater flexibility, simplicity and speed.

"Equivalently around 3000 (constant radiance) patches for obtaining a solution using radiosity
method.
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Figure 4.5: A Complex 3D Scene.
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Chapter 5

Particle Tracing in Environments
with Participating Volumes

As has already been mentioned by us earlier, one of the principal advantages of sim-
ulation using the non-deterministic particle tracing technique is its inherent ability to
accommodate with comparative ease the behaviour of light in complex environments.
In Chapter 4 we have already shown to some extent how complex surface emission
and surface reflection are handled. In this chapter we shall discuss its extensions to
environments with participating volumes. When the participating volume is the en-
tire 3D enclosure comprising the complete environment with other objects embedded
within it then it is often referred to as a participating medium. An environment could
also include geometrically localised participating volumes like a small puff of smoke
in a large room. As discussed earlier in Chapter 2, light when traveling through a
participating volume may either get attenuated or augmented. Attenuation is due to
absorption or scattering of the light by the participating volume and augmentation
is due to scattering of light into the light path by other participating volumes or by
emission of light within the participating volume. This behaviour of light is modelled

using light particles as follows:
1. Particles can originate either from emitting surfaces or from emitting volumes.

2. During their flight through a participating volume somewhere within the vol-
ume some of the particles are absorbed, some others are scattered in different

directions while others continue unhindered.
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Precisely what percentage of the particles get absorbed, what percentage get scattered
and where along their path this interaction with the volume takes place depends on the
optical properties of the volume such as opacity and scattering albedo. The scattered
particles are responsible for the volume illumination and the reflected or transmitted
particles are responsible for the surface illumination. These scattered, reflected and
transmitted particles continue propagating in the environment till they are absorbed
by a surface or volume.

The particle tracing technique of Chapter 4 is extended to deal with participating

volumes as follows:

Particles are now generated originating either at different positions on the
emitter surfaces or at different positions in the emitter volume, and as
before are assigned different directions of propagation. An additional step
is added to account for the interaction of the particle with the intervening

volume.
This step is as follows:

Depending on the interaction behaviour of the medium a suitable posi-
tion for the particle-volume interaction is computed along the path of the
particle. If the chosen position lies before the nearest surface along the
particle path then the particle does not reach the surface. Instead it is
either absorbed or scattered in the volume at the computed position with
a probability determined by the absorption/scattering albedo. A scattered

particle is assigned a direction for continuing its flight.

But for this step the simulation progresses in the same way as discussed earlier in
Chapter 4. Global illumination is then computed as the scattered particle flux in the

volume elements and the reflected and transmitted particle flux at the surface elements.

5.1 Interaction in Absorbing and Scattering Medium

In the additional step discussed above a primary requirement is the following:
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“for every particle moving through a participating volume determine the

point of interaction, if any, in the volume.”

For this we first set up a pdf that models the interaction of light with volume as a
function of distance travelled and then sample this pdf. From Bouguer’s law (Eq.
2.10) the radiance of light on traveling a pathlength S inside a participating medium
with extinction coefficient K(u) reduces by the factor e” Jy K@du | Thig factor may
be interpreted as the probability of any particle traveling a path length S before it
interacts with the volume. Thus the probability of a particle interacting before traveling
a pathlength S, is1 — e~ Iy K@du Gince this probability is the cumulative probability
of the particle interaction at every point along the path from 0 to S we get the following
expression for the cumulative distribution function, cdf.
s

Cdf -1 eifo K(u)du

By the principles of Random Variable Transformation,
6 =1 — e_fos K (w)du or 1 _6 = e_fosK(u)dU

where ¢ is the uniform random number. For £ uniformly distributed over the range
0 to 1, (1 — &)=¢ is also uniformly distributed over the same range 0 to 1. So the

sampling equation is
SK d S
& = e Jo Kwdu log, = —/ K(u)du = —Opacity
0

For a homogeneous medium the Opacity is K.S and hence path length sampling can

be carried out conveniently by drawing a uniform random number (£;) and computing

the path length, S, from the equation S = —loffl. However, for a medium which is
not homogeneous in its participating properties, the sampling of path length requires
us to evaluate the integral. This is difficult. Howell[64] has proposed a solution to
a similar problem by making the simplifying assumption that the interacting volume

may be divided into plane increments of AS inside which the interaction properties are

fairly homogeneous. Under this assumption the integration reduces to a summation as
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follows:

p p
logfl = —ZK]'AS]' or lOg§1 + ZK]AS] =0

j=1 j=1
where K; and AS; are respectively the extinction coefficient and the pathlength in
the j_th incremental volume. Now to find the path length, one has to incrementally
trace the plane increments and check for the satisfaction of the inequality log&; +
E?:l K;AS; > 0. The first incremental slab p for which the inequality is satisfied
contains the sampled point of interaction. The exact point of interaction or the path
length §'is given by

p—1 p—1

S = Z AS; — (Z K;AS; + log&) /K,

j=1 j=1
Though the method as stated above is not directly suitable for sampling in a complex
3D environment, a slight variation of this method makes it ideal for use. In this varia-
tion it may be assumed that the volume bounding the environment can be uniformly
partitioned into small vozels inside each of which the medium is fairly homogeneous. A
particle traveling through the volume can be traced through a list of vozels very simply
by using the 3D-DDA algorithm and the above equations can be solved to determine

the point of interaction. The pseudo code for this method is given below:

cumulative_pathlength=0
pathlength_measure = log,
for each voxel along the particle path do

if (pathlength_measure+K yopet ASyozer > 0)

interaction will take place in this voxel.
S = cumulative_pathlength — pathlength-measure/K yozel
Stop.

else

pathlength_measure = pathlength_measure+K ,ope1 A Syosel

cumulative_pathlength = cumulative_pathlength+ASyozel
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If control reaches here it means that the particle did not interact in the

intervening volume.

For tracing the voxels traversed by a particle along its path the 3D-DDA algorithm is

used.

5.2 The Simulation Algorithm

The extended Monte Carlo simulation algorithm for dealing with participating medium
is given below:

For each particle repeat steps (1) to (6) below:

1. Choose a wavelength for the particle by sampling the cumulative emission spec-
trum.
In the presence of multiple light sources choose the emitter from which the par-
ticle will originate by sampling the emitter strength distribution at the chosen
wavelength.
Choose the position on the emitter at which the particle originates by position

sampling the emitter surface geometry or the emitter volume.
2. Update the outgoing particle flux at the emitter.

3. Choose the direction in which the particle is emitted by sampling the directional

emission distribution function.
4. Repeat steps (a) to (¢) below until the particle is absorbed.
(a) Find the nearest surface along the particle path, and find its pathlength i.e.

surface_interaction_pathlength.

(b) Find the volume_interaction_pathlength by using the computational method

discussed at the end of the previous section.

(c) If volume_interaction_pathlength < surface_interaction_pathlength

then /* Particle interacts with the volume.*/
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Sample the scattering/absorption albedo distribution to decide on
the type of interaction.

If the interaction type is scattering then
i. Update the outgoing flux of the volume.

ii. Assign scatter direction by sampling the directional scattering

distribution function or phase function.
else /* Particle interacts with the surface.*/

Sample the reflection/absorption albedo distribution to decide on
the type of interaction.

If the interaction type is reflection then
i. Update the outgoing particle flux on the reflecting surface.

ii. Assign reflection direction by sampling the surface bidirectional

reflection distribution function.

Fig.5.1 shows the test environment of Fig.4.5 in Chapter 4 filled with non-absorbing,
isotropically scattering gray medium with a scattering coefficient of 0.1. For this 10
million particles were traced (It may be recalled that 1 million particles were used for
non-participating medium). The volume embedding the whole environment was broken
into a total of 15625 small volume elements. The total time for simulation was 27:24hrs

on a DRS 6000 workstation.

5.3 Implementation Strategy

To implement the above algorithm it is necessary to choose an appropriate computa-
tional strategy and a good data structure. The main issues which need consideration

are:

Sampling Methods: The algorithm includes a number of steps dealing with the
sampling of the source for position and direction of the emitted particle, sampling

for type of interaction with volume or surface, and sampling of direction of the re-
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Figure 5.1: A complex 3D scene engulfed in smoke.
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flected /scattered particle path. Computational methods for many of these sampling

steps have been discussed in detail in Chapter 4.

Pathlength Computation: In a participating medium, in addition to finding the
surface interaction point with the nearest surface along the particle propagation di-
rection, it is also necessary to find the point of interaction inside the volume. The
algorithm for computing the volume interaction pathlength has already been sketched
in Section 5.1. The volume structure assumed is very similar to the one used in a ray
tracing acceleration method for computing ray-surface interaction, namely the Spatial
Enumeration technique[26]. Since finding the nearest surface along a particle path is
done by performing ray-surface intersections, the same data-structure may be adopted.
However, the requirement that the volume interaction properties within a vozel must be
uniform would most often imply a fine subdivision of the environment. If such fineness
is used, both for acceleration of ray-surface intersection computations and computation
of volume interaction pathlength, then it will result in heavy memory overheads. If we
consider the fact that in most of the environments the participating volume may be
highly localised, for example: fire and smoke in a corner of a room, then fine subdivision
of the entire environment is not necessary. A two-level volume subdivision technique
has been adopted. They are: a coarse subdivision into cells for acceleration of the
ray-surface intersection and a further subdivision of cells into vozxels. A preprocessor
does the following:

(i) associates with each cell a list of surfaces and a list of participating volume elements
whose bounding extents intersect the cell, and

(ii) subdivides those cells with a nonempty list of volume elements, into vozels. Each
vozel is assigned just enough memory to capture the particle events during the simu-
lation.

At the time of particle tracing both the surface interaction pathlength and volume in-
teraction pathlength are computed simultaneously which as the reader will notice is a
slight variation in the algorithm just described. The exact computation steps are given

below:
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1. cumulative_pathlength=0; pathlength_measure = logé;

2. Carry out a 3D-DDA on the cell structure and get the cell list ordered along the

particle path.
3. For each cell do steps (a) to (c) below.

(a) Compute the list of intersecting surfaces and find the the nearest point of

surface intersection within the cell if any.

