
Baseline Structure Analysis of Handwritten Mathematics Notation

Richard Zanibbi Dorothea Blostein James R. Cordy
Department of Computing & Information Science,

Queen's University, Kingston, Ontario, Canada
{ zanibbi, blostein, cordy } @cs.queensu.ca

Abstract

The structure of mathematics notation is particularly
dificult to recognize in handwritten notation because irregular
symbol placements are common. We present an eficient and
robust method of parsing handwritten and typeset mathematics
notation without backtracking. The system is designed to be
easily adaptable to various dialects of mathematics notation.
The following strategies are used: (I) separate the analysis of
layout, syntax, and semantics. (2) recursively apply search
functions and image partitioning to recognize dominant and
nested baselines, and (3) use tree transformations to express
computations in a compact, eficiently executable form.

1. Introduction

Mathematics notation conveys information using a two-
dimensional arrangement of symbols. Recognition software
must analyze this spatial structure, in order to convert from a
document image to a structural representation such as LaTeX or
a semantic representation such as an operator tree or Maple.
However, it is difficult to define robust, general and efficient
methods for analyzing the spatial structure of mathematics
notation. This problem is particularly difficult in handwritten
mathematics notation (obtained from scanned document images,
or from data tablet input), where irregular placement of symbols
is common.

1.1 Summary of Existing Work

Research into automatic recognition of mathematical
expressions has been ongoing for over thirty years [3,5].
Methods developed for recognizing the two-dimensional layout
of symbols in a math expression can be roughly categorized into
syntactic (grammar-based) and algorithmic approaches.
Syntactic methods have been used extensively, including
coordinate grammars [1,251, attributed string grammars
[2,12,13,14,34], stochastic grammars [10,261, structure
specification schemes [6], and graph transformation
[17,22,23,28]. Algorithmic approaches have included
recursively locating vertically stacked groups of symbols using
procedural [24] and blackboard-style methods [15,301, recursive
baseline location [20], and minimization of penalty functions on
symbol relations [161. Another algorithmic approach, projection
profile cutting with subsequent adjustments, has been used to

0-7695-1263-1/01/$10.00 0 2001 IEEE 768

obtain expression structure directly from pixel maps [18,27,29].
Ambiguities of symbol layout and identity have been handled by
constructing multiple interpretations and then eliminating
unsyntactic [3 I] or unlikely [26] interpretations.

We obtain two insights from this literature. First, almost all
authors use trees to describe the spatial structure of mathematics
notation. In many cases the tree is an explicit data structure; in
other cases an implicit parse tree is created. Second,
mathematical expressions have a preferred direction of
interpretarion, as used by human readers; this directionality can
be exploited by a recognition system (1,14,25]. The direction of
interpretation is usually left-to right; however, Arabic notation is
read right-to-left [131. Our recognition system makes extensive
use of trees, tree transformations, and directionality of the
notation.

1.2 System Overview

The DRACULAE system (Diagram Recognition
Application for Computer Understanding of Large Algebraic
Expressions) interprets the symbol layout of large mathematical
expressions [32]. The input to DRACULAE is a list of symbols
with their spatial locations, from which DRACULAE produces
LaTeX and operator tree outputs. This system quickly
recognizes symbol layout in a general way even when the
semantics of a construct are unknown, and is capable of
successfully analyzing large handwritten expressions with poor
layout. The amount of search needed to analyze layout is
reduced by exploiting the left-to-right reading order of
mathematics notation.

We obtained software for on-line entry, segmentation and
recognition of handwritten symbols from the Freehand Formula
Entry System (FFES) developed by Steve Smithies, Kevin
Novins and Jim Arvo [28]. We used FFES to create test
expressions using a data tablet and mouse. FFES runs a nearest-
neighbour symbol recognizer while a user enters an expression
and allows the user to correct any symbol recognition errors that
occur. After entering symbols a use:r may invoke DRACULAE
from within FFES and obtain bitmap or style-preserving morph
feedback [33] on DRACULAEs interpretation.

