Filtering - I

-Noise removal-Edge Detection

Suggested Reading

- Chapter 7 & 8, David Forsyth and Jean Ponce, "Computer Vision: A Modern Approach"
- Chapter 4, Trucco & Verri, "Introductory Techniques for 3-D Computer Vision"
- Chapter 2, Mubarak Shah, "Fundamentals of Computer Vision"

Noise in Images

- Image contains noise due to

 Lighting variations
 - Lens de-focus
 - Camera electronics
 - Surface reflectance
- Remove noise
 - Averaging
 - Weighted averaging

filtering

- Consider a 3 x 3 image block organized as a vector I
- Take a 3 x 3 filter operator organized as a vector F
- The operator is applied by replacing the central pixel of the original 3x3 block with the dot product I.F

Linear Filtering

• The output is the linear combination of the neighborhood pixels

$$f(p) = \sum_{q_i \in N(p)} a_i q_i$$

• The coefficients of this linear combination combine to form the "filter-kernel"

Linear Filterin

*

0	0	0
0	1	0
0	0	0

Linear Filtering

000001000

Linear Filtering

Averaging / Smoothing

- The average around a pixel results in a smoothing operation
- The process is repeated for each pixel in scan-line fashion, i.e. left to right and top to bottom.
- Larger the window size, more pronounced will be the smoothing effect

• It has the effect of blurring out the sharper details like edges and corners .

- Useful for removal of noise from the image.
- In frequency domain , this is equivalent to low pass filtering.

Linear Filtering

	1	1	1	1	1
1	1	1	1	1	1
1 05	1	1	1	1	1
.)	1	1	1	1	1
	1	1	1	1	1

Convolution

Convolution (contd)

$$h(x, y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} f(x+i, y+j)g(i, j)$$
$$h(x, y) = f(x, y) * g(x, y)$$

Convolution

$$f(i, j) = I * H = \sum_{k} \sum_{l} I(k, l) H(i - k, j - l)$$

I = ImageH = Kernel

I ₁	I_2	I ₃	
I ₄	I ₅	I ₆	
I ₇	I ₈	I ₉	

H ₉	H_8	H ₇	
H ₆	H_5	H ₄	
H ₃	H_2	\mathbf{H}_{1}	

 $I * H = I_1 H_9 + I_2 H_8 + I_3 H_7$ + $I_4 H_6 + I_5 H_5 + I_6 H_4$ + $I_7 H_3 + I_8 H_2 + I_9 H_1$

Weighted Average

 $I = \frac{w_1 I_1 + w_2 I_2 + \dots + w_n I_n}{\sum_{i=1}^{i} w_i I_i}$ N N

Gaussian

0

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

Standard deviation

Gaussian

- Most natural phenomenon can be modeled by Gaussian.
- Take a bunch of random variables of any distribution, find the mean, the mean will approach to Gaussian distribution.
- Gaussian is very smooth function, it has infinite no of derivatives.

Gaussian

- Fourier Transform of Gaussian is Gaussian.
- If you convolve Gaussian with itself, it is again Gaussian.
- There are cells in human brain which perform Gaussian filtering.
 - Laplacian of Gaussian edge detector

2-D Gaussian $\frac{-(x^2+y^2)}{2o^2}$ $g(x, y) = e^{\frac{-(x^2+y^2)}{2o^2}}$

0	0	0	0	1	2	2	2	1	0	0	0	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	1	4	11	20	30	34	- 30	20	11	4	1	0
0	3	11	26	50	73	82	73	50	26	11	3	0
1	6	20	50	93	136	154	136	93	50	20	6	1
2	9	30	73	136	198	225	198	136	73	30	9	2
2	11	34	82	154	225	255	225	154	82	34	11	2
2	9	30	73	136	198	225	198	136	73	30	9	2
1	6	20	50	93	136	154	136	93	50	20	6	1
0	3	11	26	50	73	82	73	50	26	11	3	0
0	1	4	11	20	30	34	- 30	20	11	4	1	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	0	0	0	1	2	2	2	1	0	0	0	0

s=2

2-D Gaussian

Gaussian Filter

$$G_{s}(x, y) = \frac{1}{2\boldsymbol{ps}^{2}} \exp\left(-\frac{\left(x^{2} + y^{2}\right)}{2\boldsymbol{s}^{2}}\right)$$

$$H(i, j) = \frac{1}{2ps^{2}} \exp\left(-\frac{\left((i-k-1)^{2}+(j-k-1)^{2}\right)}{2s^{2}}\right)$$

where H(i, j) is $(2k+1) \times (2k+1)$ array

Linear Filtering(Gaussian Filter)

