
DLC LayerDLC Layer

Dr. G. A. MarinDr. G. A. Marin

Material provided for education purposes only.
No further reproduction permissable.

The Virtual bit-pipeThe Virtual bit-pipe

Communication Link

Network
Layer

Network
Layer

Data Link
Control

Data Link
Control

Physical
Interface

Physical
Interface

Synchronous or Asynchronous
Unreliable bit-pipe

Common DLC Services: deliver Common DLC Services: deliver
data frames withdata frames with
Unacknowledged connectionless service

No Ack from destination
No connection established or released
No error recovery at DLC layer
Common in LANs and voice

Acknowledged connectionless service
No connection established or released
Each frame is ACKed
Common in wireless

Acknowledged connection-oriented service
Source & destination establish connection before data sent
DLC guarantees frame received once and in order
(numbered)
Phases: Connection setup, transmission, connection release

DLC Service "Hides"DLC Service "Hides" Variety of Physical Variety of Physical
Media and Subnet ArchitecturesMedia and Subnet Architectures

Local Area Network (Ethernet, Token Ring)
Metropolitan Area Networks (SMDS)
Point-to-point connection
Frame Relay
ATM
Wireless

DLC Service and Virtual Data PathDLC Service and Virtual Data Path

To do its job a DLC must:To do its job a DLC must:

Create/Detect Frames
Add Frame Header and Trailer

Insure Frame is Error-Free (with agreed
probability)
Cooperate with his peer through a
protocol that supports the DLC service

Building/Finding FramesBuilding/Finding Frames

Phy layer delivers raw bits
received bits may be less, more, equal to sent
bents
received bits may be errored

Data link layer must find frames, correct errors
Generally cannot rely on gaps between frames
Use header and trailer to carry start/end flags
and "checksums"

Ex. STXDLE starts frame
ETXDLE ends frame
or specific bit pattern: 01111110

Acks FrHdr PkHdr PkData FrTlr Data

Frame

DLC Frame Carries NetLayer PktDLC Frame Carries NetLayer Pkt

Key Methods for Recognizing/Separating Frames Key Methods for Recognizing/Separating Frames

Character counting
Starting/Ending characters with character
stuffing
Starting/Ending flags with bit stuffing

Character CountingCharacter Counting

Characters sent, stuffed, received...Characters sent, stuffed, received...

Bits sent, stuffed, received...Bits sent, stuffed, received...

Flag: 01111110

Error Detection (and Correction)Error Detection (and Correction)

Two basic philosophies
Error correction: Include enough
redundant bits to enable error correction
Error detection: Include enough
redundant bits to enable error detection
only then request retransmission of frame

Think of frame as m bits, redundant bits
as r, with total m+r=n, the codeword.

r bits carried in frame trailer

Hamming DistanceHamming Distance
Hamming distance between two codewords is
number of bits in which they differ:

10001001 and 10110001 have Hamming distance
of 3 (bits 3, 4, 5)

Note 2m messages possible and many more, 2n,
code words.

Hamming distance of "closest" two codewords is
the Hamming distance of the code.
To DETECT d errors need a "d+1 code"
To CORRECT d errors need a "2d+1 code"

Error detection and retransmission much more
common

Example: 2 m-bits and 2 r-bitsExample: 2 m-bits and 2 r-bits

00, 01, 10, 11 are allowable messages
Suppose 0000, 0101, 1010, and 1111 are the
code words.

Hamming distance is 2
Can detect 1 bit errors

If 1000 is received we know it is an error
Cannot correct 1 bit errors (need HD of 3)

If 1000 received we don't know if 1010 or 0000
was sent with 1-bit error.

Example: 2 m-bits & 3 r-bitsExample: 2 m-bits & 3 r-bits

00, 01, 10, 11 are allowable messages
(data)
Codewords: 00000,00111,11010,11101
Hamming Distance is 3.
Can correct 1-bit errors
Ex. If 11110 is received, the only
codeword that is 1bit away is 11010.
HW: Show you cannot correct all 2-bit
errors

Common Error Detection MechanismsCommon Error Detection Mechanisms

Parity Bit
Add 1 bit per frame so that frame is always even or always
odd
Will catch all single-bit errors
Probability of catching a burst error is 0.5

Matrixed Parity Bits
Send blocks of frames as matrix n bits wide and k bits high.
Compute separate parity bit for each column and add as
k+1st row.
Transmit row 1, row 2, ... row k+1 and accept only if all
parity bits are correct.
Will detect single burst of length n and longer bursts with
probability 1- 2-n.
Cyclic Redundancy Code

