Filtering - I

-Noise removal
-Edge Detection

Edge Detection

Edge Detection

- Find edges in the image
- Edges are locations where intensity changes the most
- Edges can be used to represent a shape of an object

Edge Detection in Images

- Finding the contour of objects in a scene

Edge Detection in Images

- What is an object?

It is one of the goals of computer vision to identify objects in scenes.

Edge Detection in Images

- Edges have different sources.

What is an Edge

- Lets define an edge to be a discontinuity in image intensity function.
- Edge Models
- Step Edge
- Ramp Edge

- Roof Edge
- Spike Edge

Detecting Discontinuities

- Discontinuities in signal can be detected by computing the derivative of the signal.
- If the signal is constant (over space), its derivative will be zero
- If there is a sharp difference in signal , then it will produce a high derivative value.

Differentiation and convolution

- Recall
- Now this is linear and shift invariant, so must be the result of a convolution.
- We could approximate this as
(which is obviously a convolution with Kernel
; it's not a very good way to do things, as we shall see)

Finite Difference in 2D

Definition

Discrete Approximation
Convolution Kernels

Finite differ

I

$$
I_{y}=I^{*}
$$

Edge Detectors

- Prewit
- Sobel
- Roberts
- Marr-Hildreth (Laplacian of Gaussian)
- Canny (Gradient of Gaussian)
- Haralick (Facet Model)

Discrete Derivative

$$
\begin{aligned}
& \frac{d f}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x)-f(x-\Delta x)}{\Delta x}=f^{\prime}(x) \\
& \frac{d f}{d x}=\frac{f(x)-f(x-1)}{1}=f^{\prime}(x) \\
& \frac{d f}{d x}=f(x)-f(x-1)=f^{\prime}(x)
\end{aligned}
$$

(Finite Difference)

Discrete Derivative

$$
\begin{aligned}
& \frac{d f}{d x}=f(x)-f(x-1)=f^{\prime}(x) \\
& \frac{d f}{d x}=f(x)-f(x+1)=f^{\prime}(x) \\
& \frac{d f}{d x}=f(x+1)-f(x-1)=f^{\prime}(x) \\
& \text { Right differenence } \\
& \text { Center difference }
\end{aligned}
$$

Derivatives in Two Dimensions

$$
\begin{aligned}
\begin{array}{l}
f(x, y) \\
\text { (partial } \\
\text { Derivatives) }
\end{array} \begin{aligned}
& \frac{\partial f}{\partial x}= f_{x}=\lim _{\Delta x \rightarrow 0} \frac{f(x, y)-f(x-\Delta x, y)}{\Delta x} \\
& \frac{\partial f}{\partial y}= f_{y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y)-f(x, y-\Delta y)}{\Delta y} \\
&\left(f_{x}, f_{y}\right) \text { Gradient Vector } \\
& \text { magnitude }=\sqrt{\left(f_{x}^{2}+f_{y}^{2}\right)}
\end{aligned} \\
\text { direction }=\theta=\tan ^{-1} \frac{f_{y}}{f_{x}} \\
\Delta^{2} f=f_{x x}+f_{y y}=\text { Laplacian }
\end{aligned}
$$

Derivatives of an Image(along x)

$$
\begin{array}{llllll}
-1 & 0 & 1 & & -1 & -1
\end{array}-1
$$

| | Derivative | -1 | 0 | 1 | | 0 | 0 | 0 | Prewit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \& average | -1 | 0 | 1 | | 1 | 1 | 1 | | |
| | | f_{x} | | | | f_{y} | | | |
| | | | | | | | | | |

$I(x, y)=\left[\begin{array}{ccccc}10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20\end{array}\right] \quad I_{x}=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 30 & 30 & 0 & 0 \\ 0 & 30 & 30 & 0 & 0 \\ 0 & 30 & 30 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Derivatives of an Image (along y)

$$
I(x, y)=\left[\begin{array}{lllll}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20
\end{array}\right] I_{y}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Derivatives of an Image

$$
\begin{array}{cccccc}
-1 & 0 & 1 & -1 & -2 & -1 \\
-2 & 0 & 2 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 2 & 1 \\
& f_{x} & & & f_{y} &
\end{array}
$$