2. Separate Analysis of Layout, Syntax, Semantics

DRACULAE is divided into three passes: Layout, Syntax,
and Semantics, as illustrated in Figure I and Table I . Using
separate passes has the advantage of separating the knowledge

Authorized licensed use limited to: University of Central Florida. Downloaded on October 28, 2008 at 20:14 from IEEE Xplore. Restrictions apply.

P A EXPRESSION

I \ A + - - " D

(a) Input Expresrlon / (b) Baselhe StNcturB Tree (EST)

INTEGER SUBTRACT
&

A / INTEGERADD D

EXPRESSION A, Semanticspass E r
SUPERSCRIPT + FRACTION - D

A C B 2

(d) Operator Tree
A C B 2

(c) Parse Tree
.A

" W (C) + \frac(e)f2) - D "

(e) LaTeX String

Figure 1 . The Three Passes Used to Process a Math Expression.

uses integers as the domain for operator tree (d)
domains, such as real numbers or matrices.

In (a), the irregular symbol placement causes a misleading alignment of A+B. Here, the Semantics pass
The Semantics pass can be reconfigured for other

bases and analysis routines that are used in each pass. This
makes the software better structured, easier to maintain, and
easier to adapt to different dialects of math notation.

Mathematics notation has many variants (or dialects), all of
which use similar spatial structure but vary in semantics. Our
recognition system uses the following methods to handle
dialects:

Each recognition pass (Layout, Syntax, and Semantics) has its
own data structures to describe the aspects of math notation
used in that pass. This separation means, for example, that
the semantics of a dialect can be changed without affecting
the syntactic description, as whenf ' can mean differentiation
or function inverse or simply an annotated symbol.

The first recognition pass, the Layout pass, extracts spatial
structure from a list of symbols and represents this in a
dialect-independent fashion (a baseline structure tree; see
Section 3.1). The general structural description from the
Layout pass is altered in the Syntax and Semantics passes.
All three passes may be adapted to conform with different
dialects of mathematics notation.

There is no. formal definition of mathematics notation that
can be used as a standard of correctness. Written descriptions
regarding the generation of mathematics notation are available
[7,19,21]. However, these are not in a form that can be used as a

specification for a mathematics recognition system. While some
formal definitions of mathematics notation have been proposed
(e.g. [34]), the notation itself continues to evolve through use in
society.

3. The Layout Pass: Construction of a Baseline
Structure Tree

The Layout pass identifies the baseline structure of the
mathematical expression, producing a baseline srrrucfure free. In
this tree, every symbol is assigned to one baseline. The
baselines are grouped into a hierarchy of dominant and nested
baselines. The baseline structure tree explicitly captures
important aspects of symbol layout without committing to any
particular syntactic or semantic interpretation.

We specify how baselines may be nested relative to
individual symbols in a BST using a symbol layout model. The
symbol layout model presented in this paper contains four
symbol classes. These are Limit (operators that may have limits,
such as sum and integral), Sqrt, Nonscripted (symbols that are
never followed by superscripts or subscripts: unary and binary
operators, open brackets, horizontal line), and Plain (all other
symbols, including alphanumeric symbols and closed brackets).
In the symbol layout model we also specify the centroid location
for symbols, which is used to test whether a symbol lies within a
region. The centroid for each symbol is computed based on its

769

Authorized licensed use limited to: University of Central Florida. Downloaded on October 28, 2008 at 20:14 from IEEE Xplore. Restrictions apply.

Pass

Layout
symbols
BST

Syntax
BST

OutDut parse tree

Semantics

OvtDut operator tree
parse tree

Processing Performed

Identify the baseline
structure of the math
expression and create a
baseline structure tree (BST).
The symbol layout model
and search functions are used
to construct the BST.

Identify grammatical
structures such as E and the
baselines of its limits and
body. Identify multi-symbol
tokens such as numbers
(digits and decimal points),
function names (e.g. cos), =
and I . Create a parse tree.

