



















## **Max Throuput in Pure Aloha**

In S=GP<sub>0</sub> we need P<sub>0</sub> = probability of no frames transmitted during an interval of length 2t which is 2(unit time).













## **Reservation Protocols**

- Protocols in which a "reservation" is made during the contention period (just after a frame has been transmitted).
- Assume N stations with address 0, ... , N-1
- Bit-Map Protocol
  - Contention period of N 1-bit slots.
  - Station j inserts bit into slot j if has something to send.
  - After stations have seen reservations, transmit in order.
  - No collisions
  - Bitmap repeats...if no one has traffic to send.
- Analysis: low-load (assume no traffic)
  - Iow-number station gets ready to transmit and finds bit map about half way through on average. Must wait N/2 slots until his slot shows up.
     Sets bit. Must wait for remainder of N slots to go by. Then transmits.
     So waits 1.5N slots on the average.
  - High-number stations gets ready to transmit and waits only N/2 slots before transmitting.
  - Conclusion: considering both cases a station waits an average of N dislots to begin transmitting. This is delay. If frame contains d bits, then efficiency is d/(N+d).



































## Problems (for March 19) Chapter 4: 1 thru 6 17, 19, 20, 21, 22, 24, 25, 27, 28, 30, 32, 35, 37, 38, 39























| xpense<br>ampus/   | e of FDE<br>/busines                              | )I limited<br>s backbo      | use to large<br>nes                                    |        |   |
|--------------------|---------------------------------------------------|-----------------------------|--------------------------------------------------------|--------|---|
| tandar             | d comm                                            | ittee pro                   | duced "fast etherr                                     | net"   |   |
| tandaro            | d in 199                                          | 2: 100 M                    | lbps, nearly identi                                    | cal to |   |
|                    |                                                   |                             |                                                        |        |   |
| therne             | t format                                          | ts interfa                  | ces protocols                                          |        |   |
| therne             | t format                                          | ts, interfa                 | ces, protocols.                                        |        |   |
| therne<br>Name     | t format                                          | ts, interfa<br>Max. segment | ces, protocols.<br>Advantages                          | ]      |   |
| Name               | t format<br>Cable<br>Twisted pair                 | Max. segment                | Ces, protocols.<br>Advantages<br>Uses category 3 UTP   | ]      | 4 |
| Name<br>100Base-T4 | t format<br>Cable<br>Twisted pair<br>Twisted pair | Max. segment<br>100 m       | Advantages Uses category 3 UTP Full duplex at 100 Mbps |        |   |