Gaussian Vs Average

Smoothing by Averaging

Noise Filter

Gaussian Noise

After Averaging

After Gaussian Smoothing

Noise Filter

Salt & Pepper Noise

After Averaging

After Gaussian Smoothing

Median Filtering

- Averaging reduces the spike but spoils the neighbouring images
- It blurs the edges and other sharp details.
- Median filtering replaces the central pixel with the median of 3 x 3 pixel window
- This picks the "true" average value

Median vs. Averaging Filter

Salt & pepper noise

Median filter

Averaging filter

Edge Detection

Edge Detection

- Find edges in the image
- Edges are locations where intensity changes the most
- Edges can be used to represent a shape of an object

Edge Detection in Images

• Finding the contour of objects in a scene

Edge Detection in Images

• What is an object?

It is one of the goals of computer vision to identify objects in scenes.

Edge Detection in Images

• Edges have different sources.

What is an Edge

- Lets define an edge to be a discontinuity in image intensity function.
- Edge Models
 - Step Edge
 - Ramp Edge
 - Roof Edge
 - Spike Edge

Detecting Discontinuities

- Discontinuities in signal can be detected by computing the derivative of the signal.
- If the signal is constant (over space), its derivative will be zero
- If there is a sharp difference in signal, then it will produce a high derivative value.

Differentiation and convolution

• Recall

$$\frac{\partial f}{\partial x} = \lim_{\boldsymbol{e} \to 0} \left(\frac{f(x + \boldsymbol{e}) - f(x)}{\boldsymbol{e}} \right)$$

We could approximate this as

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}) - f(x)}{\Delta x}$$

 Now this is linear and shift invariant, so must be the result of a convolution.

(which is obviously a convolution with Kernel [1 : it's not a very good way to do things, as we shall see)

Finite Difference in 2D

Definition

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x_{n+1}, y_m) - f(x_n, y_m)}{\Delta x}$$
$$\frac{\partial f(x, y)}{\partial y} \approx \frac{f(x_n, y_{m+1}) - f(x_n, y_m)}{\Delta x}$$
$$\frac{\partial f(x, y)}{\Delta x}$$
Discrete Approximation

Convolution Kernels

[1 - 1]

Finite differe

 $I_x = I * \begin{bmatrix} 1 & -1 \end{bmatrix}$

 $I_y = I * \begin{vmatrix} 1 \\ -1 \end{vmatrix}$

Edge Detectors

- Prewit
- Sobel
- Roberts
- Marr-Hildreth (Laplacian of Gaussian)
- Canny (Gradient of Gaussian)
- Haralick (Facet Model)

Discrete Derivative

(Finite Difference)

Discrete Derivative

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$
 Left difference
$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$
 Right difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$
 Center difference

Derivatives in Two Dimensions

(partial **Derivatives**)

f(x, y) $\frac{\partial f}{\partial x} = f_x = \lim_{\Delta x \to 0} \frac{f(x, y) - f(x - \Delta x, y)}{\Delta x}$ $\frac{\partial f}{\partial y} = f_y = \lim_{\Delta y \to 0} \frac{f(x, y) - f(x, y - \Delta y)}{\Delta y}$ (f_x, f_y) Gradient Vector magnitude = $\sqrt{(f_x^2 + f_y^2)}$ direction = $\boldsymbol{q} = \tan^{-1} \frac{f_y}{c}$ $\Delta^2 f = f_{xx} + f_{yy} = \text{Laplacian}$

De	eriv	vati	ves	s of	an]1	na	ge	(al	ong	5 X)
		— É	1 0	1	_	-1	-1	_	1			
Deriv	ative	—	1 0	1		0	0	0)	Prev	vit	
& ave	rage	—	1 0	1		1	1	1				
			f_x				f_y					
	[10	10	20	20	20]			0	0	0	0	0
	10	10	20 20	20	20 20			0	30	30	0	0
I(x, y) =	10	10	20	20	20	Ι	x =	0	30	30	0	0
(,,,,,,)	10	10	20	20	20			0	30	30	0	0
	10_	10_	20_	20_	20			0	0	0	0	0

