DLC Layer

Dr. G. A. Marin

Material provided for education purposes only.
No further reproduction permissable.

)’4

The Virtual bit-pipe

Network
Layer

Data Link
Control

Synchronous or Asynchronous
Unreliable bit-pipe

Network
Layer

Data Link
Control

Physical
Interface

Communication Link

Physical
Interface

&
y o

Common DLC Services: deliver
data frames with

~1Unacknowledged connectionless service
= No Ack from destination
= No connection established or released
= No error recovery at DLC layer
= Common in LANSs and voice
~1Acknowledged connectionless service
= No connection established or released
= Each frame is ACKed
= Common in wireless
~tAcknowledged connection-oriented service P %/
= Source & destination establish connection before data sent -
= DLC guarantees frame received once and in order 3

(numbered)
= Phases: Connection setup, transmission, connection r e

DLC Service "Hides" Variety of Physical
Media and Subnet Architectures

2 Local Area Network (Ethernet, Token Ring)
~Metropolitan Area Networks (SMDS)

21 Point-to-point connection

~Frame Relay

JATM

~Wireless

DLC Service and Virtual Data Path

Hoal 1 Host 2 Hust 1 Mgt 2
. - i .

To do its job a DLC must:

_ICreate/Detect Frames
= Add Frame Header and Trailer

_tInsure Frame is Error-Free (with agreed
probability)

~1Cooperate with his peer through a
protocol that supports the DLC service

&

¢

Ve

Building/Finding Frames

_1Phy layer delivers raw bits

= received bits may be less, more, equal to sent
bents

= received bits may be errored
21 Data link layer must find frames, correct errors
~1Generally cannot rely on gaps between frames

~1Use header and trailer to carry start/end flags
and "checksums"

= Ex. STXDLE starts frame /(%

= ETXDLE ends frame &

= or specific bit pattern: 01111110 /

DLC Frame Carries NetLayer Pkt

Acks FrHd PkHd PkDat FrTir Data

’,1—[] | | |
e
g
/

Key Methods for Recognizing/Separating Frames

~1Character counting

21 Starting/Ending characters with character
stuffing

1 Starting/Ending flags with bit stuffing

&

-

Yo

Character Counting

Charactsr count One characiel

m[sT1[z]a]a]s[e]7]e[a]alo[1[2]a3]als]e[alr]a[a]a[1]2]3]"

Frame 1 Frame 2 Frame 3 Frame 4
& characters 5 charactars B characters 8 characiens i

1

Eimar

{h}isltlﬂﬂlélﬂﬁl?rnlslulnit‘LzIaI4IE|ﬁIaI?IBI9|ﬂ!1]2I3I-;

Frame 1 Frame 2 Nowa
(Wrang) charactar count / %)
>3

y o

Characters sent, stuffed, received...

A DLE | | OLE B DLE | | ETX

‘Hﬂ‘“‘ Stuffed DLE

A ||oEl|| 8
(a)

STX | | DLE
(b}

A juLE B
() L

i

¢

77

Bits sent, stuffed, received...

Flag: 01111110

@ 11011111111 111111110010

(b)) 011011111011111011111010010

Stutfed bits

() 011011111111111111110010

v

¢

Ve

Error Detection (and Correction)

1 Two basic philosophies
= Error correction: Include enough
redundant bits to enable error correction

= Error detection: Include enough
redundant bits to enable error detection
only then request retransmission of frame

1 Think of frame as m bits, redundant bits
as r, with total m+r=n, the codeword. /(/3
-

= r bits carried in frame trailer

Hamming Distance

~tHamming distance between two codewords is
number of bits in which they differ:
= 10001001 and 10110001 have Hamming distance
of 3 (bits 3, 4, 5)
~Note 2mmessages possible and many more, 2n,
code words.

= Hamming distance of "closest" two codewords is
the Hamming distance of the code.