Analyze operator precedence
and associativity to create an
operator tree.

Image Coordinates

Extensive use of image
coordinates. Analyze
relative placement of
symbols. Amount of white
space does not affect
interpretation.

Image coordinates not used.

Image coordinates not used.

Knowledge base used;
can be adjusted to the

dialect

Symbol layout model
(symbol classes define
regions around symbols,
e.g. regions around c).
Knowledge in search
functions Sturt() and Hor().

Grammar describing
structural composition
Specified as a BNF grammar
and transforination rules In
TXL (see Section 5)

Grammar describing
operator precedence and
associativity. Specified as
a BNF grammar and
transformation rules in
TXL (see Section 5).

Table 1. The Three Passes used in DRACULAE to Analyze a Set of Mathematical Symbols
-

bounding box coordinates, and reflects whether the symbol is an
ascender, descender, or neither.

3.1 Baseline Structure Trees

A baseline structure tree contains two types of nodes:
symbol nodes and region nodes. These nodes are arranged in
levels: any path through the tree encounters symbol nodes and
region nodes in alternation. The root of the tree, EXPRESSION,
is a region node representing the entire image. Every region
node in the BST represents an image region which contains a
baseline, possibly with nested baselines. The subtree that is
rooted at a region node represents the baseline structure of all
the symbols in this region. Region nodes represent all
mathematically-important spatial relationships other than
horizontal adjacency. Horizontal adjacency has special status
because it defines baselines. Symbols that are on the same
baseline are represented in the tree as ordered siblings. This is
illustrated by the tree in Figure I(b). This tree contains four
region nodes (EXPRESSION, SUPER, ABOVE, BELOW) and
eight symbol nodes (A + - - D C B 2). The dominant baseline of
the whole expression is (A + - - D). The “2” is the sole symbol
in a baseline located BELOW the first “-”. The “C’ is the sole
symbol of the baseline located in a superscripted region
(SUPER) relative to the “A”.

The extent of an image region depends on the walls defined
by other symbols in the expression. For example, in Figure I(b),
the SUPER region of “A” is walled by the “+”: the maximum x
coordinate of the SUPER region equals the minimum x
coordinate of the “+”.

3.2 Identifying Baseline Structure of an Expression

By exploiting reading order, the baseline structure tree can
be constructed efficiently, without backtracking, even when
symbol layout is irregular. Here is a summary of the processing
steps. Extensive research went into defining the search
functions Start() and Hor() used in steps 4 and 5. Space does not
permit a full explanation of these functions.

1.

2.

3.

4.

5.

6.

Sort the input symbols by leftmost bounding box coordinate.

Look up the symbol class and cenrroid for each symbol

Initialize: The Baseline Structure Tree is a single
EXPRESSION node. R is the image region that contains the
entire expression. L is the sorted list of symbols from step 1.

Compute Si =Start(L) to find the symbol Si which starts the
dominant baseline in region R [32]. Start() checks for cases
in which symbol S I is not the leftmost symbol in list L. For
example, the limits of a Z can begin to the left of the C.

Find the rest of the symbols in the baseline that begins with
symbol S i . Hor() finds the next symbol in a baseline; it
handles irregular layouts such as those in Figure 1 [32].
Compute S2 = Hor(S1, L), S3 = Hor(S2, L), and so on until
Hor returns null.

The symbols Si , S2, ..., Sn ;are the dominant baseline in
region R. Add these symbols to the baseline structure tree:
insert n symbol nodes as offspring of the region node
representing R.

770

Authorized licensed use limited to: University of Central Florida. Downloaded on October 28, 2008 at 20:14 from IEEE Xplore. Restrictions apply.

The symbols in the dominant baseline (Si, S2, ..., Sn)
partition region R into subregions. All symbols have
ABOVE and BELOW regions. (For Limit symbols, these
regions are labeled UPPER and LOWER; they may extend
to the left and right of the symbol.) Sqrt symbols have a
CONTAINS region. Symbols in classes Plain and Sqrt have
SUPER and SUBSC regions. Assign each remaining
symbol in L (any symbol other than S I , S2, ..., S,) to one of
these subregions.

