Transport Layer

Dr. G. A. Marin

&<

This material is provided for
educational purposes only. No
further reproduction is permitted.

OSI| Reference Model

Layer Protocol

Application

Service Interface

g Application

Layer Protocol

'}

Presentation g

-

Presentation

Layer Protocol

Session

i Session

Layer Protocol

Transport

Network

Data Link

Physical

14 Transport

Data Link Data Link

Physical

Network Network

Data Link

Physical




Two Types of Transport Service

~«Connection-oriented
= Sets up connection, sends data, releases
connection
= Reliable, in-sequence delivery (recovers lost or
damaged data)
~Connectionless
= Just sends/receives...
= No guarantees
= Developers of Internet Applications (email, /{,&'
Web, File Transfer, phone) choose one of the y
above.

Connection-Oriented vs
Connectionless at Layers 2,3,4

~Layer 2 CO may be especially useful on links with high
error rates. CO at DLC means a reliable service that
retransmits errored or lost frames at layer 2.

~Layer 3 CO or CL service is offerred by the network
provider. Quality may differ across Internet, for
example. CO at NL means setting up connections
before sending data. All data follows same route, etc.

~Layer 4 CO or CL service is offerred to applications by
the tranport entities that operate in the end points

(hosts). Allows end-stations to deal with poor service, ,
congestion discards, etc. /Z s

s~




Transport Service Model

Host 2

Application
[or sesaion)
layar

Hest 1
Application
G Applicationiranspon
Liryas Transpoet | Interface
o dcivess |
PR | T
Transport | ML P_I'_-"i"' fallll
aniy Transpart
profacl
Nabtwork T o ":.
amddress _I ransportnetwork
Matwork layar interface

LEL

_‘__l Transport

entity

M

Metwork layer

Construction of a Frame

Frame Prawt b
PiEacer header
i
F ,—-/

TFDU

header
-~

Transport Protocol Data Unit
o

. /pnu paylosd

Packst payload

Frame payload




Server/Clients Basic Primitives

= Server executes LISTEN (and blocks)
~Any ready client executes a CONNECT

= blocks caller process and sends Conn Req to
server transport process
= Server transport entity checks that server is on
LISTEN, unblocks server, sends Conn Accepted
back to client.

~+When Conn Accepted TPDU received at client,
client unblocked and connection is established. y ﬁ%

1 Data exchanged using SEND and RECEIVE. >
= Transport user sees only primitives LISTEN/
CONNECT, SEND, RECEIVE, DISCONNEC#.

Basic Connection Steps

= Client application issues a CONNECT
= Client transport entity sends Connection
Request (CR) in TPDU
Server transport entity checks to see Server is
blocked on LISTEN
= then it unblocks server

= then it sends Connection Accepted (CA) to Client
transport entity

~Use SEND and RECEIVE primitives to exchange /{ A

data.
~Use DISCONNECT to end connection. /




Disconnecting

2 Asymmetric Disconnect

= Either transport user may issue the
DISCONNECT primitive which results in a
DISCONNECT TPDU being sent to the

remote transport entity.
= \When TPDU arrives, connection released.

s Symmetric Disconnect
= One side issues DISCONNECT to indicate /f A

no more data to send.
= Connection not released until both sicV
issue DISCONNECT primitive.

Transport Service Addresses

< When process issues CONNECT
primitive, it must specify "to what?"
—Answer is the access point of the
service: Transport Service Access Point
or TSAP,
= In Internet these are IP address, port.

2 These addresses either "well-known" or
are generally available from a name /Z /

server whose address is well-known.
= Example: FTP port 21; TELNET port




Establishing a Connection

~«Complicated because network can lose, store or
duplicate packets.

= Nightmare: packets pop out of network twice -
each time requesting transfer of a large sum of
money to an account.

~1Dealing with delayed duplicates:
= Change transport address with each request.
= Number connections with an ID so you know if

one is being recreated. (But machines crash...) o
//

= Better: Kill off aged packets inside the network.

~With bounded packet lifetimes, possible to
establish connections safely.