P
Sobel

$$
\begin{array}{cccc}
0 & 1 & 1 & 0 \\
-1 & 0 & 0 & -1
\end{array}
$$

Roberts

$$
f_{x} \quad f_{y}
$$

Detecting Edges in Image

- Sobel Edge Detector

Image Filter

Original Image

Gaussian filter
$\left[\begin{array}{lll}0.0113 & 0.0838 & 0.0113 \\ 0.0838 & 0.6193 & 0.0838 \\ 0.0113 & 0.0838 & 0.0113\end{array}\right]$

Average filter

Sobel filter

Sobel Edge Detector

Sobel Edge Detector

$$
\Delta=\sqrt{\left(\frac{d}{d x} I\right)^{2}+\left(\frac{d}{d y} I\right)^{2}}
$$

Edge Detector

Canny edge detector using gaussian filter

Prewitt edge detector using Prewitt filter

Sobel edge detector using Sobel filter

High-boost Filtering

An image with sharp features implies that there will be high frequency component, which are ignored by averaging filter(A lowpass filter - which allows only low frequencies to go through).

Highpass $=$ Original - lowpass
High-boost $=$ A (original) - lowpass

$$
\begin{aligned}
& =(\mathrm{A}-1) \text { original }+ \text { original }- \text { lowpass } \\
& =(\mathrm{A}-1) \text { original }+ \text { highpass }
\end{aligned}
$$

A can be chosen as 1.1, 1.15, 1.2 (beyond that results no good)

Second Order Derivative operators

The laplacian is a second spatial derivative of an image.

It is given by

$$
\Delta^{2} f=f_{x x}+f_{y y}=\text { Laplacian }
$$

Laplacian Operator

One of the masks can be used to compute the Laplacian

$$
\begin{array}{rrr}
0 & -1 & 0 \\
-1 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & -1
\end{array}
$$

Higher order derivatives are more sensitive to noise.

Edge Detection

- To detect edges compute derivative of an image (gradient)
- If gradient magnitude is high at pixel, intensity change is maximum, that is an edge pixel
- If at a pixel the first derivative is maximum, the Laplacian (second derivative) would be zero and that point can be declared an edge pixel.

Edge Detection in Noisy Images

-Images contain noise, need to remove noise by averaging, or weighted averaging
-Filter the image by weighted averaging (Gaussian)
-Find Laplacian of image
-Detect zero-crossings

Laplacian of Gaussian

- Filter the image by weighted averaging (Gaussian)
- Find Laplacian of image
- The image can be convolved with Laplacian of Gaussian .
- Detect zero-crossings
- Verify that gradient Magnitudes are large here.

Marr and Hildreth Edge Operator

- Smooth by Gaussian
- Use Laplacian to find derivatives

Marr and Hildreth Edge Operator

$$
\Delta^{2} S=\Delta^{2}\left(G_{\sigma} * I\right)=\Delta^{2} G_{\sigma} * I
$$

Marr and Hildreth Edge Operator

$\Delta^{2} G_{\sigma}=-\frac{1}{\sqrt{2 \pi} \sigma^{3}}\left(2-\frac{x^{2}+y^{2}}{\sigma^{2}}\right) e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}$

0.0008	0.0066	0.0215	0.031	0.0215	0.0066	0.0008
0.0066	0.0438	0.0982	0.108	0.0982	0.0438	0.0066
0.0215	0.0982	0	-0.242	0	0.0982	0.0215
0.031	0.108	-0.242	-07979	-0.242	0.108	0.31
0.0215	0.0982	0	-0.242	0	0.0982	0.0215
0.0066	0.0438	0.0982	0.108	0.0982	0.0438	0.0066
0.0008	0.0066	0.0215	0.031	0.0215	0.0066	0.0008

Response of L-o-G is positve on one side of an edge and negative on another.