(b) If the cell has a nonempty volume element list then carry out 3D-DDA on
the fine vozel structure within the cell up to the farthest end of the cell along
the particle path or up to the nearest surface intersection point whichever

is nearer and generate the vozel list ordered along the particle path.
(c) for each wvozel in the list do the following
e if (pathlength-measure+Kyopet ASyozer > 0)
then /* volume interaction point reached.*/

volume_interaction_pathlength =

cumulative_pathlength — pathlength_measure/ K yoper
else

pathlength_measure = pathlength_measure+K,oze1 A Syozel
cumulative_pathlength = cumulative_pathlength+AS,ozel

e If ecither the nearest surface of intersection is found or the volume inter-

action point is reached then goto step (4).
4. Sample interaction distribution function to decide on the interaction event.

5.3.1 3D-DDA

We have used the incremental 3D-DDA algorithm for determining the voxel list both
for particle tracing and for rendering discussed later in Section 5.5. This algorithm is

described in detail below(Fig.5.2):
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/ stepX

Figure 5.2: 3D-DDA geometry.

Let ray_entry be the entry point of the packet in the Box.

Let tmin be the entry distance and tmax be the exit distance

of the packet starting from the packet origin.

Let x_subdivision,y_subdivision,z_subdivision be the volume
subdivisions in X, Y and Z directions respectively.

Let x2vozel(), y2voxel() and z2vozel() be the functions

which return the voxel index along X, Y and Z direction respectively.
Let tMax X, tMaxY and tMaxZ be the distances along the ray to reach
the nearest voxel from the start point along X, Y and Z

directions respectively.

Let tDeltaX, tDeltaY , tDeltaZ be the distances that need be traveled
to cross one voxel along X, Y and Z directions respectively.

Let stepX, stepY and stepZ be the increments required

to reach the corresponding next voxel.

xr = x2voxel(ray_entry.x);
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if (x == x_subdivision) decrement(x);

if (ray_direction.x < 0.){

tMaz X = tmin+(voxel2z(x)—ray_entry.x)/ray-direction.z;
tDeltaX = voxel_size.x/(—ray_direction.x);

stepX = —1;

}

else if (ray_direction.x > 0.){

tMaxX = tmin+(vozrel2z(x+1)—ray_entry.x)/ray_direction.z;
tDeltaX = x/ray-direction.x;
stepX = 1;

else{

tMaxX = HUGE;
tDeltaX = 0.;

}

Similarly compute :

tMaxY ,tDeltaY ,stepY forY direction tMaxZ tDeltaZ ,stepZ

for Z direction
while(1){

/* Invariant :

tMax X, tMaxY, tMaxZ represent the distance
to the nearest voxel from the current voxel.
The minimum of the three would give the first

voxel pierced by the ray.
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*/
add_to_voxel list(< z,y, z >)
/*

Choose smallest of tMax X, tMaxY, tMaxZ. In-
crement the index along that axis and update
the tMax by the corresponding tDelta. If by
the process the ray is completely outside the
volume then all the voxels have been traversed
and the process is stopped.

*/
if (tMazX <tMazY) and (tMaxX < tMazxZ)) {

r+ = stepX;

if (tmax < tMazX) break;

tMax X+ = tDeltaX;

telse if (tMaxZ < tMazY') {
2+ = stepZ;
if (tmax < tMaxZ) break;
tMaxZ+ = tDeltaZ;

} else {
y+ = stepY’;
if (tmax < tMazY') break;
tMazxY + = tDeltaY;

5.4 Modelling Participating Volumes

As can be seen in the simulation algorithm discussed in the previous section the par-

ticipating volume model must be such that for each volume element we are able to do
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the following:

e Cell-Volume Classification : Determine the list of volume elements interfering

with each cell of the environment.

e Point-Volume Classification : Given any point in the environment determine

whether the point is inside/outside the volume element.

e Extinction Coefficient Computation : Given any point inside a volume the ex-

tinction coefficient must be known or must be easily computed.

e Volume Sampling : Given an emitting volume choose sample points within the

volume in accordance with the emission strength distribution.

Volume modelling is currently a very active area of research and any of the volume
modelling techniques described could be used provided the model data enables us
to efficiently carry out the computations listed above. For the express purpose of
testing out the above algorithm the following volume modelling primitives have been

incorporated in this implementation.

All Pervading Volume: This models a homogeneous absorbing/scattering medium
occupying the whole environment of interest. All the solid objects bounded by their
surfaces are placed within this medium. This volume interferes with every cell and
every point of interest in the environment lies within this volume and has the same

extinction coefficient.

Volumes bounded by Quadric Surfaces: These model a homogeneous medium
enclosed within quadric surfaces. Fach volume is specified by its canonical quadric
form and a 3D transformation. To classify a point with respect to the volume we
first apply the inverse of the transformation associated with the volume and then
substitute the coordinates of the point in the implicit algebraic form of the associated
canonical quadric equation. Interference with cells is also similarly determined and is

quite straight forward. Extension to a non-homogeneous medium is also possible if the
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extinction coefficient is given as a function of the geometric parameters defining the

quadric, for example, centre and radius for a sphere.

Data Set: This models a unit cubical volume in a discretised form. The optical
properties within the volume are defined by a 3D array (m x n x p) with each element
of the array holding the value of extinction coefficient, scattering albedo, and emission
strength if the object is an emitter. Each array element represents a homogeneous
medium enclosed within a rectangular box whose dimensions are (% % 1—1)) The cubical
volume is suitably scaled to the desired size and then is positioned in the environment by
applying the appropriate transformations. Classification of a point is carried out once
again by applying the inverse transformation and then checking whether the point lies
inside the unit cubical extent. Bounds of the object are found by transforming its unit
cubical extent. The data set may have been created from physically based simulation
results or experimental results or from actual measurements. For an emitting dataset
the particle position can be sampled, first by discrete sampling the emitter strength
distribution among the dataset elements, and then for the exact position by carrying
out uniform random sampling in the rectangular extent of the element.

These volume modelling primitives have been used in order to create the following

test environments:

1. The room of Chapter 4 depicted in Fig.4.5 filled with all pervading volume
(Fig.5.1).

2. The leaves of the tree modelled with 161 small spherical volumes (Fig.5.3).

3. A flame or a gaseous emitting volume modelled using a dataset (Fig.5.4).

5.5 Rendering

There are two important points that must be noted while rendering a scene which

includes participating volumes:
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Figure 5.3: A tree modelled with participating volumes.
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Figure 5.4: An emitting volume.
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e Radiance along the view direction is based on the combined contributions of the
particles coming out both from the surface as a result of reflection and from the

volume as a result of scattering and/or emission.

e Light radiance passing through a participating volume is attenuated and the
expression for the radiance reaching the view point due to the radiance emitted
from a distance S away from the view point is given by Bouguer’s Equation

(Eq.2.10) stated earlier in Section 2.6.1.

From the above the radiance reaching the eyepoint can be written as follows:
L =1, + L

In this equation L,, the cumulative attenuated volume contribution, is the radiance

due to each voxel along the path and is given by
Sfar S
Lv = / dL'uolumeei fo Foudu
0

where Sy, is the distance along the ray from the eyepoint to the nearest surface or up
to the farthest bound of the scene, whichever is shortest.
L, the attenuated surface contribution, is the radiance due to the nearest surface along

the view direction and is given by

S
[ [ — [Pfar KoqdS
s nearest_surfacee 0

In the absence of any surface along the view direction Lycqrest_sur face 15 set to zero. If
we make a further assumption that the volume emits uniformly in all the directions!

then the radiance coming out of the differential volume as given in [64] is:

dEvolume

dLvo ume — 7.
l ArdA,

where d A, is the projected differential volume along the direction of interest. Each vozel

has been assumed to have uniform interaction property (and hence constant K,gze)

! As the illumination from the nonemitting volume is only due to the scattering of light inside the
volume this assumption amounts to saying that the volumes are isotropic scatterers.
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Figure 5.5: Differential volumes within a voxel.

and the simulation results have been captured over the whole vozel. So if E,,e is the
outgoing light energy from the vozel then the energy coming out from the unit volume

inside the vozel is Lrezel where V. is the vozel volume. For any cubical differential

Viowzel

volume inside the vozel of side dS with its two faces normal to the view direction (see

Fig.5.5) the expression for dLoume can now be written in terms of dS as

Evoxe 1 Evo:z:e
dLvolume - l dSS = l

= dsS
Vtuomel 47Td52 47r‘/;10xel

Substituting the value of dL,yume in the equation for L, we get

Star s E
Ly = [l rum Sl _gg
0 477—‘/;}01'6!

Coupled with the assumption that the extinction coefficient is constant within a vozxel

we get

N .
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Si—1 E; Si K [P d
e fo T Kydu T / e fsi—l udS
4rVi Jsiy

e~ fos Kudug g

&
I
g

i

I
™=

1

~.
Il

N ) —K;AS;
_ S e T B L e

WK

N i1 . _ —K;AS;
— Z 6_ Zj:l KjASj El 1 €

=1 47‘—‘/; KZ

where N is the number of vozels along the view direction up to Sy, S; is the distance

from the view point to the farthest point of the i_th vozxel along the view direction with
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So equal to 0, and AS; is the distance traversed along the view direction inside the i_th
vozel with ASy equal to 0.

Similarly we can simplify the light contribution from the nearest surface to get

N
—_ YW K.AS.
Ls - Lnearest_surfacee El:l e

The algorithm for rendering can now be described as follows:
for each pixel do steps 1 to 6 given below:

1. sumopacityy = 0; Radiancey, = 0

2. Define a ray from the eye point through the centre of the pixel.
3. Find the nearest surface along the ray and get ineqarest_sur face-

4. Get the list of vozxels along the ray using 3D-DDA algorithm.
5. While vozel list not empty do steps (a) to (d) given below:

a) get the next vozel.

(
(b) opacityy = K xASyozel

Eyozel,x 1—e~0Pacityy e—sumopacityA
AT Vyozel Ky

)
)
(¢) Radiance, = Radiancey +
(d) sumopacity, = sumopacity, + opacity,

6. Radiance/\ = Radiance}\ + inearest_surfaceeisumOpaCZtyA

5.6 Efficiency Improvement

In the simulation strategy discussed so far, each sample particle carries a quantum
amount of light energy, and contributes an integral multiple (zero or more) of this
energy to the brightness of all the elements of the environment. In fact to most of
the elements a sample particle contributes zero and to a few it contributes a nonzero
multiple of its energy. The methods discussed below try to increase the number of
nonzero contributions made by the sample particle to the elements of the environment
by allowing a fractional contribution of its energy towards their brightness. In these

methods the sample particle is no longer assumed to carry a quantum of energy. Rather
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a sample particle is assumed simply to be a particle carrying a large multiple of energy

quanta at a particular wavelength.