= To DETECT d errors need a "d+1 code" /(%3
= To CORRECT d errors need a "2d+1 code" Qe
_Error detection and retransmission much more _s*
common /

Example: 2 m-bits and 2 r-bits

200, 01, 10, 11 are allowable messages
~1Suppose 0000, 0101, 1010, and 1111 are the
code words.
= Hamming distance is 2
= Can detect 1 bit errors
« [f 1000 is received we know it is an error
= Cannot correct 1 bit errors (need HD of 3)

o |f 1000 received we don't know if 1010 or 0000
was sent with 1-bit error. P> %

-

Ve

Example: 2 m-bits & 3 r-bits

200, 01, 10, 11 are allowable messages
(data)

2 Codewords: 00000,00111,11010,11101
~tHamming Distance is 3.

_1Can correct 1-bit errors

JEx. 1f 11110 is received, the only

codeword that is 1bit away is 11010. P %;/
JHW: Show you cannot correct all 2-bit -

errors /

Common Error Detection Mechanisms

_Parity Bit
= Add 1 bit per frame so that frame is always even or always
odd
= Will catch all single-bit errors
= Probability of catching a burst error is 0.5
~Matrixed Parity Bits
= Send blocks of frames as matrix n bits wide and k bits high.
= Compute separate parity bit for each column and add as
k+1st row.

= Transmit row 1, row 2, ... row k+1 and accept only if all '
parity bits are correct. (/(%

= Will detect single burst of length n and longer bursts with g

probability 1- 2-.
= Cyclic Redundancy Code

Cyclic Redundancy Check

2m-bit message frame: in.yinz ... Iy
represented as: iy Xm iy Xm2+., . i X+,
= Note: coefficients iy, iy, ..., i, are 0 or 1.
~Example: 110001
= represented: Xxs+xi+1
~Polynomial arithmetic is done mod 2 with addition and
subtraction identical to "exclusive or"
= 0+0=0
= 0+1=1

= 1+0=1 2
" 1+1=0 /(

= no carries for addition or borrows for subtraction /

CRC Fundamentals

~ Transmit codewords of length m+r at the DLC layer
with m message bits and r checksum bits.

-1 Message bits map to polynomial M(x) of order m-1.
~1Checksum bits map to polynomial C(x) of order r-1.
2 T(x) is polynomial that corresponds to the entire
transmitted codeword of length m+r (degree m+r-1)
~1Checksum is computed before transmission such that the
polynomial T(x) is divisible by a generator polynomial, G.
= G(X) = X+g. X+, +0;x+1 and r<m

< The receiver also knows G and determines that an error | /:)/3

has occurred if T(x)/G(x) is anything other than zero.
P

Ve

How to compute checksum (given G)

21 Append r zero bits to low-order end of frame so
that it now contains m+r bits corresponding to
XrM(X).

2 Divide: xM(x)/G(x) using mod 2 arithmetic.

21Subtract the remainder from x-M(x).

= G has degree r so remainder has degree less than
r; thus, no bits of the original m are changed by
this subtraction.

~1 The result of the subtraction is the /f%j

checksummed frame to be transmitted (and -

corresponds to the polynomial T). /

CRC Example
Frame: 1101011011 Generator: 10011
Message and appended 4 zeros: 11010110110000

1100001010
10011/11010110110000
10011
10011
10011
010110
10011
10100
10011 Remainder

1110

&

¢

Ve

Error Detecting Power of CRC

2 Assume received polynomial is T(x)+E(x)
= Each 1-bit coefficient in E(x) corresponds to errored bit of T.
= Receiver thus divides T(x)+E(x)/G(x)=E(x)/G(x) by design.
= [f G(x) is a factor of the error polynomial, the error will be undetected.
2 Single bit error implies E(x)=xifor some bit position i=1,2,...,n
= As long as G(x) contains two or more terms, it cannot divide xi so all single bit errors
are detected.

2 Two single-bit errors (double bit error) imply E(x)=x+xj, i>j (say)
= Write E(x)=xi(xi#+1). If we make sure G cannot divide x<or x+1 for all k=1,2,...,n
then G will catch all double bit errors.
= Example, x5+x%+1 will not divide x+1 for k<32,768
~10Odd number of erors means E(x) has odd number of terms.
= |t is known that no polynomial with oddd number of terms is divisible by x+1 (mod

bits.
1 Most important CRC with r check bits will detect all burst errors of length less 4
than or equal to r (read discussion in text).

