Lecture-11

Region Segmentation -II

Region Segmentation

Realistic Histogram

Example-II

93 peaks

Smoothed Histograms

Smoothed histogram (averaging using mask Of size 5, one pass gives 54 peaks
Peakiness test gives 18 peaks

Twice Smoothed histogram 21 peaks
After peakiness
Gives 7 peaks

After 3 Smoothings

11 peaks
After peakiness
Gives 4 peaks

Regions

Regions from peak1 $(0, \ldots . .40)$

Regions from peak2 (40,....,116)

Regions

Regions from peak 3
(116,....,243)

Regions from peak 4
$(243, \ldots ., 255)$

Steps in Seed Segmentation Using Histogram

1. Compute the histogram of a given image.
2. Smooth the histogram by averaging peaks and valleys in the histogram.
3. Detect good peaks by applying thresholds at the valleys.
4. Segment the image into several binary images using thresholds at the valleys.
5. Apply connected component algorithm to each binary image find connected regions.

Improving Seed Segmentation

- Merge small neighboring regions
- Split large regions
- Remove weak boundaries between adjacent regions

Split and Merge

1. Split region R into four adjacent regions (quadrants) if $\operatorname{Predicate}(R)=$ false .
2. Merge any two adjacent regions R_{I} and R_{2} if $R_{1} \cup R_{2}=$ true.
3. Stop when no further merging and splitting are possible.

(a)

(b)

Split and Merge

$$
W(A, B)= \begin{cases}1 & \text { if } S(A, B)<T_{1} \\ 0 & \text { Otherwise }\end{cases}
$$

$$
W(\text { Boundary })=\sum_{\forall A, B} W(A, B)
$$

Phagocyte Algorithm

1. Merge two regions if

Phagocyte
Where P_{1} and P_{2} are the perimeters of regions R_{1} and R_{2}. if threshold $T_{2}>1 / 2$ then the resulting boundary must shrink, and If threshold $T_{2}<1 / 2$ then the boundary may grow

$$
\rightarrow T_{2}, \quad 0 \leq T_{2} \leq 1
$$

2. Merge regions if

$$
\frac{W(\text { Boundary })}{\text { Total number of points on the border }}>T_{3}, \quad 0<\mathrm{T}_{3} \leq 1
$$

Merging Using Likelihood Ratio Test

Merging Using Likelihood Ratio

Test

H_{1} : There are two regions

H_{2} : There is one region

$$
\begin{gathered}
p(x)=\frac{1}{\sqrt{2 \lambda \sigma}} e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}} \\
p\left(x_{1}, \ldots, x_{m_{1}}\right)=\left(\frac{1}{\sqrt{2 \lambda \sigma_{1}}}\right)^{m_{1}} e^{-\frac{m_{1}}{2}} \quad p\left(x_{m_{1}+1}, x_{m_{1}+2}, \ldots, x_{m_{1}+m_{2}}\right)=\left(\frac{1}{\sqrt{2 \lambda \sigma_{2}}}\right)^{m_{2}} e^{\frac{m_{2}}{2}} \\
p\left(x_{1}, x_{2, \ldots,}, x_{m_{1}}, x_{m_{1}+1}, x_{m_{1}+2}, \ldots, x_{m_{1}+m_{2}}\right)=\left(\frac{1}{\sqrt{2 \lambda \sigma_{0}}}\right)^{m_{1}+m_{2}} e^{-\frac{m_{1}+m_{2}}{2}} \\
P\left(H_{2}\right)=P\left(x_{1}, x_{2, \ldots}, x_{m_{1}}, x_{m_{1}+1}, x_{m_{1}+2}, \ldots, x_{m_{1}+m_{2}}\right)=\left(\frac{1}{\sqrt{2 \lambda \sigma_{0}}}\right)^{m_{1}+m_{2}} e^{-\frac{m_{1}+m_{2}}{2}} \\
\left.P\left(H_{1}\right)=p\left(x_{1}, \ldots, x_{m_{1}}\right) \cdot p\left(x_{m_{1}+1}, x_{m_{1}+2}, \ldots, x_{m_{1}+m_{2}}\right)=\left(\frac{1}{\sqrt{2 \lambda \sigma_{1}}}\right)^{m_{1}-\frac{m_{1}}{2}} \cdot \frac{1}{\sqrt{2 \lambda \sigma_{2}}}\right)^{m_{2}} e^{-\frac{m_{2}}{2}}
\end{gathered}
$$