5.6.1 Forced Interaction

The interaction of the light inside a participating medium is governed by Bouguer’s
equation(Eq.2.10). This equation gives the factor by which the radiance changes after
traveling a distance S inside a participating volume. In Section 5.1 we used Bouguer’s
equation to derive the pdf of volume interaction pathlength and sampled that pdf to
determine whether the sample particle interacts inside the volume element it is passing
through. This sampling assures that for a large number of particles entering a volume,
the fraction of particles exiting the volume without interacting is equal to the above
mentioned factor. The actual number of particles is highly dependent on the extinction
coefficient of the interacting volume and on the maximum distance the particle can
travel inside the volume. If the number of particles entering the volume are not large
enough then there can be very wide deviation from the expected number of particles
interacting inside that particular volume. Since a part of these interacting particles
contribute towards the brightness of the volume elements, this sampling procedure is
likely to introduce errors in the final illumination computation.

The method of Forced Interaction][43] avoids this sampling problem by forcing the
sample particle to interact with each of the volume elements it is passing through, in the
process loosing a part of its energy to the volume and exiting the volume with its energy
reduced exactly by the amount lost inside the volume. To satisfy Bouguer’s equation
if W is the energy associated with the particle entering the volume then the energy of
the particle leaving the volume must be We=P% and the energy lost in the volume
is W (1 — e~°Pec®) . This energy loss is either due to absorption or scattering. Because
there is a further decision of absorption or scattering of this energy and if it scatters
then that of the direction, we shall pretend as if another particle, carrying energy
W (1 — e~y is generated inside the volume and subjected to further sampling.

The position where this new particle is generated is derived as follows:
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We know that this particle must interact inside the volume, that the in-
teraction function in a participating medium is exponential in nature, and
that the extinction coefficient, K, is constant inside the volume. If S'is the
length of the particle trace inside the volume then we have the following
conditions.

pdf = Ce K¢

where C'is some constant, and

S
/ pdf du = 1
0

Solving for C' from the above two equations we get C' = HL_KS and hence

KefKu

pif = T x5

Thus
z K —Ku
Cdf :/ 76 du = 6
0

1 — e KS

Solving for z, the distance of interaction inside the volume element, we get
_ 1 ~KS
r = —Eln(l—g(l—e ))

The introduction of this modification causes the following overheads:

a) The number of particles is increased, as for every particle entering the volume two
particles result, one exiting the volume and the other interacting with the volume. This
increase if unconstrained may result in very rapid particle growth.

b) For every particle entering a volume element additional computation is used for
random number generation, and evaluation of a logarithmic function and an exponential
function.

Thus this method must ideally be used selectively for those volume elements where the
number of particles entering the volume is known to be small. Fig.5.6 shows the visual
improvement of the simulation result obtained by using the forced collision method
Fig.5.6(a) over the result obtained without forced collision Fig.5.6(b). In both the
illustrations, the number of primary particles chosen in forced collision method has

been such that the total simulation time using either of the methods remains the same.
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Figure 5.6: Results from forced collision and normal simulation.

5.6.2 Absorption Suppression

Light interacting with an element of the environment gets absorbed or reflected from
an opaque surface element or scattered from a volume element. The fraction of the
light that is not absorbed is determined by the reflection coefficient in the case of
interaction with the surface and by the scattering albedo in the case of interaction
with the volume. These properties have been used to define a discrete pdf of two events
which is sampled to decide on the type of interaction for each interacting particle.
Again like any other sampling process if the number of particles interacting with the
surface or volume element is not large enough then the distribution of the absorbed
particles and of the surviving particles will not match the sampled discrete pdf. Thus
this process can introduce errors into the illumination results of an individual surface
or volume element.

The Absorption Suppression[43] method, avoids this error by assuming that unless
the reflection coefficient (or the scattering albedo) is zero, a particle interacting with
the surface (or volume) is always reflected (or scattered) with its energy content re-

duced to a value equal to the original energy content times the reflection coefficient (or
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scattering albedo). But by its very definition, in this method, particle tracing will never
terminate even for a single particle unless there are completely absorbing elements in
the environment or unless the particle is allowed to escape at the system boundaries.
However, as before, one can use unbiased terminating techniques like Russian Roulette
to remove a particle whose weight falls below a certain threshold. The usefulness of
this method in improving the simulation in a nonparticipating environment has already
been demonstrated. Similar improvement has also been noticed for the participating

medium.

5.6.3 Particle Divergence Method

There is another sampling step in our simulation which may introduce errors into
the simulation results because of the problem of insufficient sampling. This step is
the sampling for the outgoing direction for the reflected or scattered particles. In
the absence of enough outgoing particles from the surface or volume, the choice of a
single direction for each reflected or scattered sample particle may result in a very poor
representation of all the directions seen by the surface or volume. One possible solution
to this problem is what we shall term as the Particle Divergence Method in which we
sample a number of directions for every single outgoing particle.

In the particle divergence method, an outgoing particle is split into many sub-
particles. For each such sub-particle a direction is chosen by sampling the directional
distribution of the reflection (or scattering) and the sub-particle is assigned a fractional
amount of energy of the original outgoing particle such that the total energy content
of the sub-particles is equal to that of the parent particle. This means, if a particle
with energy W is split into n sub-particles then each sub-particle is assigned energy %
Each of the sub-particles is then independently traced to follow its history.

However, this method causes severe particle multiplication effect, and unless used
judiciously will be excessively time consuming. The techniques to reduce this parti-
cle population are to use Russian Roulette to selectively terminate the particles with
smaller energy content and to make the number of sub-particles generated as being

proportional to the energy of the parent particle.
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5.7 Remarks

We have shown how the particle tracing method for physically simulating the prop-
agation of light is easily extended to deal with complex environments including par-
ticipating volumes. However, it is not without its disadvantages. In spite of the effi-
ciency improvement techniques discussed above the number of particles that need to
be traced for computing the illumination accurately in a complex environment can be
prohibitively large. This is particularly true when the environment includes partici-
pating volumes of high opacity. A primary reason for this is that many particle traces
are not necessarily effective when it comes to computing illumination with reasonable
accuracy and could actually be wasteful tracing of the particles. A naive simulation of
the physical model of light using light particles results in particle paths which are solely
determined by the probability distribution functions that are used in various sampling
steps of the simulation process. Many of these particle emissions and the paths traced
may not in any way make a significant difference to illumination computations. For
example during the course of simulation many particles may interact with an object
even after the object’s illumination has reasonably stabilised. Similarly many particles
may be interacting with objects which are not very relevant to the illumination com-
putation. For example surfaces which are never visible and/or do not illuminate other
visible surfaces in any significant manner.

It is clear that if we have to reduce wasted particle emissions and wasteful particle
tracings then we have to change the pdf's that we use in the simulation so that all
particles originate and get distributed in the most useful manner. However, we have to
tread this with some care. So far the pdf's that we have used in the simulation have been
directly derived from the physical models that accurately reflect the optical behaviour
of objects in the environment. And as such the illumination that we compute from the
simulations conform to the actual physical behaviour of light in that environment. Any
change in these pdf's would imply that they no longer conform to the physical behaviour
of objects. These changes are a must if we have to increase the efficiency of particle

tracing. What we therefore really need is a sound mathematical basis which provides
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for the use of modified pdf's in the simulation, enables the computation of illumination
from the simulation results and yet does not deviate from the physical model of light.
In the next chapter we introduce and derive the potential equation which forms the

mathematical basis for all illumination methods based on the shooting strategy.
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Chapter 6

Potential Equation : The
Mathematical Basis for Particle
Tracing

In Chapter 3 we discussed in detail how various illumination computation methods
based on the gathering strategy can be viewed as techniques for obtaining solutions to
the radiance equation. We also described progressive radiosity as a deterministic ana-
lytic technique based on the shooting strategy. Clearly our particle tracing, described
in the previous two chapters, is a non-deterministic technique (a random walk process)
also based on the shooting strategy. While the two shooting strategy methods cannot
be directly viewed as providing solutions to the radiance equation, it must be recog-
nised that there must exist a similar underlying equation providing the mathematical
basis for these methods. Since the prime purpose is the same, i.e., illumination com-
putation, it too must be an integral equation whose solution is required for obtaining
flux. Having implemented the particle tracing simulation algorithm and obtained very
encouraging results for global illumination computation in complex environments, the
mathematical basis for the method was investigated in depth. And the potential equa-
tion has been formulated. The potential equation and the radiance equation together
form an adjoint system of equations and provide the mathematical framework for all
known approaches to illumination computation. Using the mathematical handles pro-
vided by the adjoint system of equations and the random walk model, a number of

biasing schemes have been explored for improving the computation of flux estimation.
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Of particular significance is the scheme to use an approximate potential value as the
biasing function for directing a majority of the random walks through regions of im-
portance in the environment thus reducing the variance in the estimates of flux in
these regions. A simple implementation of this scheme has also been carried out. This

chapter describes the results of the above investigations in detail.

6.1 The Adjoint System of Illumination Equations

We know that the illumination of any point of a surface in a complex 3D environment
is due to the emission of light from that point (if any) and/or due to the reflection
from that point of the light received through all the incoming hemispherical directions
around that point. This fundamental concept forms the basis for the derivation of
the adjoint system of illumination equations. To simplify our discussion, we have re-
stricted our attention to environments containing only opaque solid objects. However,
in no way should this assumption be considered as a limitation of the discussed frame-
work. Illumination of environments containing transmitting objects can also be easily

explained within the given framework.

6.1.1 Radiance Equation

The general expression for the outgoing radiance is given by Eq.2.8. For conciseness
we will drop the parameter A and implicitly assume dependence on A. Further we will
also drop the subscript o from the radiance as we shall be referring only to outgoing

illumination. With this the radiance equation takes the following form:
L(#,02) = Le(5,0,) + [ f;(w,04,0,)L(y, 0,) cos by, (6.1)
Qz

where L(z,©,) is the outgoing radiance at point x,

L(y,©,) is the outgoing radiance at point y visible to x along the direction O,,
Le¢(x,©,) is the radiance due to the emission at point x,

6, is the cone angle of the incoming direction,

dw, is the differential solid angle around the incoming direction.
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6.1.2 Potential Equation

Because of the optical properties of surfaces, which for the present discussion is pri-
marily reflection, the light emitted from any surface in any direction can illuminate
many other surfaces of an environment. Alternatively we can say that a surface can
be illuminated by lights placed anywhere in the environment. The placement of the
lights will of course determine how brightly or how dimly lit that surface is. This
phenomenon can be elegantly captured by the notion of a potential associated with
every point and direction in the environment. We shall describe a simple experiment
to make the concept of potential easier to understand.

