

Protocol Specification/Verification

- At all layers specifying and verifying protocols is a major challenge
- Two major techniques used are Finite State Machines and Petri Nets.
- Finite State Machine
 - Protocol machine (Tx or Rx) represented as being in one of many states.
 - Generally take "waiting" states and in addition describe state by values of all (key) variables - n variables means 2ⁿ states.
 - Model receiver states and sender states plus channel states to get model of entire system.
 - Initial state is some convenient starting point
 - From each state there are zero or more transitions to other states.
 - Thus, FSM is a quadruple (S,M,I,T) where:
 - S is set of states for receiver, sender, and channel
 - M is set of frames that can be sent over channel
 - I is set of initial states
 - T is the set of transitions possible among states.

Point-to-Point Protocol: PPP (RFC 1661,1662,1663) Supports error detection, multiple protocols, and authentication Includes flags to start and end frames Includes link control protocol (LCP)

- negotiate: max payload size, authenitication use, protocol used, header compression options, line quality testing, CRC length...
- Includes network control protocol (NCP) appropriate to supported network layers
 - For TCP/IP supports dynamic addressing

LCP Frame Types

Name	Direction	Description
Configure-request	$I \rightarrow R$	List of proposed options and values
Configure-ack	I ← R	All options are accepted
Configure-nak	I ← R	Some options are not accepted
Configure-reject	I ← R	Some options are not negotiable
Terminate-request	$I\toR$	Request to shut the line down
Terminate-ack	I ← R	OK, line shut down
Code-reject	I ← R	Unknown request received
Protocol-reject	I ← B	Unknown protocol requested
Echo-request	$I \to R$	Please send this frame back
Echo-reply	I ← R	Here is the frame back
Discard-request	iscard-request $I \rightarrow R$ Just discard this frame (for test	

 		-		
OSi layer	ATM layer	ATM sublayer	Functionality	
		cs	Providing the standard interface (convergence)	
3/4	AAL	SAR	Segmentation and reassembly	-
2/3	АТМ		Flow control Cell header generation/extraction Virtual circuit/path management Cell multiplexing/demultiplexing	
2		тс	Cell rate decoupling Header checksum generation and verification Cell generation Packing/unpacking cells from the enclosing envelope Frame generation	-
1	- Physical	PMD	Bit timing Physical network access	C

Function of Transmission Convergence Sublayer

- Take a sequence of cells (from ATM layer), add a HEC Byte to each header, produce output bitstream, and match physical layer
- HEC (Header Error Control) Byte
 - Checks header only
 - Corresponds to $x^8 + x^2 + x + 1$
 - Catches all single-bit errors
 - Prob of undetected multibit error = 10⁻¹²*P(1-bit error)
- Match transmission media
 - If asynchronous, no timing restrictions
 - If synch, match timing pattern
 - May send idle cells if no data
 - Operation and Maintenance (OAM) cells used for control and timing
- Receiving TC layer locates frame boundaries and checks HEC
 - Usual case is SONET where frame structure points to cell
 - Otherwise use HEC with bit-shift
 - But probability of random pattern match is 1/256 so...