Merging Using Likelihood Ratio

Test

$$
\begin{aligned}
& P\left(H_{2}\right)=P\left(x_{1}, x_{2}, \ldots, x_{m_{1}}, x_{m_{1}+1}, x_{m_{1}+2}, \ldots, x_{m_{1}+m_{2}}\right)=\left(\frac{1}{\sqrt{2 \lambda \sigma_{0}}}\right)^{m_{1}+m_{2}} e^{\frac{m_{m}+m_{2}}{2}} \\
& P\left(H_{1}\right)=p\left(x_{1}, \ldots, x_{m_{1}}\right) \cdot p\left(x_{m_{1}+1}, x_{m_{1}+2}, \ldots, x_{m_{1}+m_{2}}\right)=\left(\frac{1}{\sqrt{2 \lambda \sigma_{1}}}\right)^{m_{1}} e^{\frac{-m_{1}}{2}} \cdot\left(\frac{1}{\sqrt{2 \lambda \sigma_{2}}}\right)^{m_{2}} e^{\frac{m_{2}}{2}} \\
& L H=\frac{P\left(H_{1}\right)}{P(H 2)}=\frac{\left(\sigma_{0}\right)^{m_{1}+m_{2}}}{\left(\sigma_{1}\right)^{m_{1}}\left(\sigma_{2}\right)^{m_{2}}}
\end{aligned}
$$

Merge regions if $L H<T$.

Region Adjacency Graph

- Regions are nodes
- Adjacent regions are connected by an arc

Issues in Region Growing

- The number of thresholds used in the algorithm.
- The order of merging is very important.
- Seed segmentation is important.

Edge Detection Vs Region Segmentation

- Region segmentation results in closed boundaries, while the boundaries obtained by edge detection are not necessarily closed.
- Region segmentation can be improved by using multi-spectral images (e.g. color images), however there is not much an advantage in using multispectral images in edge detection.
- The position of a boundary is localized in edge detection, but not necessarily in region segmentation.

Geometrical Properties

Area

$$
A=\sum_{x=0}^{m} \sum_{y=0}^{n} B(x, y)
$$

Centroid

$$
\bar{x}=\frac{\sum_{x=0}^{m} \sum_{y=0}^{n} x B(x, y)}{A}, \bar{y}=\frac{\sum_{x=0}^{m} \sum_{y=0}^{n} y B(x, y)}{A}
$$

Moments

General Moments

$$
m_{p q}=\iint x^{p} y^{q} B(x, y) d x d y
$$

Discrete

$$
\begin{aligned}
& M_{x}^{1}=\sum_{x=0}^{m} \sum_{y=0}^{n} x B(x, y), M_{y}^{1}=\sum_{x=0}^{m} \sum_{y=0}^{n} y B(x, y) \\
& M_{x}^{2}=\sum_{x=0}^{m} \sum_{y=0}^{n} x^{2} B(x, y), M_{y}^{2}=\sum_{x=0}^{m} \sum_{y=0}^{n} y^{2} B(x, y), M_{x y}^{2}=\sum_{x=0}^{m} \sum_{y=0}^{n} x y B(x, y)
\end{aligned}
$$

Moments

Central Moments (Translation Invariant)

$$
\begin{gathered}
\mu_{p q}=\iint(x-\bar{x})^{p}(y-\bar{y})^{q} B(x, y) d(x-\bar{x}) d(y-\bar{y}) \\
\bar{x}=\frac{m_{10}}{m_{00}}, \quad \bar{y}=\frac{m_{01}}{m_{00}} \quad \text { Centroid }
\end{gathered}
$$

Geometrical Properties

Area

Centroid

Moments

Compactness

Moments

General Moments

$$
m_{p q}=\iint x^{p} y^{q} \rho(x, y) d x d y
$$

Central Moments (Translation Invariant)

$$
\begin{aligned}
& \mu_{p q}=\iint(x-\bar{x})^{p}(y-\bar{y})^{q} \rho(x, y) d(x-\bar{x}) d(y-\bar{y}) \\
& \bar{x}=\frac{m_{10}}{m_{00}}, \bar{y}=\frac{m_{01}}{m_{00}} \quad \text { centroid }
\end{aligned}
$$

Central Moments

$$
\begin{aligned}
& \mu_{00}=m_{00} \equiv \mu \\
& \mu_{01}=0 \\
& \mu_{10}=0 \\
& \mu_{20}=m_{20}-\mu \bar{x}^{2} \\
& \mu_{11}=m_{11}-\mu \overline{x y} \\
& \mu_{02}=m_{02}-\mu \bar{y}^{2} \\
& \mu_{30}=m_{30}-3 m_{20} \bar{x}+2 \mu \bar{x}^{3} \\
& \mu_{21}=m_{21}-m_{20} \bar{y}-2 m_{11} \bar{x}+2 \mu \bar{x}^{2} y \\
& \mu_{12}=m_{12}-m_{02} \bar{x}-2 m_{11} \bar{y}+2 \mu \bar{x} y^{2} \\
& \mu_{03}=m_{03}-3 m_{02} \bar{y}+2 \mu \bar{y}^{3}
\end{aligned}
$$