Three-way Handshake

et | Host 2 Haoet 1 Hodl 2
Wil i plioaia
=¥ e “Fimeg .,

BT e p-

g HE e
LAy =T facw sy, |
CHm




Difficult to Tell if Connect/Disconnect
REALLY Happened

Flow Control at Transport Layer

“Why is it needed?
= network may be unreliable (connectionless)

= Data Link Flow Control NOT end-to-end (only to receiving
network layer)

= Receiving transport layer may be out of buffers
= Sender buffers: when receiving transport layer cannot
guarantee buffer availability. Receiver free to use shared
(dynamic) buffering schemes.
~ Receiver buffers: when it can guarantee buffer available.

Usually dedicated space per connection (max ,
TPDUxwindow size). /Z s

= May be extremely wasteful (single char min). /




Buffer Managemenit

—+May vary by traffic type
= low bandwidth/bursty traffic best handled by
dynamic buffer allocation with sender buffering.

= high-bandwidth traffic may best be handled by
dedicated buffers at receiver.

=« Sending host generally requests buffers at
receiver (collectively or per connection)

—Receiver grants what it can afford and sender
keeps track of number of unacknowledged /:4/..
/4

TPDUs vs number of granted buffers. /

Dynamic Buffer Allocation

A Message B Comments
1 == < request 3 buffers=> . & wanls 8 bullam
2 = =iack = 15, buf = 4= — B granis massapes 0-3 only
1 wiad e, dald = il = & has 3 buBers left now
4q - <gaq =1, dala =mix> - & has 2 buMers &N now
5 «<5af = 2, dala = m2= ¥ Massage lost bt A thinka it has 1 el
=ack= 1, uf= 3= T B acknowledges 0 and 1, parmits 2-4
<seq = 3, data = m3= = & has bufer lef
a - <8af = 4, dala = mds = A has 0 buBers [sl, and must stop
9 - =560 = 2_dala = m#s — A bmas out and refrenamils
i ik = 4, Byl = (= 2 Everything acknowlodgad, but A still blocked
1 = <@k = 4, bl =1 - A rmay now serd 5
=ack =4, bul = 2= = B found & new bulfes somew e
13 = <58] = 5, data = m5> — & has 1 bufier lett
14 = <t = 6, data = mi> e & is now bhocked again .
5 - itk = B, bul = O = A ig still blocked // ;
16 =es <ack = B, bul = d= - Potential deadiock

s~




Transport Layer Multiplexing

Upward Downward
Transport address

Matwork
BOdress

Router lines

Recovering from Crashes

~f transport entity is within host (usual), it can
easily recover from network/router crashes.

~If host crashes, counters will be reinitialized and
host will not know where to begin.

_1Suppose host asks client: "What state are you
in?" Client says: "Waiting for the ack to TPDU
6." Host thinks it must have received TPDU 5
ok (because it ACKed 5) and asks for 6 again.

«BUT host may have already received TPDU 6 , ;
and passed it up to application (written to ap) /Z

before sending ACK 6. Just after writing and
before ack, it crashed. In this case host would

get a DUP of 6.




TCP Service

~«Sender and receiver create end points (sockets).

= Socket numbers consist of host IP address plus
16-bit port number.

= To obtain TCP service, connection must be
established between sockets on each end.

~Port numbers below 256 are called "well-known
ports." (RFC 1700)

2 All TCP connections are full-duplex, pt-to-pt.
4 TCP connection is a byte stream (does not //‘/ ﬁ%

preserve application-level boundaries). /

TCP Segments

= Sending and receiving TCP entities exchange
data in segments.

= Segment has a fixed 20-byte header (plus optional
data) followed by data bytes.

= Each segment must fit into the 65,535 byte IP
payload max.

= Each network also supports a maximum transfer
unit (MTU).

= |f segment too large for a network, router may , ﬁ%
divide it into multiple segments (repeats the IP and /#

segment header overhead). /




Transport Layer May Support QoS Parameters

-1 Conection establishment delay

~Connection establishment failure
probability

= Throughput

< Transit delay

~Residual error ratio

~Protection 4 :4/

~Priority ,
~Resilience /

Problems

< Chapter 1: 5,7,14,16,18,26,27

= Chapter 3: 1,3,6,12,22,24,28

~Chapter 4: 3,4,19,20,28,40

~Chapter 5: 8,16,19,20,26,28,34,38

2 Chapter 6: 1,2,3,6,7,14,22,23,31
through 37 (due Monday, 23rd)

&
7~