Adding some percentage of this response to the original image yields a picture with sharpened edges.

See also the following link:
http://www.cse.secs.oakland.edu/isethi/visual/coursenotes_files/e dge.pdf

Marr and Hildreth Edge Operator

$\Delta^{2} G_{\sigma} * I$

Zero Crossings

Scale Space

The term scale refers to the width of the Gaussian function.

By changing the width
we can control the smoothing
and hence the edge detection scale.

Separability of Gaussian

$$
h(x, y)=f(x, y)^{*} g(x, y)
$$

Requires n^{2} multiplications for a n by n mask, for each pixel.

$$
h(x, y)=(f(x, y) * g(x)) * g(y)
$$

This requires $2 n$ multiplications for a n by n mask, for each pixel.

Separability of Laplacian of Gaussian
 $$
h(x, y)=f(x, y) * \Delta^{2} g(x, y)
$$

Requires n^{2} multiplications for a n by n mask, for each pixel.

$$
h(x, y)=\left(f(x, y)^{*} g_{x x}(x)\right)^{*} g(y)+\left(f(x, y)^{*} g_{y y}(y)\right)^{*} g(x)
$$

This requires $4 n$ multiplications for a n by n mask, for each pixel.

Separability

Decomposition of LG into four 1D convolutions

- Convolve the image with a second derivative of Gaussian mask $g_{\#}(y)$ along each column
- Convolve the resultant image from step (1) by a Gaussian mask $g(x)$ along each row. Call the resultant image I^{x}.
- Convolve the original image with a Gaussian mask, $g(y)$ along each column
-Convolve the resultant image from step (3) by a second derivative of Gaussian mask $g_{x x}(x)$ along each row.
Call the resultant image I^{y}.
- Add I^{x} and I^{y}.

Laplacian and the second Directional Derivative and the direction of Gradient

$$
\begin{gathered}
\Delta^{2} f=f_{x x}+f_{y y}=f_{\theta}^{\prime \prime}+f_{n}^{\prime \prime} \\
f_{\theta}^{\prime}=f_{x} \cos \theta+f_{y} \sin \theta \\
f_{\theta}^{\prime \prime}=\left(f_{x x} \cos \theta+f_{y x} \sin \theta\right) \cos \theta+\left(f_{x y} \cos \theta+f_{y y} \sin \theta\right) \sin \theta \\
f_{\theta}^{\prime \prime}=f_{x x} \cos ^{2} \theta+f_{y y} \sin ^{2} \theta+2 f_{x y} \cos \theta \sin \theta \\
f_{n}^{\prime}=f_{x x} \cos ^{2} n+f_{y y} \sin ^{2} n+2 f_{x y} \cos n \sin n \\
f_{n}^{\prime \prime}=f_{x x} \cos ^{2}(\theta+90)+f_{y y} \sin ^{2}(\theta+90)+2 f_{x y} \cos (\theta+90) \sin (\theta+90) \\
f_{n}^{\prime \prime}=f_{x x} \sin ^{2} \theta+f_{y y} \cos ^{2} \theta-2 f_{x y} \cos \theta \sin \theta
\end{gathered}
$$

Laplacian and the second Directional
 Derivative and the direction of Gradient

$$
\begin{aligned}
& f_{\theta}^{\prime \prime}=f_{x x} \cos ^{2} \theta+f_{y y} \sin ^{2} \theta+2 f_{x y} \cos \theta \sin \theta \\
& f_{n}^{\prime \prime}=f_{x x} \sin ^{2} \theta+f_{y y} \cos ^{2} \theta-2 f_{x y} \cos \theta \sin \theta \\
& \Delta^{2} f=f_{x x}+f_{y y}=f_{\theta}^{\prime \prime}+f_{n}^{\prime \prime}
\end{aligned}
$$