Moments

Hu Moments: translation, scaling and rotation invariant

$$
v_{1}=\mu_{20}+\mu_{02}
$$

$v 2=\left(\mu_{20}-\mu_{02}\right)^{2}+\mu_{11}{ }^{2}$
$v_{3}=\left(\mu_{30}-3 \mu_{12}\right)^{2}+\left(3 \mu_{12}-\mu_{03}\right)^{2}$
$v_{4}=\left(\mu_{30}+\mu_{12}\right)^{2}+\left(\mu_{21}+\mu_{03}\right)^{2}$

Half size, mirror Rotated 2, rotated 45

Table 8.2 Moment Invariants for the Images in Figs. 8.24(a)-(e)

Invariant (Log)	Original	Half Size	Mirrored	Rotated 2	Rotated $)$
ϕ_{1}	6.249	6.226	6.919	6.253	6.318
ϕ_{2}	17.180	16.954	19.955	17.270	16.803
ϕ_{3}	22.655	23.531	26.689	22.836	19.724
ϕ_{4}	22.919	24.236	26.901	23.130	20.437
ϕ_{5}	45.749	48.349	53.724	46.136	40.525
ϕ_{6}	31.830	32.916	37.134	32.068	29.315
ϕ_{7}	45.589	48.343	53.590	46.017	40.470

Hu moments

Perimeter \& Compactness

Perimeter: The sum of its border points of the region. A pixel which has at least one pixel in its neighborhood from the background is called a border pixel.

Compactness

$$
C=\frac{P^{2}}{4 \pi A}
$$

Circle is the most compact, has smallest value

Area decreases

Orientation of the Region

Least second moment

Minimize

$$
E=\iint r^{2} B(x, y) d x d y
$$

$x \sin \theta-y \cos \theta+\rho=0$

Orientation of the Region

$$
\begin{gathered}
r^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \\
x_{0}=-\rho \sin \theta+s \cos \theta \\
y_{0}=\rho \cos \theta+s \sin \theta
\end{gathered}
$$

Substituting $\left(x_{0}, y_{0}\right)$ in r^{2} And differentiating:

$$
s=x \cos \theta+y \sin \theta
$$

Substitute s in $\left(x_{0}, y_{0}\right)$, then r : $r^{2}=(x \sin \theta-y \cos \theta+\rho)^{2}$

Orientation of the Region

$$
\begin{gathered}
r^{2}=(x \sin \theta-y \cos \theta+\rho)^{2} \\
E=\iint r^{2} B(x, y) d x d y \\
E=\iint(x \sin \theta-y \cos \theta+\rho)^{2} B(x, y) d x d y \quad \begin{array}{l}
\text { Substitute } r \text { in } E \text { and differentiate } \\
A(\bar{x} \sin \theta-\bar{y} \cos \theta+\rho)=0 \\
x^{\prime}=x-\bar{x}, y^{\prime}=y-\bar{y} \\
E=a \sin ^{2} \theta-b \sin \theta \cos \theta+c \cos ^{2} \theta \quad \text { and equate it to zero } \\
E=\frac{1}{2}(a+c)-\frac{1}{2}(a-c) \cos 2 \theta-\frac{1}{2} b \sin 2 \theta
\end{array} \quad(\bar{x}, \bar{y}) \text { is the centroid } \\
\end{gathered}
$$

Orientation of the Region

$E=\frac{1}{2}(a+c)-\frac{1}{2}(a-c) \cos 2 \theta-\frac{1}{2} b \sin 2 \theta$
Differentiating this θ wrt

$$
\tan 2 \theta=\frac{b}{a-c}
$$

$$
\begin{aligned}
& a=\iint x^{\prime 2} B(x, y) d x^{\prime} d y^{\prime} \\
& b=\iint x^{\prime} y^{\prime} B(x, y) d x^{\prime} d y^{\prime} \\
& c=\iint y^{\prime 2} B(x, y) d x^{\prime} d y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \sin 2 \theta= \pm \frac{b}{\sqrt{b^{2}+(a-c)^{2}}} \\
& \cos 2 \theta= \pm \frac{a-c}{\sqrt{b^{2}+(a-c)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}=x-\bar{x}, y^{\prime}=y-\bar{y} \\
& a=\sum \sum x^{2} B(x, y)-A \bar{x}^{2} \\
& b=2 \sum \sum x y B(x, y)-A \overline{x y} \bar{y} \\
& c=\sum \sum y^{2} B(x, y)-A \bar{y}^{2}
\end{aligned}
$$

Applications of Segmentation

- Object recognition
- MPEG-4 video compression

Object Recognition Using Region Properties

- Training
- For all training samples of each model object
- Segment the image
- Compute region properties (features)
- Compute mean feature vector for each model object
- Recognition
- Given an image of unknown object,
- segment the image
- compute its feature vector
- match the vector to all possible models to determine its identity.

Object-Based Compression (MPEG-4)

- Advantages of OBC
- large increase in compression ratio
- allows manipulation of compressed video (inserting, deleting and modifying objects)
- How does it work?
- Find objects (Object Segmentation)
- code objects and their locations separately
- through masks or splines
- Build mosaics of globally static objects
- Render scene at receiver