Add region nodes to the baseline structure tree to represent
the non-empty sub-regions found in step 7. Apply steps 4 to
8 to the symbol lists in each of these regions.

This algorithm is illustrated using the expression in Figure
I (@ . First, the dominant baseline is found (steps 4 and 5) .
Start() finds A and Her() finds + - - D. Note the robustness of
these search functions: starting at the +, Hot() finds the -,
despite the alignment of the + and the B.

Once the symbols in the dominant baseline have been found,
step 6 extends the baseline structure tree to be EXPRESSION
with five branches, leading to A, +, -, -, D. Step 7 defines
regions around these symbols. The nonempty subregions are
added to the tree in step 8: A has offspring SUPER, and "-" has
two offspring, ABOVE and BELOW. Steps 4 to 8 are
recursively applied to these three non-empty subregions to
complete the construction of the baseline structure tree. Figure
I(b) shows the final tree.

In summary, the Layout pass recursively applies search
functions and image partitioning to recognize dominant and
nested baselines. The search function Start() is used to locate
the leftmost symbol of the dominant baseline, and the search
function Hor() is used to locate successive symbols in a
baseline. This use of search functions was inspired by the
Positional Grammar work of Costagliola et al. [I l l . The
directionality present in mathematics notation made it possible
for us to adapt these ideas for use in our Layout pass.

4. The Syntax and Semantics Passes

The syntax pass converts a Baseline Structure Tree into a
parse tree. This involves tree transformations which reorganize
the tree to identify tokens comprised of multiple symbols (e.g.
numbers), and grammatical structures comprised of multiple
baselines (e.g. fractions, or the limit and body baselines
associated with a Z).

The semantics pass converts a parse tree into an operator
tree. This involves tree transformations which reorganize the
tree according to operator precedence and associativity. The
processing done in this stage is analogous to processing done by
the semantic analysis phase of a compiler. Neither the syntax or
semantic passes depend on image coordinates, though the syntax
pass collects coordinate information for user interface purposes.

5. Tree Transformation vs. Graph
Transformation

As was illustrated in Figure 1, trees are the central data
structure used in our recognizer. To construct and modify these
trees, a programming-language construct called tree
transformation is used throughout the implementation. A tree
transformation rule searches a host tree for a subtree that
matches the rule's pattern (left hand side); this subtree is then
locally transformed according to the rule's replacement (right
hand side). The TXL language specifies tree transformations in
a compact, abstract manner [8,9]. TXL specifications are
directly and efficiently executable. The amount of code needed
to describe a tree transformation is orders of magnitude smaller
in TXL than in a language such as C. Sample TXL code is
shown in Figure 2.

Tree transformation is well-suited to the math recognition
domain, because math expressions have a recursive structure
which is naturally described by a tree. Further research is
required to determine the extent to which our ideas can be
applied in recognizing diagrams from domains other than
mathematics. We believe that the separation of layout, syntax
and semantics can be used as a structuring principle in designing
diagram recognizers from many domains.

In earlier work, we used graph transformation for
mathematics recognition [171. Graph transformation is an
attractive and versatile style of computation, but easily runs into
efficiency problems. Some work has been done to increase the
efficiency of graph grammar parsing in the context of
recognizing mathematical expressions [22,23], but we have
found a tree transformation-based approach to be adequate.
Careful application of search functions and dominance analysis
allows an initial tree to be constructed by DRACULAEs Layout
pass. Separating Layout, Syntax and Semantics has also made
DRACULAE easier to extend than our former graph
transformation system [171, where transformation rules dealt
with layout, syntax and semantics all at once.

rule convertAdditionsToOperatorTrees
replace [expression]

by
LeftSubexpression[expressionl + RightSubexpression[terml

"Integer Add" (Leftsubexpression) { Rightsubexpression)
end rule

Figure 2. A Tree Transformation Rule Written in TXL.