For the purpose of illumination computation an environment is generally described
in terms of the geometry of its surfaces and their optical properties such as reflection,
transmission and emission. To start with, consider an environment completely specified
except that its emission characteristics are omitted. Position some hypothetical light
detectors in this environment such that the outgoing illumination from any surface
point and direction gets registered in one and only one detector. In other words each
detector exclusively sees some directional emission of some region of a surface (Fig.6.1).
The detectors are hypothetical and in no way affect the flow of light. Next take a
hypothetical point source with highly directional emission, emitting a unit amount of
luminous flux in any particular direction. If we position this light source at a surface
point in some orientation, it is clear that some or all of the hypothetical detectors
will register some amount of luminous flux passing through them. Let us concentrate
only on one of these, say the k-th detector and note the flux received by that detector
because of the placement of the hypothetical emitter. Carry out this exercise for all
possible orientations of the hypothetical emitter at that point and at all other surface
points of the environments. In the process we would have collected flux values for the
k-th detector as a function of all the points and directions of the environment. We will
call this as the illumination potential function as this function captures the potential
capability of every point and every direction around that point, in illuminating the

region on which the k-th detector is focused. Let us denote this function as Wj. Other
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Hypothetical Detector

Figure 6.1: A hypothetical detector.

detectors would similarly define potential functions, say W;.

Next we shall derive an expression for such a function. Let Hj denote the set of all
points z over which the k-th detector is focused. Similarly let Dy denote the set of all
directions made by these points with the aperture of the k-th detector. Then we define

a function g, as follows:

1 iff (ZUEHk and @m EDk)

gk (1‘7 @x) =
0 otherwise.

Recall that the potential function Wy, is the value of light detected by placing hypotheti-
cal unit light sources at every surface point in every direction in the environment. Then
the immediate contribution of the unit light source placed at (x, ©,) in the environment
is captured by the function gx(z, ©,). This is so because the detector would register an
immediate unit amount of emission flux only from those emitter positions and orien-
tations, (x,©,), such that = € Hy, and ©, € Dy and would register an immediate zero

emission flux from all other emitter positions and orientations. We also have to account
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Figure 6.2: Hemispherical directions for outgoing illumination.

for an indirect contribution which is the flux received by the detector due to any num-
ber of reflections of the light emitted from this unit light source. For this component
we will provide a recursive expression. The emission from the hypothetical emitter at x
along direction ©, will reach the nearest surface point y and then possibly get reflected.
If we take the probability of the whole amount of flux getting reflected in any one of the
hemispherical directions ©, around y as f,(y, ©,, ©,) cos 8,dw,,, where the symbols used
are as in Fig.6.2, then its contribution to the indirect component will be this probability
times the potential of the point y along ©,, i.e. f.(y,9,,O,) cosd,dw, W (y, ©,). The
indirect component is then the cumulative result of this expression obtained over the
outgoing hemisphere around y, i.e. [q fr(y, 0y, 0,)Wi(y, ©,) cos 8,dw,. The complete

expression for the potential function is therefore given by:

Wi, (xa 651:) = gk(xa @x) + /Q fr (ya @ya @x)Wk (y, @y) Cos gydwy (62)

We may derive this same equation from a different point of view. If we assume the k-
th hypothetical detector to be an emitter of a hypothetical substance called importance
and assume that the importance is transported in the environment exactly as light,
then due to this emission there will be incidences of importance at various points of
the environment. The importance incident at any surface point of the environment can
be attributed to the incidences from the detector and from the surrounding points of
the environment.

Let us define potential, W (z,©,), to be the importance per unit projected area
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per unit solid angle incident at the surface point, x, along the incoming direction, ©,.
This potential can be expressed as the sum of the potential coming along ©, from the
detector, and from a point, y, of the environment which is visible to x along ©,. The
component directly coming from the k-th detector may be expressed by a visibility
function, g(z,©,), which evaluates to 1 if the detector sees the point x along ©, and
0 otherwise. The quantity coming from y will be due to the reflection of the potential

incident on it from the incoming hemispherical directions, i.e.

/Q fr (y7 G:v; @y)W(y, @y)cosﬁydwy

Thus the full expression for the potential is
W(z,0,) =g(x,0,) —i—/ﬂ fr(y,©4,0,)W(y, ©,)cosb,dw,
Yy

If we now view the outflow of importance from the detector as the inflow of light
into the detector then also the same equation for potential will remain valid. Only the
incoming directions, O’s, will now have to be interpreted as outgoing directions and
vice versa. Seen from this point of view the potential, W (x, ©,), can be given a physical
interpretation of being the potential capability that (z,©,) has towards illuminating
the detector.

If we look back at the Eq.6.1 for the radiance equation, we find a striking similarity
in the forms of these equations. However it must be noted that in Eq.6.1 the integration
is over the incoming hemisphere around = whereas in Eq.6.2 the integration is over the

outgoing hemisphere around y, where y is the surface point visible to x in the direction

O,.

6.1.3 General Potential Equation

Like the general radiance equation (Eq.2.11), the potential equation can be generalised
for environments with participating volumes. From the definition of potential, Eq.6.2,
the potential of (z,0,) towards the k-th detector is a sum of a direct component,
g(x,0,) and an indirect component. This indirect component accounts for all the

scattering and reflection events of the light along the direction O, starting from =x.
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To account for the interaction along the direction ©, it is necessary to determine the
probability of interaction. From Bouguer’s law the probability of the light interacting
before traveling a pathlength S is 1 — e~ I K(wdu  Gince this is the cumulative
probability of the light interacting at every point along the path from 0 to S we get

the following expression for the cumulative distribution function.
S s
/ plu)du= 1 — e~ Jo Kwdu
0

where p(u) is the probability of interaction at distance u. By differentiating the integral

equation we arrive at the the expression for p(u) as:
plu) = K(w)e Jo KO
The general potential equation takes the form:

Wi(z,0,) = gi(z,0,) + /OS K(s)e™ Jo K()de [/ T(y,0,, Qi) Wiy, @o)cosﬁydwy] ds
- (6.3)
where K (s)e™ Jo K@iz g the probability of light interacting at the distance s from the
point x along the directions ©,, T'(y, . . .) is the transition probability and &, represents
all possible transition directions at the point y.
We now proceed to find the relationship between the radiance and the potential

equation.

6.1.4 Duality

Here we show that Eq.6.1 and Eq.6.2 are duals of each other for the purpose of com-
putation of flux. Duality means that either equation may be used.

Most often in illumination computation one is interested in computing flux from a
small region in a small spread of directions. For example: in image rendering the colour
of a pixel is assigned by computing the radiance from all the surface points visible to
the eye through that pixel and in a spread of directions made by each such point
with the aperture of the eye. Similarly in the computation of view independent global
illumination of a diffuse environment by radiosity based methods one is computing flux

from a small surface patch in the hemispherical direction.
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Expression of this flux using the Radiance equation will therefore be an integral of

the form:

b = / / L(z,0,) cos O, dw,dx
position spread Jdirection Spread

If we assume that this flux represents the flux received by the k-th hypothetical detector
then we can use the earlier defined function gy (z, ©,) which evaluates to 1 in the limits

of the integration and 0 everywhere else, and rewrite the above equation as follows:
b = / / (x,0,)g9k(z, O,) cos O, dw,dx (6.4)

To get an expression for the above discussed flux using the potential function we will
remove the hypothetical source and complete the environment description by adding
the actual emissive characteristics to some of the surface points thus defining a function
L. which is zero everywhere except at the positions belonging to emissive surfaces. By
introducing L, we get the emission radiance at (z,0,) to be L.(z,0,) and hence the
emission flux leaving (z,0,) is L.(x, ©,) cos 0,dw,dx. The potential of (z, ©,) towards
the k-th detector is Wy(z,©,). Then the flux received by the k-th detector due to
the actual emission at (z,0,) will be Wi(z,0,) X L.(z,0,) cos ,dw,dz. Thus the
expression for the total flux received by the k-th detector will be

o), = /A / Wi(, O) Le (2, ©y) cos Bydw,da (6.5)
To sum up

e We have given two different equations, Eq.6.4 and Eq.6.5, to express the same
quantity ®; using two different functions L and Wj.

e Eq.6.4 and Eq.6.5 are similar in form and so also are the Eq.6.1 and Eq.6.2 for
L and Wk

e Eq.6.1, Eq.6.2, Eq.6.4 and Eq.6.5 together form a closed system.

We will write again all these four equations together to highlight the above mentioned

points.

/A/z L(z,0.)gk(x,©,) cos Opdw,dx = O = /A/z We(z,0.)Le(z,0,) cos O, dw,dz
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L(2,0;) = L¢(z,0,) —i—/Q fr(x,0,,0,)L(y, ©,) cos §,dw,

Wile,0,) = 9u(@. ) + [ (4,0, 0,)Wi(y, ©,) cos 0,du,

The equations satisfying above mentioned properties are said to form an adjoint system.
One may wish to solve Eq.6.4 or Eq.6.5 to compute ®,. In the subsequent sections

we will discuss solution methods for computing this flux using either of the equations.

6.2 Analytical Solution for a Diffuse Environment

Because of their inherently complex nature it is not possible to analytically solve Eq.6.4
or Eq.6.5. However, simplified forms of these may be amenable to analytical solutions®.
We shall derive a simplified version of Eq.6.5 by making the same assumptions as used

in radiosity:

1. The environment is a collection of a finite number, say N, of small uniformly

diffuse patches.

2. As the radiance from any point of any such uniformly diffuse patch is 1/7 times
the flux per unit area we shall compute this total flux leaving that patch in all

the hemispherical directions.

3. The solution is carried out in an enclosure, i.e. the hemispherical direction around
any point in the environment is assumed to be covered by one or more of the
patches of that environment and every patch, j, may be assumed to occupy a

solid angle, w; (which may be zero) in the hemisphere over any surface point.