2). ;
= Thus, make sure G(x) has x+1 as factor and catch all errors involving odd number of / %
d

International Standards for CRC Generator Polynomials

J1CRC-12: X124 X114 X34+ X2+ X+ 1
1 CRC-16: X164+X154+x2+1
JCRC-CCITT: xm+x124x5+1

Retransmission Strategies

~1General concept of Automatic Repeat Request (ARQ):
detect frames with errors at receiving DLC and request
transmitting DLC to repeat erroneous frames.

~Error detection usually done via CRC. Retransmissions
handled via retransmission protocol.

~1Correctness Issue: Does the protocol succeed in
releasing each packet once (and only once), without
errors, from the receiving DLC?

= Efficiency Issue: How much of the capacity of the

channel is wasted by unnecessary waiting or by sending '
y y P %3

unnecessary transmissions?
&

Ve

Example: Stop-and-Wait ARQ with ACK/NAK

~ A transmits a frame to B and waits.

2 1f frame ok at B, B sends ACK.

~If frame in error at B, B sends NAK.

2 ACK and/or NAK also protected with CRC.

2 1f A receives ACK, sends next frame.

2 1f A receives NAK, sends last frame again.
~1Because the frame or the ACK/NAK can be lost,

A maintains a timer and retransmits if "pops."
pPop P :)/3
-

Ve

Potential Problems

21 The delay in the channel is arbitrary so A may time out
and retransmit the old data in a second frame. (B will not
know and will pass duplicate data to NL.)
~Potential solution: put a sequence number on the
frames.
~1Remaining problem: A sends frame k, B receives and
sends ack. Ack is delayed. A sends frame k again. B
receives (tosses) and sends ack. A receives first ack and
sends k+1. A receives second ack and sends k+2
although k+1 has not really been acked by B.
2 Solution: Instead of sending ACK/NAK, B sends a frame /c /
(still called ACK) that contains the number of the next 3

frame awaited. /

Algorithm at A (for A to B Tx)

1. Set the integer variable SN to 0.

212, Wait for packet from NL; when available
assign number SN to new packet.

3. Transmit SNth packet in frame containing SN
in the seq number field.

214, If an error-free frame is received from B
containing a request number RN greater than
SN, increase SN to RN and go to step 2. If no

such frame is received within a given (timer) /(/3
-

delay, go to step 3.

Algorithm at B (for A to B Tx)

=11, Set the integer variable RN to 0 and repeat
steps 2 and 3 forever.

22. When an error-free frame is received from A
containing a sequence number SN equal to RN,
release the received packet to the higher layer
and increment RN.

23, At arbitrary times, but within bounded delay
after receiving any error-free data frame from A,
transmit a frame to A containing RN in the P> %3
request number field. '4,

Ve

Proof of Correctness

21 Can be proven that algorithm is "correct":
= That is, a never-ending stream of packets can be
accepted from the higher layer at A and delivered
to the higher layer at B ir order and without
repetitions or deletions.
21 Correctness proofs generally involve two parts:
safety and liveness.
= safety: algorithm never produces an incorrect
result (releases bad packet to NL).
= liveness: algorithm can continue forever to /(%

produce results (never enters a deadlock). P

Data Link Protocol Assumptions

~Independence of layers
~1A sends to B using reliable, connection-oriented service
= Infinite supply of data ready to send
. DLC accepts packet from Net Layer adds FH and FT and
submits to to_physical_layer. Receiver receives from
from_physical_layer and submits pkt to Net Layer.
-1 CRC performed on both ends using hardware.
= event = cksum_err or event = fr_arrival
~1Usually channel assumed unreliable