This rule from the Semantics Pass replaces the parse subtree for each subexpression parsed as a binary +
operation with an operator subtree,for the corresponding integer addition.

77 1

Authorized licensed use limited to: University of Central Florida. Downloaded on October 28, 2008 at 20:14 from IEEE Xplore. Restrictions apply.

Figure 3. Examples of Expressions used in Testing.

On the left are hand-drawn expressions created in FFES 1261. The images on the right are generated from the
corresponding LaTeX strings created by DRACULAE. The LaTeX strings are derived,from the parse trees. (The
processing in the Semantics Pass is not needed for LaTeX.) Runr~ing on a 500 MHz Pentium 111 under Linux, each
of these expressions is processed in less than one second.

6. Implementation and Testing

DRACULAE is implemented in TXL [8,9]. The current
version of the system recognizes single-line expressions which
do not include matrices. We have tested DRACULAE on
hundreds of hand-drawn expressions, a few of which are
illustrated in Figure 3. This testing is made possible by
connecting DRACULAE to the user interface and character
recognition software from the Freehand Formula Entry System

DRACULAEs multi-pass design makes it easy to adapt the
system to recognize new constructs. For instance, the following
additions allow DRACULAE to process Boolean negation,
notated by an overbar. No change is made to the Layout pass.
In the syntax pass, add a tree transformation rule to find any
horizontal line that has symbols below it and no symbols above;
change the label of this line to "OVERBAR". In the code that
generates LaTeX from the parse tree, replace this label with
"\overline(1". These types of alterations are easy to perform on
the compact, abstract TXL specifications of the tree
transformations.

DRACULAE recognizes the layout of a wide variety of
handwritten mathematics expressions efficiently, using the
reading order of mathematics notation to reduce the amount of
search needed. A baseline structure tree and LaTeX string are
produced for all input expressions, including syntactically
invalid expressions with errors such as unbalanced parentheses.
This is because the Layout pass does not enforce syntax or
semantics, and the Syntax pass only rewrites tree structures,
leaving any unsyntactic symbol layouts in the parse tree. The
parse tree is translated to LaTeX regardless of whether the tree
represents a valid mathematical expression.

Wl.

7. Conclusion

Separating recognition of mathematics notation into Layout,
Syntax and Semantic analysis passes is a powerful and useful
technique. The separation of structure from semantics is
common practice in compiler designs, but has been rarely used
in graphics recognition systems. The multi-pass design used in
DRACULAE allows robust handling of unexpected input, and
makes it easier to adapt the system to recognize new constructs.

In DRACULAE we have exploited the left-to-right reading
direction of mathematics notation in an algorithm and search
functions that analyze the symbol layout of poorly formatted
handwritten expressions in an efficient and general way. We
describe the recognized symbol layout of mathematical
expressions using baseline structure trees: these are a concise,
readable, and dialect-independent representation of the hierarchy
of baselines present in a mathematical expression.

In future work we will refine our layout analysis algorithm
and search functions, add the use of whitespace information,
define a number of mathematical dialects and provide translation
to computer algebra system formats (e.g. Maple, Mathematica).
We also hope to explore the use of direction to restrict searching
while recognizing other diagrammatic notations.

Acknowledgements.

We thank Steve Smithies, Kevin Novins, and Jim Arvo for
use of the Freehand Formula Entry System. Genarro Costagliola,
Edward Lank, Nick Willan and George Weigt contributed
through helpful discussion and assistance with the
implementation. This research is supported by the Natural
Sciences and Engineering Research Council of Canada.

172

Authorized licensed use limited to: University of Central Florida. Downloaded on October 28, 2008 at 20:14 from IEEE Xplore. Restrictions apply.

References.

[I] R. Anderson, “Two Dimensional Mathematical Notation,’’ in
Syritactic Pattern Recognition, Applications, Editor K. S. Fu,
Springer 1977, pp. 147-177.