To derive the analytical approximation of @, using the potential function we introduce
the notion of a hemispherical potential of patch i and denote it by Wy ;. W ; is obtained
as the average potential of the points of the patch in any hemispherical direction. If
the patches are sufficiently small this hemispherical potential may be assumed to be

independent of the position on each patch. The expression for this hemispherical

!The simplified version of Eq.6.4 is already in use in the full matrix radiosity method.
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potential is derived below:

1
Wi = — Wi (x;, Oy,) cos O, dw,,

T Jo.,
1

T JQe,;

1
s /fle [gk’ + ﬂ—f (j)Wk,_]] COS Uy, AWy,

1
= —gk,i/ o8 0, dw,, +/ [r ()W ; cos 0y, dw,,
s Q. Q.

N
= gk,i+2fr(j)/ Wi €08 0, dw,,

j 1 wij
= gkz—i-Zfr Wk]/ 08 0, dw,,
= gkz"‘Zfr Wlm ij
= gkri‘Zfr Fi; [gk3+2fr Wi Fi
N
= gkz"‘Zfr z]gk]+z.fr z Zfr(l)wk,lF]l
=1

= gkz+fr zk+2fr E]fr ]k}+

= - [gk(xa@x)+/ fr(y, 0y, 0,)W,(y, ©,) cos 8,dw, | cos O,,dw,,
Qy

(6.6)

(6.7)

Using this hemispherical potential we can derive the simplified expression for the

flux over the k-th patch as follows:
d, = /A/ Wi(z,0,)Le(z, 0;) cos O, dw,dx
— f:l/Al /m We(z,0,)Le(z,0,) cos O, dw,dz
— wiLe(i)Wk,i /A dz

= WZL (1) AW

- ’/TZLe(Z gkz+fr zk+2fr
=1

where ns is the total number of source patches in the environment.

And this is how the computation proceeds in the progressive refinement approach
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for the radiosity computation[12]. Just as the full matrix radiosity solution is an
approximate solution to the rendering equation, the progressive radiosity method is

analogously an approximate solution to the potential equation.

6.3 Monte Carlo Methods and Random Walks for
General Solution

We shall next discuss a general solution method for computing flux using Eq.6.4 or
Eq.6.5. Basically we have to carry out a multidimensional integration, given Eq.6.4
or Eq.6.5 The integration is further complicated by the fact that a component of the
integral, in turn, has the form of an integral equation of the second kind.

As already mentioned in Chapter 3 the solution of multidimensional integrations
are best carried out by Monte Carlo quadrature techniques. For this we have to find
a suitable pdf. In both equations i.e. Eq.6.4 and Eq.6.5 we have a predefined known
function each, gy and L, respectively. We can convert these functions to some constant

times a normalised function. That means

gr(7,0;) may be converted into Gy, x Gy(x,O,)
where G, = [, [o. gr(x, ©;) cos O, dw,d
and emission function L.(x, ©,) may be converted to & x S(z,0,)

where £ = [, [, Le(z,0,) cos Oydw,dz.

Then the quadrature process starts by sampling G and S. Any standard sampling
technique may be used. For each such sample L and W, are evaluated. As said earlier,
L and Wj, are integral equations of the second kind. We shall use the random walk
technique for solving these integral equations. We discuss below in detail the use of
random walk techniques for the evaluation of radiance(L) and potential(W}).

A random walk or a Markov chain is basically a sequence of states. In order to
formulate it we must define the set of all possible states (discrete or continuous) of
the system, a starting state and the transition probability function (7°) for transition
from one state (s) to another (s') such that [T(s — s')ds’ < 1. The next state is

chosen from the current state by sampling this transition probability function. The
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transition kernel is said to be normalised if [T'(s — s')ds’ = 1, whereas it is said to
be subcritical when [T'(s — s')ds’ < 1. In a subcritical situation, the probability of
(1—[T(s — s')ds') is taken as the probability of no transition (absorption) from state
s. Hence a random walk with a subcritical transition kernel is bound to terminate in
a finite number of steps as every particle has eventually to be absorbed in some state.
Whereas any random walk with a normalised kernel can go on for ever. In the latter
case, the walk has to be terminated by some other external criterion. It is natural to
expect that all environments would include some absorption. Thus the environment for
illumination computation is always subcritical with f,(z, ©,, ©,) cos 8, as the transition
kernel for solving the radiance equation. Similarly f,(y, ©,, ©,) cosf, is the subcritical
transition kernel for solving the potential equation. A straight forward evaluation of L
or Wy, using a random walk results in paths consisting of a finite number of steps. The
states in our environment are the continuum of surface positions and hemispherical
directions around each such surface position. The starting states are sampled from the
respective pdfs i.e. Gi(z,0,) or S(z,0,).

The evaluation of Eq.6.4 may be carried out by drawing n samples from the pdf,
Gk (z,0,), and evaluating L by the random walk for each sample (x;, 9,,). If the i-th
random walk starting from the state (z;,, O, ) covers m; steps, (zi,, O, ). .- (i, O, )

then the radiance is estimated from this walk by the formula given below:
< L(24,0;) >= Le(%iy, Oay)) + > Le(wiy, O, ) (6.10)
k=1
From this, the estimate of ®, can be arrived by averaging over n such random walks.

o, = // L(z,0:)gk(x, ©y) cos Opdw,dx
A JQg

= Q/A/ L(z,0,)Gr(z, ©) cos Oydw,dx
1

T

= G x - > [Le(mio, Ou; ) + D Le(wi,, Og;, ) (6.11)
i=1 k=1
1 n m;
i=1 k=0

This method of evaluating @, by first sampling the G, function is the essence of Kajiya’s
path tracing[38] method.
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Similarly the evaluation of Eq.6.5 may be carried out by drawing n samples (x;,, Oy, )
from the source function, S(x, ©,) and carrying out the random walk. A random walk

may terminate at the state (z;,, ©,, ) with probability

Olaiy 00y, ) = 1 —/Q fr(y, Oy, Oy, ) cos b dw, (6.12)

or proceed to the next state ( © chosen with probability

Ligyr fik+1)

Jr (@i @;,;ik+1 , @xik) cos Gxikﬂ and so on. For each such sample W, is estimated from

the random walk by the formula given below:

< Wk(])l, 61) >= gk(]}io, @xio) + Z gk({L'ik, @xlk) (613)
k=1
Once again ®; can be estimated from n such walks as follows:

d, = /A/ Wi(z,0,)Le(z, O;) cos O, dw,dx

= £€X /A/EWk(x’ ©.)S(z,0;) cos O, dw,dx

1 n m;
= E€x E Z [gk($i0, Gwio) + Z gk(l’ik, @m%) (614)
=1 k=1
1 n m;

= Ex =) ng(xik,@xik)
" i=1k=0
This method of evaluating ®, by first sampling the source function is the essence of
particle tracing.

Of the two solution methods, particle tracing is more intuitive as it resembles the
physical illumination process. Sampling of the source for a start state may be thought
of as the emission of a photon from the source and the transition for simulation of
random walks may be thought of as the wandering of the photon in the environment
as it gets reflected and scattered by the objects in the environment until it is absorbed.
Path tracing though not directly related to the physical process is by now well known
to the computer graphics community. The eye point, peye, and a random point on the
pixel, ppizer, define the direction, ©, = peye — Dpizer- This direction along with the

nearest surface position along —0, define the starting state for the random walk. At

that nearest surface the ray is absorbed and the walk terminates or is reflected along
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one of the incoming hemispherical directions, ©;,, by sampling the brdf and the walk
is continued.

What is more important to note in the discussion so far is that both the random
walk processes attempt to solve the same problem and are subject to similar statistical
errors which in Monte Carlo parlance is known as variance. But one aspect which makes
particle tracing more attractive for global illumination purposes is that the simulation
proceeds by sampling the source function. If we partition the space into a finite number
of subregions srq, sry, srs, ..., then we can locate detectors focused over each of these
i.e. formulate equal number of ¢ functions ¢y, g2, g3, . . ., such that g¢; is nonzero in the
respective subregion sr; and zero otherwise. Then each random walk originating from
the source contributes towards the estimation of ®; for each of the subregions. At the
end of the simulation we have the estimates for ®; for all the subregions. Whereas in
path tracing the random walk starts by sampling a particular g;, for example: directions
through a particular pixel. So each random walk contributes towards the estimation of
only the ®; for that region for which g; is defined to be nonzero. This is not meant to be
understood as saying that the computational efforts required to compute the brightness
of a pixel by path tracing and to compute the illumination of all the subregions visible
through a pixel by particle tracing are of equal magnitude. One may arrive at a low
variance in the brightness estimate of the pixel by tracing a small number of paths
whereas it is possible that even after a large number of particle tracings the brightness
estimates of a few of the subregions continue to show high variance. However, the

difference is worth repeating:

In particle tracing a single random walk contributes towards the estimation
of many ®;s as against many random walks contributing to a single ®; in

path tracing.

There have been a number of efforts to combine these approaches and thus derive
benefits of both. These have typically come to be known as two pass methods or
more generally multi pass methods[11, 33, 52, 66, 71]. In the initial passes simulation

proceeds starting from the light sources and estimates are obtained for the flux in
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different subregions. For example, radiosity[11, 66] or particle tracing[52] is used in the
first pass to estimate the flux over diffuse surfaces. Chen et al[11] have an additional
pass in which rays are traced from the light sources through non-diffuse surfaces to
estimate caustics. In the case of multiple initial passes, care is taken to ensure that the
flux computations are non-intrusive. The final rendering pass is always from the eye
which is based on the random walk solution for Eq.6.4 with the slight difference from
path tracing in that the walks are absorption suppressed and the walk is terminated at
a diffuse surface whose illumination computation has already been carried out in the
earlier passes.

Knowing the basic solution processes we shall now discuss some strategies for in-
creasing computational efficiency. Most of our discussions will be based on the particle
tracing method. However, it must be emphasised that both the solution methods will

be equally benefited by these strategies.

6.4 Improved Estimation Strategies

We discuss a few methods based on the following observations (i) each random walk
contributes either zero or nonzero values to the estimation of a ®;, (ii) in most of the
situations of interest, more specifically in the problem of illumination computation of
a reasonably complex environment, the fraction of random walks contributing nonzero
values towards the estimate of any single ®; is small?2. Applying the law of large numbers
stated earlier in Chapter 4, a simple minded approach of improving the estimated result
will be to increase the number of random walks. Each random walk requires some
amount of computational effort for — sampling the initial state, sampling the transition
probability function for moving to the next state and computing the nearest surface
along a given direction. So any increase in the number of random walks involves a
proportionate increase in computation and must be contained. It can be seen that

many random walks may in fact never visit the subregion(s) of interest or may visit

2In particle tracing it rarely happens that every subregion of the space is visited in a single walk.
Similarly in path tracing it is also equally rare that every random walk starting from the eye will visit
a light source during its walk.