= timeout and retransmission may result

¢

Ve

Definitions in Header File

wehaliveg BAAN _PET 1024 e paimrnas packol Sine i bytes =
typecial snum {lalee, rua) Doolean: = nolman bypm =0
typodot unsigreed int aeg.nr, /% SOCUDNGE O mck numisace

typedo! siruct [unsigned char dataMax_FPHT]) packot= packet definition «/
typredod anwm {dats, ack, nak) frerea kKind, £ Traes _Hind dedinifion =7

typeaded strasc = frames sre tranaporbsd in s layar =f
fraume Kird kind; f= wihat kind of a frames s g7 =
SN SO f* SROEN0S NUmber =
o T T fo acknowiedgomont number =
pachkat vfio; Ja Eha nalwors layer packot =4
} Brmrm;

£= Wialt for an evant 1o apeen; rebum s ype In event, =/
woidd walt_Tor_sweni{menm bype Savanty;

j= Fatch s packal from ho notsork layes for frmnemission an e channal. =/
wold from_nestwoek_lsgyer(packal =pi.

i Dy information Tvom an inbound frames (o the nartaock dayar. =/
wold tn_natwork laysrpackal p):

fo o gt an inbound frams from thes phyascal layar and oopy #@ toor, =/
wizkdd from phyakead layonirame =r);

= Pass the frame 1o the physical layss for ramsmisasion, =5

wesid lea physical layor{irames =5}

o Start thi chock rumning anc esabbe e Unaeout owent, =/

waid atart timan{sog_nr k)

F+ Stop the clock and chesbile the Gmaoul avant. =7

woid stop.timonseg_nr ki

Fu Simrt mn suxilisry tirmer and anable the ack _thmsout mesnt. =/

wid siarlack_fimen{vesd);

fo Stop the ausiliary lfdd and disabls the ack_fimesout avant. s
winl BT ek birmergeoied);

s Allew The realwork laeer 10 couse & nebwork lapar seacy aeant. sf
winhd snambie_rseteeark layar] wobd);

Ao Pockd e natwork layor from causing s nebsork lapas raady ovent. =/
ol climmbale reslwerk bianvoid);

¢ MlAacrs e S e panded in-lne; Incrsmant b circolamy. =/
drcimbinne sk i (k= MAX SEQ) K=K+ T; si=s k = 0

p

An Unrestricted Simplex Protocol

f= Prodecol 1 (whopda) provides for data iransmissicn in ona diection andy, from
ender to receiver. The communication channe! is assumed 10 be error ree,
and tha recalver is assumad to be able to process all the Input Infinitely fast
Caonaeguantly. 1he aendar just Sita ina oD pumpdng Gata oul enic e ne a5
Tast as it can. =/

typeadel anurm (frame_arrival] avenl lype;
wincledn “protoool. 7

winidl semder! (vold)

[
framme =; {= bullar Tor an outbound frame =/
packet butfer; /= butfer for an outbound packet '

wyuiles (Rruns) [
trosm . network. layer(&butier); /= go got somathing to sond =/

& inlo = buttas: e copy it iNo & for IrRnNSmEssion =/
to. physical _layerfs); = pand & on s way =7
1 f= Tomorrow, and IGmormew, and Iomormow,

Creaps in this pally pace from day 10 day
To tha last syllable of reconded time
- Machath, W, ¥ &/
]

weied rescaivart (uoid)
[

frame r.
event_type avent; = fiilad i by warl, bul not used hara =/
sl {rue) |
wialt_for_ovent{&owvant); = only possibility s frame_arrieal =/
fram_phyacal _layarir); + go gt tha iInbound frame =/
o network layer]&r.nfa); S paEs the data o he natwork [ayer =¢

77

Comments

2 Both Tx and Rx net layers are always ready.
~Processing time ignored.
2 Infinite buffer space available.
~'No damaged or lost frames.
= No seq numbers or acks.
= Only event = frame_arrival is possible.
= Only info field of frame used.

Stop-and-Wait Comments

- Main problem is to prevent flooding the receiver faster
than it can process.

~IRx process time may vary because of multiple lines, etc.