Derivatives of an Image (along y)

	Derivatives	s of	an	Image
	-1 0 1	-1	-2	-1
	-2 0 2	0	0	0
P Sobel	-1 0 1	1	2	1
50001	f_x		f_y	
	0 1		1	0
	-1 0		0	-1
Roberts	f_x			f_y

Detecting Edges in Image

Image Filter

Original Image

Gaussian filter0.01130.08380.01130.08380.61930.08380.01130.08380.0113

Sobel filter 1/8 $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

Sobel Edge Detector

Sobel Edge Detector

 $\Delta = \sqrt{\left(\frac{d}{dx}I\right)^2 + \left(\frac{d}{dy}I\right)^2}$

 $\Delta \ge Threshold = 100$

Edge Detector

Canny edge detector using gaussian filter

Prewitt edge detector using Prewitt filter

$$\frac{1}{6} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Sobel edge detector using Sobel filter

$$\sqrt{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

High-boost Filtering

An image with sharp features implies that there will be high frequency component, which are ignored by averaging filter(A lowpass filter – which allows only low frequencies to go through).

Highpass = Original – lowpass

High-boost = A (original) – lowpass

= (A - 1) original + original - lowpass

= (A - 1) original + highpass

A can be chosen as 1.1, 1.15, 1.2 (beyond that results no good)

Edge Detection in Noisy Images

- Images contain noise, need to remove noise by averaging, or weighted averaging
- To detect edges compute derivative of an image (gradient)
- If gradient magnitude is high at pixel, intensity change is maximum, that is an edge pixel
- If at a pixel the first derivative is maximum, the Laplacian (second derivative) would be zero and that point can be declared an <u>edge pixel</u>.

Laplacian of Gaussian

- Filter the image by weighted averaging (Gaussian)
- Find Laplacian of image
- Detect zero-crossings

$\Delta^2 f = f_{xx} + f_{yy} = \text{Laplacian}$

Marr and Hildreth Edge Operator

• Smooth by Gaussian

* I
$$G_{s} = \frac{1}{\sqrt{2ps}} e^{-\frac{x^{2}+y}{2s^{2}}}$$

• Use Laplacian to find derivatives

 $S = G_s$

$$\Delta^2 S = \frac{\partial^2}{\partial x^2} S + \frac{\partial^2}{\partial y^2} S$$

Marr and Hildreth Edge Operator

$$\Delta^2 S = \Delta^2 (G_s * I) = \Delta^2 G_s * I$$
$$\Delta^2 G_s = -\frac{1}{\sqrt{2ps}} \left(2 - \frac{x^2 + y^2}{s^2} \right) e^{-\frac{x^2 + y^2}{2s^2}}$$

Marr and Hildreth Edge Operator

$\Delta^{2}G_{s} = -\frac{1}{\sqrt{2ps}} \left(2 - \frac{x^{2} + y^{2}}{s^{2}}\right) e^{-\frac{x^{2} + y^{2}}{2s^{2}}}$											
	0.0008	0.0066	0.0215		0.031	0.0215	0.0066	0.0008			
	0.0066	0.0438	0.0982		0.108	0.0982	0.0438	0.0066			
	0.0215	0.0982	0		-0.242	0	0.0982	0.0215			
	0.031	0.108	-0.242		-0.7979	-0.242	0.108	0.031			
	0.0215	0.0982	0		-0.242	0	0.0982	0.0215			
	0.0066	0.0438	0.0982		0.108	0.0982	0.0438	0.0066			
	0.0008	0.0066	0.0215		0.031	0.0215	0.0066	0.0008			

Х

The image can be convolved with Laplacian of Gaussian . Mark the points with zero crossings. Verify that gradient Magnitudes are large here.

Response of L-o-G is positve on one side of an edge and negative on another.

Adding some percentage of this response to the original image yields a picture with sharpened edges.

Marr and Hildreth Edge OperatorImage I $*\Delta^2 G_s$ $\Delta^2 G_s * I$ Detection

 $\Delta^2 G_s * I$

Zero Crossings