133



subregions in which there have already been an adequate number of visits and hence
resulting in not making any further significant contribution to the flux estimates of
those subregions. So the strategy to adopt would be either to transform the basic
underlying random walk process or the estimator or both such that each random walk

almost always contributes significantly towards the region of our interest.

6.4.1 Next Event Estimation

In this technique the stochastic process under study is kept invariant and the form of
the estimator is the only one that is modified[20]. The modification involves the use of
the equation below as the estimator of Wy (x;, ©,,):
m;
< Wi(2i, ©4,) >= gr(Tiy, Ou, ) + > Wy (i, O, )
k=0
where

Wkl (‘/Ll7 915) = /Q fT‘ (y: ny Gw)gk(y, @y) COS dewy

So instead of Eq.6.14, the estimation of @ is done by the equation given below:
1 n m; 1
=& X ﬁ; gk(xio,@%) +I§Wk (aflk,@m%) (615)
Similarly in path tracing the estimator of L(z;, ©,,) is given by the expression:

< L(24,0;,) >= Le(x;y, 04, ) + Z LYy, Ou.,)
k=0

where

L'(z,0,) = /Q Fo(2, 00, 0,) Le(y, O,) cos Oyduw,

Once again instead of Eq.6.11, ®; is estimated by:

3|'—‘

Z [ xloa Tig + Z Ll xzk; @xlk) (616)

k=0

The choice of this estimator is based on the following intuition: If W} (z,©,) is the
direct potential contribution averaged over all possible transitions at z, then by replac-
ing the single sampled contribution of gi(x, ©,) by W} (z,0,) the random walk process

should converge faster. Similarly if L' (z, ©,) is the direct contribution from all sources
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averaged together at x, then by replacing the single sampled contribution of L.(x, ©,)
by L'(z,©,) the random walk process should converge faster.

The next event estimation in path tracing would mean computing the illumination
using a local model at a point of a ray-hit. Though not explicitly mentioned we
believe that Kajiya uses this estimator in path tracing as he writes in [38, page 146]
“Calculating emitted ... factors is simply a matter of consulting the . ..light models”.
We also would like to point out that Chen et al[l11, page 167] use a variant of the next
event estimation technique in computing the final radiance I(z,©;). They compute
I 5(z,0,), a part of I(z,0,), by Monte Carlo sampling only the source contribution

at z.

6.4.2 Biasing

All the methods discussed under this topic transform the mathematical description

of the stochastic process with an appropriately modified estimator for ® in order to

make the random walk process converge faster. The illumination process as described

in Section 6.1.2 is completely described by the source function and the surface brdfs.

If we replace them by suitably biased functions then when estimating ® correctly we

must remove the bias by properly compensating for the change. In particle tracing the

compensation required is derived below:

Let S’(x,©,) be the biased normalised source function.

IfT(©, = 0,) = f(y,0,,0,)cosb, is used to denote the transition function then
let 7'(©, — ©,) be the biased transition function.

o, = 5><// S(x, 0,)Wi(z, ©,) cos fudw,d
AJQ,

= / S(:L‘, @m)
= € X /A/m S (l",@x) (m) Wk(ﬂf,@x) COSs gxdu)xdl‘

Wk(xa@x) = gk(xa@x)_F/Q fr(ya@ya@x)wk(ya@y)Cosgydwy

T©e,—0,)

= 0(@,0:)+ | T(0: -6, (T'(@ =0,
x y

2y

) Wk(y, @y)dwy
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The above equation can be written in a more compact form by defining a multiplication

factor f where
T(©, — 06,)
T'(0, = 6,)

The transformed potential equation can now be written as

flz,y) =

Wiz, 0,) = g, ©,) +/Q T'(0, — 0,)f(x,y)Wily, ©,)dw, (6.17)

With compensation the flux is now estimated by using the following equation:

1 S(xioa@mi ) -
b, =Ex— Z ,70 gk(xzoa wZO + Z H f leaszl) gk(xika @l‘z ) (618)
—1 S (l'io, Gxio) =0 k

n;

Below we first consider two special cases of this general biasing mechanism. The
first is absorption suppression in which only the transition function is biased and not
the source. The second is source biasing in which transitions are not biased. Later
in Section 6.4.3 we discuss a more general method for biasing using the potential

associated with surfaces.

Survival Biasing or Absorption Suppression

As the name implies, in this method the absorption probability at the transition points
is reduced (may even be made zero) and as a consequence the random walk stretches
to longer distances and the probability of each random walk making a nonzero contri-
bution to the estimation of ®;s is increased. The absorption probability o at any state
is given by Eq.6.12. Any reduction in this probability can be achieved by appropri-
ate increases in the reflection probabilities. A very convenient method is to scale the
reflection probabilities simply by the factor ﬁ, consequently making the absorption
probability at every state to zero. Thus the compensated estimate can be derived from
Eq.6.18 as shown below:

127 m;  [k—1
= EZ Gk 1‘107 Tig +kz: (H O'xiH_l)) gk(l'zk,@xlk)] (619)

1 \I=0

A word of caution is needed here; if the transition probability is changed such that
there is no absorption at all then every single random walk will go on for ever without

terminating. In practice the walk is terminated when the product term in the above
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equations falls below some minimum threshold. However this termination process
introduces a bias into the estimation. An unbiased termination technique like Russian
Roulette may be used to overcome this[2, 52]. It may be recalled that in Chapters 4
and 5 we have made use of this technique for improving the estimates obtained from

particle tracing simulations.

Source Biasing

In particle tracing, the emission function, S(z,©,), plays an important role as every
random walk originates at the light source. Any biasing of this function while still
keeping the normalisation condition satisfied and the transition probability unaltered

will change the form of flux estimation equation from Eq.6.18 to the one shown below:

1 & xz ) xl ) L
ﬁ Z = | gk (@i, Oy, ) + > gkl @mik) (6.20)
=1 k=1

5" (@igs O,y )

where S'(x,©) is the biased source function for sampling.
As we shall see later source biasing provides a simple and convenient mechanism for

improving the efficiency of particle tracing.

6.4.3 The Use of Approximate Potential for Biasing

Suppose we wish to bias our random walk process to improve the estimate of some
specified region in the environment, say, the region of importance. This region of
importance could be predefined. For example, in rendering a view of a 3D environment,
the set of all visible surfaces could form the region of importance. Alternatively the
region of importance could be adaptively defined as the solution progresses. This would
imply that the importance of regions would change depending on the values computed
from a partial simulation. Biasing of particle tracing must be such that the resulting
emissions and transitions must lead most of the the random walks directly or indirectly
to the region of importance. Further the computations required by the biasing scheme
must be simple and straight forward. One possible scheme is to suitably weight the

emission function and the transition probability functions.
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The potential towards the region of importance provides an excellent basis for this
weighting. Let S(z,0,) > 0. Then we can bias the source function to S’(z,©,) such
that the S’(x, ©,) is much greater than S(x,©,) for those points, (z,©,), whose poten-
tial is higher and S'(z, ©,) is much lower than S(x, ©,) for those points whose potential
is lower. We can similarly bias the transition probability i.e. in our case the reflection
probability as follows: Consider two directions ©, and O, in the outgoing hemisphere
at point . Let S; and S5 be the two surfaces nearest to point x along directions ©; and
O, respectively. Denote their potential towards the region of importance by W; and
Wy respectively. Without loss of generality assume that W; > W,. Then the transition
function 7" at « must be biased such that T'(z,©,) is much greater than T'(x, Os).

There is however one catch to the above biasing scheme. It will work provided
we know the value of potential that all surfaces in the environment have towards
the region of importance. It is clear that if we can derive the exact potential values
then we can also derive the solution for the problem at hand and hence we do not
require the simulation. Fortunately for biasing purposes we need not know the exact
potential values. It is sufficient to obtain approximate values of this potential, hopefully,
with much reduced computational costs. Provided these approximate values maintain
their relative ordering they can be effectively used to bias the emission and transition

probability functions.

6.5 Computation of Approximate Potential and Bi-
asing

In its general form the potential function is dependent both on positions and direc-
tions in the corresponding outgoing hemispheres(spheres) of the points of the sur-
faces(volumes) in the environment. Similarly the region of importance is defined as a
collection of points and corresponding directions. In order to illustrate the use of the

potential for biasing we shall make the following simplifying assumptions:

1. The environment consists of ideal diffuse reflecting and emitting surfaces.

2. The medium is non-participating.
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3. The region of importance is a set of patches with all the corresponding hemi-

spherical directions included.

4. For biasing we shall only use the direction independent hemispherical potential

defined earlier in Eq.6.7.

With the above assumptions the environment can now be defined as being made up of
patches, say, E = {P;, P,, ..., P,}, such that the region of importance R is a subset of
E and for all P; € E, W, denotes the hemispherical potential that patch P, has towards
illuminating patches of R.

The approximate potential values are easily computed from a particle tracing sim-
ulation using a much smaller number of particles, say 5-10% of the total required for a
complete unbiased simulation. For the purpose of computing hemispherical potential

the following additional information is kept track of:
e the number of particles leaving a patch P;, i.e. emitted/reflected, say V;,

e the number of these particles reaching a patch belonging to the region of impor-

tance, say M;.

The ratio % gives us an estimate of the hemispherical potential of patch P;.

6.5.1 Source Position Biasing using Hemispherical Potential

If W, is the hemispherical potential of patch P; then W(z) is also the hemispherical
potential of point x, where x € P,. Using W(x) we can bias the normalised source
function S(z). Renormalising the biased source function then gives us the following

definition:
S(z) x W(x)
S0

Where S0 = [, S(z)W(z)dx =~ 37, S;W;A; and ns is the number of source patches.

