Operating System Concepts

CGS 3763, Spring 2004

Homework Assignment #5

Due Wednesday, April 14th
Name _________________

(at beginning of class)
Please read the following certification and sign where indicated:

I hereby certify that the answers I am submitting for this homework assignment are my own and that I have not obtained answers from any other student. I also certify that I have not provided my answers to any other student to copy or use as the basis for his/her homework. I understand that cheating on this or any other assignment or test will immediately result in a score of “0” for the assignment in addition to possible disciplinary action by the University. I also acknowledge that I have read and understand the University’s policies regarding “Student Academic Behavior” as provided at www.ucf.edu/goldenrule.

 Student Signature
1) (5 pts) Segmentation is a memory management scheme that does not reflect the programmer’s view of memory?

TRUE

FALSE
2) (5 pts) Segmentation looks similar to contiguous allocation with multiple dynamic partitions if an entire program is treated as a single segment.

TRUE

FALSE

3) (5 pts) Segmentation requires which of the following:

a.
Unique hardware for address translation
b.
Special compilers to divide programs into segments and generate two-tuple logical addresses (<segment, offset>).

c.
The ability for the OS to track free space in the system (e.g., free space table)

d.
External fragments to keep the segments separated.

e.
none of the above.

4) (10 pts) Small page tables (and segment tables) can be kept in fast registers for quick reference. If the number of pages for a particular process is large, the page table must be stored in memory. Assuming a page table is in memory and there is no TLB, how many memory accesses are required for each logical address referenced? What is retrieved during each access?

Two (2) memory accesses are required for each referenced logical address:

1)
The first access retrieves the page table entry (frame).

2)
After computing the physical address (frame + offset), the second access retrieves the actual data or instruction required by the program

5) (10 pts) A process has associated with it the following table. For each logical address shown indicate if the address is legal. If it is, compute the physical address. Addresses are in the form <p, d>. Assume each page/frame is 1000 bytes in size.

	Page #
	Frame #

	0
	24

	1
	14

	2
	6

	3
	55

Logical Address < 0, 321 >
Is it legal? ___Y___
 Physical Address ___24321____

(24 * 1000 + 321)

Logical Address < 1, 3100 >
Is it legal? ___N___
 Physical Address ____________

(Displacement of 6100 is greater than size of one page)

Logical Address < 4, 754 >
Is it legal? ___N___
 Physical Address ____________

(Page 4 is invalid. Does not appear in the page table)

Logical Address < 2, 208 >
Is it legal? ___Y___
 Physical Address ___6208_____

(6 * 1000 + 208)

Logical Address < 3, 0 >
Is it legal? ___Y___
 Physical Address ___55000___

(55 * 1000 + 0)

6) (10 pts) The same page table as the previous problem. What happens when the size of the page is increased to 4000 bytes per page?

Logical Address < 0, 321 >
Is it legal? ___Y___
 Physical Address ___96,321_____

(24 * 4000 + 321)

Logical Address < 1, 3100 >
Is it legal? ___Y___
 Physical Address ___59,100______

(14 * 4000 + 321)

Logical Address < 4, 754 >
Is it legal? ___N___
 Physical Address ____________

(Page 4 is invalid. Does not appear in the page table)

Logical Address < 2, 208 >
Is it legal? ___Y___
 Physical Address ___24,208_____

(6 * 4000 + 208)

Logical Address < 3, 0 >
Is it legal? ___Y___
 Physical Address ___220,000___

(55 * 4000 + 0)

7) (20 pts) Consider a system using paging with page tables for each process stored in main memory.

If a single memory reference takes 150 nanoseconds, how long does a paged memory reference take?

Each memory reference requires two (2) memory accesses if process page tables are stored in memory. The first reference fetches the page table entry (page #, frame address, valid/invalid bit). Address translation hardware computes the physical address (frame address + page offset). Then the second memory access fetches the data or instruction required by the program.

150 nanoseconds x 2 = 300 nanoseconds
If we add associative registers (aka TLBs) and 90% of all page-table references are found in the associative registers, what is the effective memory access time? Assume that finding a page-table entry in the TLB takes 10 nanoseconds.

Time for memory reference if page-table entry in TLB:

 Check TLB + fetch data/instruction = 10 + 150 = 160 nanoseconds

Time for memory reference if page-table entry (PTE) not in TLB:

 Check TLB + fetch PTE from memory + fetch data/instr. = 10 + 150 +150 = 310 nanosecs.

Calculate effective memory access time:

 EAT

= 90% x time when PTE in TLB + (1 – 90%) x time when PTE not in TLB

= .9 x 160 + .1 x 310

= 175 nanoseconds

8) (10 pts) List four additional hardware and software components necessary to make paging work in a computer system.

The following are needed for basic paging:

1.
Page Tables (one per process) and Registers

2.
Page Capable MMU to compute physical addresses

3.
Paging-Aware Compilers

4.
TLBs to cache page table entries

5.
Free Frame Table (one per system – tracks unassigned/unallocated frames)

The following additional elements are needed for demand paging:

1.
File Map Tables (one per process – maps pages to backing store)

2.
Backing Store / Swap Space to hold unloaded pages

9) (15 pts) For this problem, assume we are working with a decimal (base 10) computer. Given a paged memory system where:

· each page contains 100 bytes (102),

· the physical memory contains a total of 1,000,000 bytes (106), and

· logical memory (a program’s maximum logical address space) consists of 10,000 bytes (104).

What is the maximum number of pages that can be used by a program?

104 / 102 = 102 or 100 pages

How many frames are in the system?

106 / 102 = 104 or 10,000 frames
Number of frames is equal to the size of physical memory (1,000,000) divided by the size of a frame (100). Since frames and pages must be equal in size, a frame for this question is 100 bytes in size.

If every process that executes uses the maximum number of pages possible, what is the degree of multiprogramming in the system?

104 / 102 = 102 or 100 concurrent processes
Divide the number of frames in the system (10,000) by the maximum pages per process (100) to get the maximum number of concurrent programs possible.

10) (5 pts) Pointers to page tables are kept where? ___________in a process’ PCB____________

11) (5 pts) If paging is so complicated to implement, why do we bother with it?

The primary benefits of paging are an increase in memory utilization and therefore a higher degree of multiprogramming. This allows us to better utilize the CPU as well as other system resources.