Cyclic Redundancy CheckCyclic Redundancy Check
m-bit message frame: im-1 im-2 ... i1 i0
represented as: im-1xm-1+im-2xm-2+...+i1x+i0

Note: coefficients i0, i1, ..., ik-1 are 0 or 1.
Example: 110001

represented: x5+x4+1
Polynomial arithmetic is done mod 2 with addition and
subtraction identical to "exclusive or"

0+0=0
0+1=1
1+0=1
1+1=0
no carries for addition or borrows for subtraction

CRC FundamentalsCRC Fundamentals
Transmit codewords of length m+r at the DLC layer
with m message bits and r checksum bits.
Message bits map to polynomial M(x) of order m-1.
Checksum bits map to polynomial C(x) of order r-1.
T(x) is polynomial that corresponds to the entire
transmitted codeword of length m+r (degree m+r-1)
Checksum is computed before transmission such that the
polynomial T(x) is divisible by a generator polynomial, G.

G(x) = xr+gr-1xr-1+...+g1x+1 and r<m
The receiver also knows G and determines that an error
has occurred if T(x)/G(x) is anything other than zero.

How to compute checksum (given G)How to compute checksum (given G)

Append r zero bits to low-order end of frame so
that it now contains m+r bits corresponding to
xrM(x).
Divide: xrM(x)/G(x) using mod 2 arithmetic.
Subtract the remainder from xrM(x).

G has degree r so remainder has degree less than
r; thus, no bits of the original m are changed by
this subtraction.

The result of the subtraction is the
checksummed frame to be transmitted (and
corresponds to the polynomial T).

CRC ExampleCRC Example
Frame: 1101011011 Generator: 10011Frame: 1101011011 Generator: 10011
Message and appended 4 zeros: 11010110110000Message and appended 4 zeros: 11010110110000

 1100001010
10011 11010110110000
 10011
 10011
 10011
 010110
 10011
 10100
 10011
 1110

Remainder

Error Detecting Power of CRCError Detecting Power of CRC
Assume received polynomial is T(x)+E(x)

Each 1-bit coefficient in E(x) corresponds to errored bit of T.
Receiver thus divides T(x)+E(x)/G(x)=E(x)/G(x) by design.

If G(x) is a factor of the error polynomial, the error will be undetected.
Single bit error implies E(x)=xi for some bit position i=1,2,...,n

As long as G(x) contains two or more terms, it cannot divide xi so all single bit errors
are detected.

Two single-bit errors (double bit error) imply E(x)=xi+xj, i>j (say)
Write E(x)=xj(xi-j+1). If we make sure G cannot divide xk or xk+1 for all k=1,2,...,n
then G will catch all double bit errors.
Example, x15+x14+1 will not divide xk+1 for k<32,768

Odd number of erors means E(x) has odd number of terms.
It is known that no polynomial with oddd number of terms is divisible by x+1 (mod
2).
Thus, make sure G(x) has x+1 as factor and catch all errors involving odd number of
bits.

Most important CRC with r check bits will detect all burst errors of length less
than or equal to r (read discussion in text).

International Standards for CRC Generator Polynomials International Standards for CRC Generator Polynomials

CRC-12: x12+x11+x3+x2+x+1
CRC-16: x16+x15+x2+1
CRC-CCITT: x16+x12+x5+1

Retransmission StrategiesRetransmission Strategies
General concept of Automatic Repeat Request (ARQ):
detect frames with errors at receiving DLC and request
transmitting DLC to repeat erroneous frames.
Error detection usually done via CRC. Retransmissions
handled via retransmission protocol.
Correctness Issue: Does the protocol succeed in
releasing each packet once (and only once), without
errors, from the receiving DLC?
Efficiency Issue: How much of the capacity of the
channel is wasted by unnecessary waiting or by sending
unnecessary transmissions?

Example: Stop-and-Wait ARQ with ACK/NAK Example: Stop-and-Wait ARQ with ACK/NAK

A transmits a frame to B and waits.
If frame ok at B, B sends ACK.
If frame in error at B, B sends NAK.
ACK and/or NAK also protected with CRC.
If A receives ACK, sends next frame.
If A receives NAK, sends last frame again.
Because the frame or the ACK/NAK can be lost,
A maintains a timer and retransmits if "pops."

Potential ProblemsPotential Problems
The delay in the channel is arbitrary so A may time out
and retransmit the old data in a second frame. (B will not
know and will pass duplicate data to NL.)
Potential solution: put a sequence number on the
frames.
Remaining problem: A sends frame k, B receives and
sends ack. Ack is delayed. A sends frame k again. B
receives (tosses) and sends ack. A receives first ack and
sends k+1. A receives second ack and sends k+2
although k+1 has not really been acked by B.
Solution: Instead of sending ACK/NAK, B sends a frame
(still called ACK) that contains the number of the next
frame awaited.