S'(z) =

This biasing results in an altered distribution of source strength, so that emissions take
place more often on emitter patches from which the particles have a higher probability

of reaching R, the region of importance. To compensate for this biasing for each particle
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the brightness contributing strength is multiplied by a factor, f;. The expression for

f1 is given below:

6.5.2 Direction Biasing using Hemispherical Potential

Direction biasing is used both for choosing the direction for emission and for reflection.
In the normal simulation the direction is chosen by sampling the diffuse distribution
function. In the biased case both for emission and reflection, the idea is to look around
the environment and decide on the direction that has a higher probability of leading the
random walk to the region of importance. To understand direction biasing using hemi-
spherical potential it may be worth while to look at Eq.6.6 again, which gives a linear
expression for the hemispherical potential, and Eq.6.8 which gives us an expression for

flux using the hemispherical potential:
N
Wi = gi+ ) f())W;F
j=1
¢ = WZAQ(Z)AZWZ
i=1

If we assume that the simulation is being carried out in an enclosure then the outgoing
hemisphere around any point is covered by other surface patches of the environment.
Associated with each surface patch is its hemispherical potential. Now using the above
equations for particle tracing, the transition of a particle can be carried out by sampling
the Fj; distribution to choose the patch, say k, and sampling the directions occupied
by that patch on the hemisphere to arrive at the direction of flight. This Fj; times
the approximate hemispherical potential now gives us a measure of the new relative
importance, F},, of each patch around the point p. Now instead of the distribution of
Fji, the distribution of F}, is used for sampling and choosing the appropriate range of
directions. Further directions within that range are sampled to choose at the direction
of flight for the particle. The resulting mathematical change to Eq.6.6 is as follows:

Wi (6.21)

N
Wi = g+ )y 7o F
jzjl Wj,approw/wo I
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where WO = X W approx Fij and F; = (W approa/ WO) Fij.

There is one major task to be carried out in implementing this idea which is find-
ing the Fj; distribution around a point p on patch P;. We have already discussed a
simple method of computing approximate potential earlier in this section. The task
that remains is to determine the Fj; distribution in the outgoing hemisphere of the
point p. Though it is possible to do this by carrying out hemicube projections cou-
pled with depth sorting it is impractical to use this method for every transition of a
particle. Of course the fact that we need only relative importance of the surrounding
patches implies that the exact Fj; values are not necessary. Once again any suitable ap-
proximation which maintains this relative ordering of Fj; would do. We have devised
a simple method of obtaining this information from the partial simulation used to
compute approximate hemispherical potential. This method is based on the following

observation:

If particles are shot diffusely towards the outgoing hemisphere from a point
p of the i-th patch, P;, then the number of particles reaching the j patch,
P;, visible to this point is proportional to Fj;. If N is the total number of
particles shot from p of a patch P; and M is the number directly reaching
patch P; then the ratio W% approaches Fj; as N increases. Obviously if a
patch is not visible to the point p then M would be zero and so would be

Fy;.

To be able to capture this information from an unbiased particle tracing process we
have used a very simple data structure. The data-structure is a 2-D array of size
N x N. We shall name this data structure as Vis. Each row of Vis corresponds to an
immediate emitter and each column corresponds to an immediate receiver. During the
process of particle tracing, for every emission/transition, the array cell corresponding
to the row of the source patch and the column of the target patch is incremented.
mVis[i][j]/ >°; Vis[i][j] is then used to obtain the approximation to Fj;. This value
multiplied with the computed approximate hemispherical potential gives us Fl’] The

FZ’] of all the N patches results in a discrete distribution of patches for transition, or
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in other words, directions for emission /reflection. By sampling this distribution we get
a patch for transition and by sampling the surface of the patch we get the point of
transition. The current point and the chosen point of transition define the direction
of flight for the particle. This method however has a problem. A patch may only be
partially visible. Hence the chosen point of transition on the patch may give rise to a
direction which is hidden from the source point. This problem is avoided by rejection
sampling. That is the surface is resampled until we arrive at a proper direction. The
biasing algorithm is now given below, assuming that at the point p on patch P; a

direction has to be chosen.

Wj,appro:c Fz j

. . ;.
1. Compute the discrete distribution of F}., i.e. DR T—r

i of patches around p.

2. Discrete sample the above distribution and choose a patch say k.
3. do{

Sample the surface of the patch k and choose the transition point y on

the k-th patch
}while(transition point y on the k-th patch is not visible to point p).

4. Choose the interaction.

If the interaction is not absorption then set p = y, ¢« = k£ and repeat from step 1.

For the proper computation of flux the compensation factor which appropriately mod-
ifies the brightness contribution of the particle is derived from equation (Eq.6.21) and

is as follows:
WO _ Z Wj,appromF;'j

WJ »AppTOT WJ »AppTOT

fo=

We have implemented the above biasing mechanisms and have applied it to a num-
ber of cases. The resulting improvements in efficiency have been extremely encouraging.
Below we discuss these results in a little more detail. Let us first consider the situation
in which R is predefined. The simulation then proceeds in two distinct phases. In the

first phase the approximate potential values are computed, while in the second phase
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Figure 6.3: Scene for importance biasing with predefined R.

the computed potentials are used to bias the source and transition functions and a
biased simulation is carried out to obtain global illumination information in the envi-
ronment. We demonstrate the improvements due to biasing towards a predefined R by
using a simple environment, a view of which is shown in Fig. 6.3. The vertical wall
on the left extreme has been defined as the region of importance. The wall has been
divided into 32 x 16 patches. Fig.6.4 shows the particle incidence map on the wall with
a total of 100,000 particles traced in the simulation. Fig.6.4(a) is the map for normal
simulation and Fig.6.4(b) is the map for biased simulation. As one can see visually
there is appreciable improvement. The quantitative figures are as follows: 46,462 in-
cidences in the unbiased simulation and 352,922 incidences in the biased simulation.
The number of samples rejected during the transition biasing is 69,520 giving an over
all improvement factor of 4 with equivalent computation effort.

In the above we have assumed that the region of importance, R, is predefined, and
that R forms a small subset of the entire environment. The basic strategy has been
based on the use of approximate potential values obtained from a small simulation run

for biasing and thus directing most of the random walks to R. This situation is typical

143



Figure 6.4: The plot of particle incidences on the region of importance.

of view dependent illumination computation. On the other hand for view independent
illumination computation clearly the whole environment is the region of importance.
Biasing techniques that direct random walks to a region of importance therefore are not
meaningful. However this biasing mechanism could still be used effectively to improve
computational efficiency of the simulation provided we could devise a strategy like the

one stated below:

The region of importance, which to begin with is the entire environment is
gradually pruned as the simulation progresses to smaller and smaller subsets
of the environment, and biasing is done for each new subset of important

regions.

In our work we have been able to devise one such strategy. This is based on the
observation that, as the simulation progresses, some of the regions of the environment
would have received enough particle incidences so that the illumination estimates due
to even more incidences can be said to be reasonably invariant. That is, as far as
these regions are concerned the simulation need not be continued. We make use of this

in order to reduce the set of important regions, R, by saying that the regions which

144



have received enough incidences are no more of importance. What we need is then the
capability to bias again with this R and carry out a further simulation.

The simulation starts with the whole environment as R (equivalent to no biasing).
After a reasonable number of particle traces, R is reduced by removing those regions
having close to equilibrium illumination values. The simulation is continued after using
the earlier simulation results to bias towards the new R. The process is continued until
R is empty.

The two important tasks in realising the above strategy are:

1. A method of deciding on when a subregion of R has reached near equilibrium

illumination.

2. A method of computing approximate hemispherical potential for all the regions

of the environment for the reduced R.

For the present the first task has been carried out by taking a very simple approach.
Regions receiving particle incidences above some predefined number are assumed to
have reached equilibrium status. Of course in practice this strategy would have to be
much more sophisticated and would have to depend on other criteria which enable one
to decide that adequate incidences have been registered over a patch. So after each
simulation R is scanned and pruned. As the simulation progresses R is redefined many
times. It is therefore not possible to compute the hemispherical potential values only
once at the start as was done earlier. Instead we store the complete history of the
particle traces from the initial unbiased run. Every time R is redefined these traces are
scanned and the new hemispherical potential is computed.

The expression for the biased transition function Fj; is the same as before. Because
we have successive biasing we shall use Fi(]n) instead of Fj; and we get the recursive

expression for it below:

F(n) — F(n* 1) Wj,approm
(3 1 —
’ ! Z]' E(n Y Wj,approx
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Figure 6.5: Wire frame drawing showing the top view of the Cornell Labyrinth.

(n—1)

For computation of Fj; one approach is to use the recursive expansion till one reaches

Fi(;)) (i.e. F;; of our earlier experiment) and use the Vis data structure computed from
the initial unbiased run. The other approach is to update Vis in every simulation
and extract F dlrectly from the updated Vis. This latter approach is what we
have used. We believe it is more efficient due to the fact that the information in Vis

is enriched in each simulation. The compensated strength of the particle at the n-th

biasing step then becomes:

n— 1
fz(n) E F ]approm

Wy,approcv
We have used this scheme for computing the illumination in an environment like a
maze similar to the Cornell Labyrinth® (see Fig.6.5 and Fig.6.6). It has a total of

523 patches, all of more or less the same area. We have chosen 100 as the minimum

3The name has been chosen because a similar scene was chosen by the Cornell group in a recent
SIGGRAPH presentation on Importance Driven Radiosity[67].
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Figure 6.6: A rendered view of the Cornell Labyrinth.
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Batch Size Region of Importance | Rejected Samples | Hits

Before After
300000(Normal) | 523 205 0 5625
3000(Biased) 205 131 4142 10266
3000(Biased) 131 72 3758 10747
3000(Biased) 72 26 4048 10816
3000(Biased) 26 13 3642 10494
3000(Biased) 13 8 4017 10706
3000(Biased) 8 6 4224 10247
3000(Biased) 6 4 4324 10513
3000(Biased) 4 0 3888 11083

Table 6.1: Biasing improvements for Cornell Labyrinth.

number of particle incidences on a patch after which we assume that the patch has
reached equilibrium illumination. For an unbiased simulation if each and every patch
had to receive at least 100 particle incidences then the total number of particles that
had to be traced in the entire simulation was 27,000,000. In the case of a biased
simulation, 300,000 particles without any bias were first traced. The results were used
to prune R to result in 205 patches. The particle tracing history of all these 300,000 was
stored for computing W as and when necessary. The subsequent simulation runs were
carried out in batches of 3000 particles each. After each biasing run R was updated
and a new F(™ computed. Table 6.1 gives some of the statistics from this experiment.
In the table the column corresponding to “Rejected Samples” indicates the number of
times the position sampling on the patches for choosing a transition direction resulted
in hidden transition points. As can be seen efficiency improvement due to biasing is

enormous.