[2] A. Belaid and J. Haton, “A Syntactic Approach for Handwritten
Mathematical Formula Recognition,” IEEE Trans. Pattern Analysis
andMachim Iiitelligetice, 6(1), January 1984, pp. 105-1 11.

[3] D. Blostein, A. Grbavec, “Recognition of Mathematical Notation,”
in Handbook of Character Recognition and Documeiit Image
Analysis, Eds. H. Bunke and P. Wang, World Scientific, 1997, pp.

[4] D. Blostein and A. Schiirr, “Computing with Graphs and Graph
Transformation,” Software - Practice arid Experience, 29(3), 1999,
pp. 197-217.

[5] K. Chan and D. Yeung, “Mathematics Expression Recognition: a
Survey,” bid. Joirrrial on Document Analvsis mid Recognition, 3(I) ,
August 2000, pp. 3-15.

[6] S. Chang, “A Method for the Structural Analysis of Two-
Dimensional Mathematical Expressions,” Irformatiori Sciences,

[7] T. Chaundy, P. Barrett, C. Batey, The Priritiiig of Mathematics,
Oxford University Press, 1957.

[8] J. Cordy, I. Carmichael, R. Halliday, The TXL Programming
Language - Version IO, TXL Software Research Inc., Kingston,
Canada, January 2000 (65 pp).

[9] J. Cordy, C. Halpern, E. Promislow, “TXL: A Rapid Prototyping
System for Programming Language Dialects,” Computer Languages
16(I), January 1991, pp. 97-107.

[IO] P. Chou, “Recognition of Equations Using a Two-Dimensional
Stochastic Context-Free Grammar,” Proc. SPIE Col$ OR Visual
Communications and Image Processing IV, Philadelphia PA, Nov.
1989, pp. 852-863.

[1 I] G. Costagliola, A. De Lucia, S. Orefice, G. Tortora, “A Framework
of Syntactic Models for the Implementation of Visual Languages,”
Proc. 1997 IEEE Iriternational S.ymposium un Visual Languages
(VL’97), Capri, Italy, Sept. 1997, pp. 58-65.

1121 Y. Dimitriadis, 1. Coronado, C. de la Maza, “A New Interactive
Mathematical Editor, Using On-line Handwritten Symbol
Recognition and Error Detection-Correction with an Attribute
Grammar,” Proc. ICDAR’9I Saint Malo, France, Sept. 1991, pp.
242-250.

[131 T. El-Sheikh, “Recognition of Handwritten Arabic Mathematical
Formulas,’’ United Kingdom bformation Techiiologv Confrrorce,
March 1990.

[141 R. Fateman, T. Tokuyasu, B. Berman, and N. Mitchell, “Optical
Character Recognition and Parsing of Typeset Mathematics,” J.
Visual Commuriicatiorr arid Image Represeritation, 7(I) , March

[I51 C. Faure and Z. Wang, “Automatic Perception of the Structure of
Handwritten Mathematical Expressions,” in Computer Processing of
Haiidwririrtg, Eds. R. Plamondon and C. Leedham, World Scientific,

[I61 R. Fukuda, S. I, F. Tamari, “A Technique of Mathematical
Expression Structure Analysis for the Handwriting Input System,”
Proc. ICDAR‘99, Bangalore, India, September 1999, pp. 13 I- 134.

[I71 A. Grbavec and D. Blostein, “Mathematics Recognition Using
Graph Rewriting,” Proc. ICDAR’95, Montreal, Canada, August
1995, pp. 417-421.

[181 J. Ha, R. Haralick, I. Phillips, “Understanding Mathematical
Expressions from Document Images,” Proc. ICDAR’95, Montreal,
Canada, August 1995, pp. 956-959.

[191 N. Higham, Handbook of Writing for the Mathematical Sciences,
Siam, Philadelphia, 1993.