Algorithm at A (for A to B Tx)Algorithm at A (for A to B Tx)

1. Set the integer variable SN to 0.
2. Wait for packet from NL; when available
assign number SN to new packet.
3. Transmit SNth packet in frame containing SN
in the seq number field.
4. If an error-free frame is received from B
containing a request number RN greater than
SN, increase SN to RN and go to step 2. If no
such frame is received within a given (timer)
delay, go to step 3.

Algorithm at B (for A to B Tx)Algorithm at B (for A to B Tx)

1. Set the integer variable RN to 0 and repeat
steps 2 and 3 forever.
2. When an error-free frame is received from A
containing a sequence number SN equal to RN,
release the received packet to the higher layer
and increment RN.
3. At arbitrary times, but within bounded delay
after receiving any error-free data frame from A,
transmit a frame to A containing RN in the
request number field.

Proof of CorrectnessProof of Correctness

Can be proven that algorithm is "correct":
That is, a never-ending stream of packets can be
accepted from the higher layer at A and delivered
to the higher layer at B ir order and without
repetitions or deletions.

Correctness proofs generally involve two parts:
safety and liveness.

safety: algorithm never produces an incorrect
result (releases bad packet to NL).
liveness: algorithm can continue forever to
produce results (never enters a deadlock).

Data Link Protocol AssumptionsData Link Protocol Assumptions
Independence of layers
A sends to B using reliable, connection-oriented service

Infinite supply of data ready to send
DLC accepts packet from Net Layer adds FH and FT and
submits to to_physical_layer. Receiver receives from
from_physical_layer and submits pkt to Net Layer.
CRC performed on both ends using hardware.

event = cksum_err or event = fr_arrival
Usually channel assumed unreliable

timeout and retransmission may result

Definitions in Header FileDefinitions in Header File

An Unrestricted Simplex Protocol An Unrestricted Simplex Protocol

CommentsComments

Both Tx and Rx net layers are always ready.
Processing time ignored.
Infinite buffer space available.
No damaged or lost frames.

No seq numbers or acks.
Only event = frame_arrival is possible.
Only info field of frame used.

Stop-and-Wait CommentsStop-and-Wait Comments
Main problem is to prevent flooding the receiver faster
than it can process.
Rx process time may vary because of multiple lines, etc.

Inefficient just to assume worst case
Solution is to wait for Rx to send ACK giving permission
for Tx to send next frame.
When ACK each frame: "Stop-and-Wait"
Channel must support 2-way communication

Half-duplex suffient

Simplex Stop-and-wait protocolSimplex Stop-and-wait protocol
Drop assumption that receiving NL is infinitely fast.Drop assumption that receiving NL is infinitely fast.

Add a Noisy ChannelAdd a Noisy Channel
Channel creates errors so frames damaged or lost.
Damaged frames are caught by checksum and discarded.
Why not retransmit after timeout?

Might lose ACK! (would appear to be timeout)
Solution is add sequence number to data frame and seq
number to the ACK.

Sender remembers seq no of next frame to send
Receiver remembers seq no of next frame expected.

Such protocols (wait for ACK before sending next seq
number) most commonly called ARQ.

One-direction data flow over unreliable channel One-direction data flow over unreliable channel

ARQ Comments (ACK Each Frame)ARQ Comments (ACK Each Frame)

After Xmit frame sender starts timer at full
value.

greater than transmission time + worst case
processing time + ack transmission time

Retransmit frame if timer "pops"
After sender transmits frame it waits for:

ack frame to arrive undamaged: fetch next pkt
from NL and overwrite buffer then advance seqno
If damaged ack or timer pop then retransmit from
unchanged buffer with unchaged seqno.

After Rx receives a frame: if valid pass to NL
and return ACK with seqno of next frame. If
dup or damaged, then toss it.

PiggybackingPiggybacking

Return ack with data going back to
source
What if no data soon enough? (set
timer)
Much better use of channel and fewer
frames to process

Sliding Window ProtocolsSliding Window Protocols
Each outbound frame contains a seq no between 0 and 2n
- 1 for some n.
Sender maintains a set of seq nos it is permitted to send
in "sending window."

Nos represent frames sent but not acked.
Advance top of window for new sent frame.
Advance bottom of window for ACK.

Receiver maintains a "receiving window.
Nos represent frames it may accept.

Discards any frame outside window & no ack.
When frame received at lower edge, passed to NL and
acked.
When frame received in window but not a lower edge, it
will be saved until at lower edge, then passed to NL.

Sliding Window OperationSliding Window Operation