6.6 Remarks

The potential equation for illumination is a powerful mathematical tool for illumination
computation by what have usually been called forward simulation techniques or what
we have been referring to as shooting strategy methods. The most popular of these,
progressive radiosity, is an analytic solution to this equation. Monte Carlo quadrature

and random walk methods that can be devised for solving this equation are more
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general, in the sense that, the simplifying assumptions made for progressive radiosity
are not any more necessary. The idea of using the potential for biasing and improving
the efficiency of the Monte Carlo solution has been used in other disciplines like Neutron
Transport. Its application to illumination computation is not only interesting but also
very beneficial. The use of illumination computation in Computer Graphics is for
imaging and this naturally defines visible regions as being more important. Using the
potential for biasing random walks towards these regions of importance has resulted
in very high efficiency improvement factors. Similarly the strategy of successively
pruning the region of importance, recomputing the bias and carrying out continuously
biased simulations has also proved to result in very high efficiency. This inspite of the
fact that the biasing scheme that has been devised and implemented is rather simple
and straightforward. Certainly one can expect more sophisticated biasing techniques
resulting in even more efficient Monte Carlo solutions to the potential equation and its

use for illumination flux computation.

149



Chapter 7

Conclusions and Future Directions

7.1 In Retrospect

There are four major contributions to the general field of illumination computation

that have resulted out of the research reported in this thesis. They are:
e A taxonomy of illumination computation methods.
e Particle tracing techniques for global illumination computation.
e The potential equation for illumination computation.

e Demonstration of the practicality of this new class of global illumination compu-

tation algorithms.

Below we shall analyse each of these in a little more detail.

7.1.1 A Taxonomy of Illumination Computation Methods

The primary classification of all illumination computation methods is based on the
basic light behaviour simulation strategy used in the method, namely, gathering or
shooting. Of particular significance is the fact that each of these strategies has a sound
mathematical underpinning in the form of an integral equation whose solution gives us
the required illumination values. As we know, by now, the radiance equation is the basis
for the gathering strategy, while the potential equation is the basis for the shooting

strategy. Basically shooting and gathering are one and the same. Light shot from an

150



emitter into a receiver can be easily viewed as light gathered by the receiver from the
emitter. However, there exists a subtle difference in the computation methods based
on these. It is that a single shooting operation is capable of illuminating many regions
of the environment, whereas a single gathering operation is designed to illuminate only
one region. So when it comes to computing illumination globally in an environment
shooting based methods are inherently more efficient.

A gathering strategy method computes illumination by solving the radiance equa-
tion while every shooting strategy method solves the potential equation. These equa-
tions are complex integral equations. The nature of the algorithm used in this equation
solving process provides a secondary classification of all methods as being determinis-
tic or non-deterministic. Deterministic methods are more efficient as compared to the
non-deterministic methods. However, it is not possible to solve such integral equations
in their most general form by using only deterministic methods. A large number of
simplifying assumptions are essential to be able to formulate a deterministic solution.
Though such methods are efficient, their use is limited to highly restricted environ-
ments. Non-deterministic methods are quite general. That means, in principle it is not
required to make any simplifying assumption for carrying out the solution. However,
they can be quite inefficient. The inefficiency may be due to an expensive sampling
step (for ex: use of rejection sampling), and/or due to the requirement that a very large
number of samples have to be drawn in order to get reasonable accuracy in the result.
Multipass methods use both strategies. Usually a deterministic shooting process in the
first pass is followed by a non-deterministic gathering process.

Most often the computed illumination values are used for rendering one or more
images of the environment as seen from different view points. Rendering a view involves
the setting up of viewing parameters and computing of the radiance value coming in
through each pixel in the viewing direction. Illumination computation methods can
also be classified as being view dependent or view independent methods. In view
independent methods the illumination values computed are valid for all views and hence
the final step of computing the radiance value through the pixels can be carried out

very rapidly for any specific view. With reasonable performance graphics workstations
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this enables interactive walk-throughs within the 3D environment.

Ray tracing[75] is basically a view dependent illumination gathering method. It
computes the illumination only at the points of interest. Basic radiosity[27], also a
gathering method, computes view independent illumination while the recently reported
importance driven radiosity[67] can compute illumination by gathering in a view depen-
dent manner. The fact that a single shooting operation contributes to the illumination
of a number of objects in the environment inherently makes shooting based methods
view independent. Thus progressive radiosity[12] and particle tracing are both view
independent. Like importance driven radiosity our importance biased particle tracing
can also be used for view dependent illumination computations.

It is important to emphasise that true view independence is difficult to achieve.
This is because of the fact that the view point and the viewing direction can be com-
pletely arbitrary and one should be able to efficiently obtain the illumination for any
point in the environment from the stored illumination values. This is possible provided
the computed illumination values are such that one can easily reconstruct a compu-
tationally simple illumination function that is scalable to any resolution. None of the
view independent methods developed so far truly provide this scalability. All the view
independent illumination computation methods subdivide the environment into a finite
number of regions. For example, surfaces are broken down, to say, smaller polygonal
patches. In each of these patches illumination values are accurately computed only at
a few discrete points, say, at the vertices of the polygonal patch. Then an interpolation
mechanism is used to compute illumination for all other points in the patch. This is
valid only if the illumination values are continuous in the given patch and the interpo-
lation mechanism properly reconstructs the illumination function over the patch. For
the regions in which this is not true the reconstructed illumination values are bound
to be erroneous. Most often a simple bilinear interpolation function is used though of
late more sophisticated interpolating functions like the ones in use in areas like FEM
are also being tried. The problem of properly discretising the environment for illumi-
nation value reconstruction is therefore a very fundamental problem in illumination

computation methods.
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7.1.2 Particle Tracing Techniques

Particle tracing is the shooting strategy analogue of path tracing[38]. Both are random
walk solutions to similar integral equations. In particle tracing the random walk origi-
nates at the light sources whereas in path tracing it originates at the eye point. While
particle tracing can be viewed as the process of shooting light rays, path tracing, also
for that matter ray tracing in general, can be viewed as the process of gathering light

particles. However there are some fundamental differences which must be noted.

Ray tracing and path tracing techniques are basically derived from geomet-
ric optics and are based on the principle of reversibility of light behaviour
with respect to directions at an interaction point. Geometric optics pro-
vides mathematically simplified formulations derived from the two physical
models of light, namely the wave model and the particle model. Particle
tracing on the other hand directly models a schematic probabilistic descrip-
tion of the interaction of light with matter as given by the particle model
of light. The basic particle tracing technique is a simple Monte Carlo sim-
ulation of the natural stochastic process describing the propagation of light

in a 3D environment.
The other difference stated earlier is worth restating:

In a particle’s random walk every interaction contributes some light to
the point of interaction. Thus for computing illumination globally for an
environment this is quite efficient. The same is certainly not true of the
random walk of a ray in path tracing. Though, in principle, the ray can
contribute some illumination information to the points of interaction on its
path, the random walk is only capable of gathering directional illumination

from the directly visible points.

The ray-object intersection is the basic computational step by which the interac-

tion points of the particle with objects in the environment are determined. Ray-object
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intersection has been extensively researched and a wide range of methods have been de-
veloped for dealing with a variety of geometric shapes[26]. Therefore the method puts
almost no restriction on the type of environmental geometry that can be supported.
Special purpose hardware developments are also being carried out. A number of ac-
celeration techniques also exist. Particle tracing techniques can benefit from all the
new performance improvement methods that are continuously evolving for illumination
computation by ray tracing.

The other basic step in particle tracing is the sampling step for determining the
start of the particle’s random walk and the continuing path to be chosen at each of the
interactions during the course of its life. If it is possible to associate the proper pdfs
with all the emissions and the interactions then there certainly exist methods to sample
them. At the worst one has to resort to rejection sampling. Thus particle tracing is
capable of simulating light propagation even in the most general kinds of environments.

Particle tracing techniques produce particle fluxes in the environment which are
the estimates of the actual light flux. However the problem of using the simulation
results to accurately reconstruct the environmental illumination function continues to
be an elusive one. In our work we do a simple apriori discretisation of the environ-
ment, capture the illumination values for these discrete regions, and then carry out
bilinear interpolation for the reconstruction. Optimal discretisation of environments
and also more accurate illumination reconstructions are areas which are being actively
researched today.

Often radiance is the quantity of interest, specifically for rendering. It is only for
surfaces with diffuse emission/reflection behaviour and volumes exhibiting isotropic
scattering that it becomes possible to derive the radiance directly from the computed
flux. For more general behaviour such derivations are not possible. So, in addition to
reconstructing positional distribution, it is essential to reconstruct the directional dis-
tribution of the particle fluxes as well. The two-pass approach first proposed in [71] and
also used in our implementation solves this problem in a limited manner. In a two-pass
approach, though all the light propagation modeling is accurately done, no attempt

is made to capture this information during simulation. Instead when required, the
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directional flux is recomputed from the surroundings with the added expense of gath-
ering from the environment. Unless this extra computation is properly contained the
overheads can be prohibitive. Hence this approach can be used only for environments
with largely diffuse behaviour of surfaces and isotropic scattering volumes, and with
only a few others exhibiting more complex behaviour. Certainly a more comprehensive

and tractable solution has to be evolved.

7.1.3 The Potential Equation

So far the radiance equation, in one form or the other, has been the mathematical
underpinning of any new illumination computation method that is proposed. Though
often it is not this equation, but a highly simplified version that is actually solved. The
radiance equation has always been used to justify the correctness and the validity of
the mathematical derivations and the subexpressions involved. With the formulation
of the potential equation for illumination computation we believe that newer illumi-
nation computation methods based on the shooting strategy would use the potential
equation, or more generally the adjoint system of equations, as their mathematical
basis. Particle tracing has been shown as a random walk solution for computation of
light flux using the potential equation. Also, by using the potential equation to provide
the mathematical underpinning, it has been possible to develop efficient solutions using
importance biasing in particle tracing. The use of importance, the discrete version of
the potential, in importance driven radiosity[67] is another example of its usefulness
in efficiency improvement of an illumination method. These are just some examples of
the application of potential equation and many more are sure to follow.

Form factor computation has been a problem addressed by many radiosity based
methods. If we may recall, under the assumption of uniform brightness, the form fac-
tor is a value that gives a mea