[20] K. Inoue, R. Miyazaki, M. Suzuki, “Optical Recognition of Printed
Mathematical Documents,“ Proc. Third Asian Technology
Conference in Mathematics, Tsukuba, Japan, 1998, pp. 280-289.

[2 I] D. Knuth, “Mathematical Typography,” Bulletin of the American
MathematicalSbcie~, 1(2), March 1979, pp. 337-372.

557-582.

2(3), 1970, pp. 253-272.

www.txl.ca/txldocs.html

1996, pp. 2-15.

1990, pp. 337-361

[22] A. Kosmala, G. Rigoll, S. Lavirotte, L. Pottier, “On-Line
Handwntten Formula Recognition using Hidden Markov Models
and Context Dependent Graph Grammars,” Proc. ICDAR’99,
Bangalore India, Sept. 1999, pp. 107-1 IO.

[23] S. Lavirotte and L. Pottier, “Mathematical Formula Recognition
using Graph Grammar,” Document Recogriitiori V , SPIE
Proceedbigs Series, Volume 3305, 1998, pp. 44-52.

[241 H. Lee and J. Wang, “Design of a Mathematical Expression
Understanding System,“ Pattern Recogtiition Letters, 18, 1997, pp.

[25] W. Martin, “Computer InputIOutput of Mathematical Expressions,”
Proc. 21id Symposium 011 Symbolic arid Algebraic Maiiipulatioris,
ACM, New York, 1971, pp. 78-87.

[26] E. Miller, P. Viola, “Ambiguity and Constraint in Mathematical
Expression Recognition,” Proc. AAAI’98, 15th National Coifererice
on Anificial I~itelligeiice, Madison, Wisconsin, July 1998, pp. 784-
791.

[27] M. Okamoto and A. Miyazawa, “An Experimental Implementation
of Document Recognition System for Papers containing
Mathematical Expressions,” in Structured Document Image
Analysis, Eds. Baird, Bunke, Yamamoto, Springer 1992, pp. 36-53.

[28] A. Smithies, K. Novins, J. Arvo. “A Handwriting-Based Equation
Editor,” Proc. Graphics hterfuce ‘99, sponsor: Canadian Human-
Computer Communications Society, Kingston, Ontario, June, 1999,
pp, 84-91.

[29] H. Twaakyondo and M. Okamoto, “Structure Analysis and
Recognition of Mathematical Expressions,” Proc. ICDAR95,
Montreal, Canada, August 1995, pp. 430-437.

1301 Z. Wang and C. Faure, “Structural Analysis of Handwritten
Mathematical Expressions,” Proc. Ninrh Iiitl. Cot$ on Pattern
Recognition, pp. 32-34, Rome, Italy, November 1988.

[31] H. Winkler, J. Fahrner, M. Lang, “A soft-decision approach for
structural analysis of handwritten mathematical expressions,” Proc.
IEEE International Coifererice on Acousrics, Speech, and Signal
Processiiig -- ICASSP’95, pp. 2459-2462.

(321 R. Zanibbi, “Recognition of Mathematics Notation via Computer
Using Baseline Structure,” Technical Report ISBN-0836-0227-
2000-439, Dept. Computing and Information Science, Queen’s
University, Kingston, Ontario, August 2000.

[33] R. Zanibbl, K. Novins, J. Arvo, K. Zanibbi, “Aiding Manipulation
of Handwntten Mathematical Expressions through Style-Preserving
Morphs,” Proc. Graphics Iiiterfuce 2001, Ottawa, Canada, June
2001, pp. 127-134.

[34] Y. Zhao, T. Sakurai, H. Sugiura, T. Toni, “Formalization and
Parsing of Mathematical Expressions for Mathematical
Computation,” J. Japaii Society f o r Symbolic arid Algebraic
Computatiuri. 6(3) , 1998, pp. 2-29.

289-298.

773

Authorized licensed use limited to: University of Central Florida. Downloaded on October 28, 2008 at 20:14 from IEEE Xplore. Restrictions apply.