= |nefficient just to assume worst case

2 Solution is to wait for Rx to send ACK giving permission
for Tx to send next frame.

2 When ACK each frame: "Stop-and-Wait"

~1 Channel must support 2-way communication

= Half-duplex suffient
/(%j

¢

Ve

Simplex Stop-and-wait protocol
Drop assumption that receiving NL is infinitely fast.

i Profecal 2 (stap-and-wait) alac providas tor a ona-direotional fltow of data from
sandar to recelvar. The communication channal & ondce again assumad 10 e anmar
free, as in protocal 1. Howsewar, this tima, the receivar has cnly a finite buffar
capacity and a finita procossing speed, so the protocol must explicitly prevent
the sendor frorm flooding the receivar with data fasters than it can ba handled. ="

typadet enum [frame_arral] esvent_type:
Wincluds “protocal.h”

woid sendar2(void)
i

frame =; f= butlar for an cutbound frame =/
packat Dutiarn; S bufer for an cutbound packet =/
event_type aweard: = frama_arrival |5 the only possibility -

while {trues) |
fram_network_layan&butfer); f go get something (o send =/

s.info = buffer; f= copy it Into & for Iransmissson =/
1o_phyascal_layar(bs); #= byo bye kttle frame =f
wail_for svent]Levent); F= do nol procasd until given the go anoad =/
1
}
wold recolver2)woid) / ;
{
frame r, 5; A= pultars Tor framas =) 5
evanl_ype avani; 4% frame_arrival is the onlby possibility =/
whiba (trua) |
wail_far_evani{Gavant), J= onty possibility is frame_arrval =/ '
from_physical layeriir); f* go ged the inbound Trama =/
to_netwark_layar{&r.info); /= pass tha data to the notwork layer «F
io_physical layar(&s); = sarnd a durnmvy rame 1o awaken sandar =/

Add a Noisy Channel

=1 Channel creates errors so frames damaged or lost.
~1Damaged frames are caught by checksum and discarded.
~'Why not retransmit after timeout?

= Might lose ACK! (would appear to be timeout)

~1Solution is add sequence number to data frame and seq
number to the ACK.

= Sender remembers seq no of next frame to send
= Receiver remembers seq no of next frame expected.

~1Such protocols (wait for ACK before sending next seq
number) most commonly called ARQ. P> %3

¢

y o

One-direction data flow over unreliable channel

s e Gl Gl (e Crens (% L T T T
P= st Ba T 1or prolooo] 3 =
nl, chaum.srr. fmeoull sveni tyee.

ARQ Comments (ACK Each Frame)

2 After Xmit frame sender starts timer at full
value.
= greater than transmission time + worst case
processing time + ack transmission time
~Retransmit frame if timer "pops"

_1 After sender transmits frame it waits for;

= ack frame to arrive undamaged: fetch next pkt
from NL and overwrite buffer then advance segno

= |f damaged ack or timer pop then retransmit from /:"%3
unchanged buffer with unchaged segno. ’ s

_ After Rx receives a frame: if valid pass to NL
and return ACK with segno of next frame. /
dup or damaged, then toss it.

Piggybacking

~Return ack with data going back to
source

~'What if no data soon enough? (set
timer)

~Much better use of channel and fewer
frames to process

&

¢

Ve

Sliding Window Protocols

~1Each outbound frame contains a seq no between 0 and 2»
- 1 for some n.
~1Sender maintains a set of seq nos it is permitted to send
in "sending window."
= Nos represent frames sent but not acked.
= Advance top of window for new sent frame.
= Advance bottom of window for ACK.
_Receiver maintains a "receiving window.
~Nos represent frames it may accept.

= Discards any frame outside window & no ack. '
y | /:)%3

= \When frame received at lower edge, passed to NL and

acked.)

= When frame received in window but not a lower edge, it
will be saved until at lower edge, then passed to NL.

Sliding Window Operation

{a [15] =] i

Fig. 12, A sdidisg window of s 1 wilh a 3-bit sequesse oumber, /‘ /

{a) Inigially, b Afier che first frome fas been senc (€ After the first frame hos
heen received. {di After che first acknowledgement hos been receivad. '

Yra

