
Filtering - I

-Noise removal
-Edge Detection



Suggested Reading

• Chapter 7 & 8, David  Forsyth and Jean Ponce, 
"Computer Vision: A Modern Approach“

• Chapter 4, Trucco & Verri, "Introductory 
Techniques for 3-D Computer Vision"

• Chapter 2, Mubarak Shah, “Fundamentals of 
Computer Vision”



Noise in Images

• Image contains noise due to 
– Lighting variations
– Lens de-focus
– Camera electronics
– Surface reflectance 

• Remove noise
– Averaging
– Weighted averaging



filtering

• Consider a 3 x 3 image block organized as a 
vector I

• Take a 3 x 3 filter operator organized as a 
vector F

• The operator is applied by replacing the 
central pixel of the original 3x3 block with 
the dot product  I.F 



Linear Filtering

• The output is the linear combination of the 
neighborhood pixels

• The coefficients of this linear combination 
combine to form the “filter-kernel”
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Averaging /   Smoothing

• The average around a pixel results in a 
smoothing operation

• The process is repeated for each pixel in 
scan-line fashion, i.e. left to right and top to 
bottom.

• Larger the window size, more pronounced 
will be the smoothing effect



• It has the effect of blurring out the sharper 
details like edges and corners .

• Useful for removal of noise from the image.
• In frequency domain , this is equivalent to 

low pass filtering.



Linear Filtering
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Convolution



Convolution (contd)
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Convolution
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Weighted Average
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Gaussian

• Most natural phenomenon can be modeled 
by Gaussian.

• Take a bunch of random variables of any 
distribution, find the mean, the mean will 
approach to Gaussian distribution.

• Gaussian is very smooth function, it has 
infinite no of derivatives.



Gaussian

• Fourier Transform of Gaussian is Gaussian.
• If you convolve Gaussian with itself, it is 

again Gaussian.
• There are cells in human brain which 

perform Gaussian filtering.
– Laplacian of Gaussian edge detector 



2-D Gaussian 
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2-D Gaussian



Gaussian Filter
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Linear Filtering(Gaussian Filter)
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Gaussian Vs Average

Gaussian Smoothing Smoothing by Averaging



Noise Filtering

Gaussian Noise

After Gaussian Smoothing

After Averaging



Noise Filtering

Salt & Pepper Noise

After Gaussian Smoothing

After Averaging



Median Filtering

• Averaging reduces the spike but spoils the 
neighbouring images

• It blurs the edges and other sharp details.
• Median filtering replaces the central pixel 

with the median of 3 x 3 pixel window
• This picks the “true” average value



Median vs. Averaging Filter

Salt & pepper noise Median filter Averaging filter



Edge Detection



Edge Detection

• Find edges in the image
• Edges are locations where intensity changes 

the most
• Edges can be used to represent a shape of an 

object



Edge Detection in Images

• Finding the contour of objects in a scene



Edge Detection in Images

• What is an object?
It is one of the goals of computer vision to 
identify objects in scenes.



Edge Detection in Images

• Edges have different sources.



What is an Edge
• Lets define an edge to be a discontinuity in 

image intensity function.
• Edge Models

– Step Edge
– Ramp Edge
– Roof Edge
– Spike Edge



Detecting Discontinuities

• Discontinuities in signal can be detected by 
computing the derivative of the signal.

• If the signal is constant (over space), its 
derivative will be zero

• If there is a sharp difference in signal , then 
it will produce a high derivative value.



Differentiation and convolution

• Recall

• Now this is linear and 
shift invariant, so must 
be the result of a 
convolution.

• We could approximate 
this as

(which is obviously a 
convolution with Kernel     

; it’s not a very 
good way to do things, as 
we shall see)
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Finite Difference in 2D
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Edge Detectors

• Prewit
• Sobel
• Roberts
• Marr-Hildreth (Laplacian of Gaussian)
• Canny (Gradient of Gaussian)
• Haralick (Facet Model)



Discrete Derivative
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Discrete Derivative
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Derivatives in Two Dimensions
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Derivatives of an Image(along x)
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Derivatives of an Image (along y)























=

00000
00000
00000
00000
00000

yI























=

2020201010
2020201010
2020201010
2020201010
2020201010

),( yxI



Derivatives of an Image
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• Sobel Edge Detector

Detecting Edges in Image

Image I
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Image Filter

Original Image

Gaussian filter Average filter Sobel filter















 −−−

121
000
121

8
1

















111
111
111

9
1

















0.01130.08380.0113
0.08380.61930.0838
0.01130.08380.0113



Sobel Edge Detector
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Sobel Edge Detector
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Edge Detector

Canny edge detector 
using gaussian filter

Prewitt edge detector 
using Prewitt filter

Sobel edge detector 
using Sobel filter
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High-boost Filtering

An image with sharp features implies that there will be high 
frequency component, which are ignored by averaging  filter( A 
lowpass filter – which allows only low frequencies to go 
through).

Highpass = Original – lowpass

High-boost = A (original) – lowpass

= (A – 1) original + original – lowpass

= (A – 1) original  + highpass

A can be chosen as 1.1, 1.15, …..  1.2 (beyond that results no 
good)



Edge Detection in Noisy Images

• Images contain noise, need to remove noise by 
averaging, or weighted averaging

• To detect edges compute derivative of an image 
(gradient)

• If gradient magnitude is high at pixel, intensity 
change is maximum, that is an edge pixel

• If at a pixel  the first derivative is maximum, the 
Laplacian (second derivative) would be  zero and 
that point can be declared  an edge pixel.



Laplacian of Gaussian

• Filter the image by weighted averaging 
(Gaussian)

• Find Laplacian of image
• Detect zero-crossings

Laplacian2 =+=∆ yyxx fff



Marr and Hildreth Edge Operator

• Smooth by Gaussian

• Use Laplacian to find derivatives
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Marr and Hildreth Edge Operator
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Marr and Hildreth Edge Operator
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The image can be convolved with Laplacian of Gaussian . 

Mark the points with zero crossings. 

Verify that gradient Magnitudes are large here.

Response of L-o-G is positve on one side of an edge and negative 
on another. 

Adding some percentage of this response to the original image 
yields a picture with sharpened edges.



Marr and Hildreth Edge Operator
Zero Crossings
Detection

I Image
σG2*∆

IG *2
σ∆ Edge Image

IG *2
σ∆ Zero Crossings
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