Operating System Concepts

CGS 3763, Spring 2004

Review Exercises for Chapters 7, 8 and 9

For purposes of these review questions, assume 1K = 1000, 1M = 1,000,000.

1) Deadlocks can be depicted using resource allocation graphs. A deadlock exists if the graph does not have any cycles.

TRUE

FALSE
2) List the three requirements that must be met to solve the critical section problem.

1. Mutual Exclusion – Only one process at a time may execute in its critical section.

2. Progress – Some process must be allowed to execute its critical section.

3. Bounded Waiting – Cannot prevent a process from executing its critical section indefinitely. The wait for access following a request must be bounded.

3) A set of operations that are executed during a single uninterruptible time step or Fetch-Execute-Interrupt cycle are referred to as _______Atomic Instructions________.
4) Processes can request and release resources using __________________.

a.
operations on semaphores

b.
interprocess communication

c.
device scheduler commands

d.
system calls

e.
none of the above

5) List the four necessary conditions for deadlock to arise in a system.

1. Mutual Exclusion – A system includes non-sharable resources and only one process can be assigned a resource at any given time.

2. Hold & Wait – A process must be holding a resource and waiting for another.

3. No Preemption – Resources cannot be preempted. They can only be released voluntarily by the holding process.

4. Circular Wait – There exists a set of processes such that P1 is waiting for a resource held by P2, P2 is waiting for a resource held by P3, , Pn-1 is waiting for a resource held by Pn and Pn is waiting for a resource held by P1.

6) In a system with contiguous allocation, multiple dynamic partitions, compaction can be used to consolidate free space only if programs use relocateable addresses bound at runtime.

TRUE

FALSE

7) Assume a system with 512K of main memory. The OS takes up 64K of RAM and uses a contiguous allocation, single partition memory management policy. Three jobs are run through the system with memory requirements as listed below. What is the utilization of main memory during each job and the average utilization over the entire run on a per job and per second basis?

Total Memory

Address

Required

% Utilization

Job ID

Space

Run Time
(User + OS)

(User + OS)

Job 1

128K

10 secs

___192____

___37.5___

Job 2

384K

5 secs

___448____

___87.5___

Job 3

256K

20 secs

___320____

___62.5___

Average Utilization Per Job

____62.5%___

Average Utilization Per Second

____59%_____

8) Address binding may occur at compile time, load time, or run time.

Which binding method is the least flexible in terms of program loading?

Compile Time

Which binding method requires additional hardware?

Run Time (needs MMU)

Which binding methods require code to be relocatable?

Run Time & Load Time
9) Dynamic loading allows programs to share the same language library routines thus saving disk space and main memory due to reduced code size.

TRUE

FALSE
10) Overlays can be used to allow a process to run even when its total memory requirement is larger than its physical memory allocation

TRUE

FALSE

11) Assume a system with 1000K of user area memory. The OS uses a contiguous allocation, multiple static partition memory management policy. If implemented with all partitions equal to 150K in size, what is the degree of multiprogramming that can be supported?

There are 6 partitions of 150K possible which allows for 6 concurrent processes. The degree of multiprogramming is therefore equal to 6.
12) Is there a problem with the configuration described in question #2? If so, what is it? How would it effect memory utilization?

100K of memory has not been assigned to any partition and is wasted. At best, the system can never exceed 90% utilization of memory.
13) Assume a system with execution time binding. A logical address is generated by the Memory Management Unit (MMU) whenever a memory request is made by an executing process.

TRUE

FALSE (physical addresses are generated by the MMU)
For the next two questions, assume an OS utilizes a contiguous allocation, multiple dynamic partition memory management policy. The following chart denotes free space in the system.

	HOLE ID
	STARTING ADDR
	FREE SPACE

	#1
	1020K
	200K

	#2
	1320K
	300K

	#3
	2000K
	900K

	#4
	3000K
	220K

	#5
	4800K
	400K

14) A job with a requirement for 210K of memory is in the new queue. Memory from which free hole will be used to turn this job into a process if the OS allocates memory using:

A First Fit Policy
__________#2_____________

A Best Fit Policy
__________#4_____________

A Worst Fit Policy
__________#3_____________

15) Assume the system has a total of 5600K of RAM.

How much memory is lost due to internal fragmentation?
0 memory lost

(In general, dynamic partitions are not subject to internal fragmentation.)

How much memory is lost due to external fragmentation?
2020K (sum of all free space)

What is the % memory utilization of system?
(5600K – 2020K) / 5600K = 63.9%
The following scenario applies to the next four questions. Assume a system with 128K of main memory (its very small). The OS takes up 16K of RAM and uses a contiguous allocation, multiple static partition memory management policy. The size and status of the partitions are listed below in the following table:

	PARTITION ID
	STARTING ADDR
	SIZE
	STATUS

	#1
	16K
	4K
	Used

	#2
	20K
	4K
	Unused

	#3
	24K
	8K
	Used

	#4
	?
	16K
	Used

	#5
	48K
	?
	Used

	#6
	56K
	?
	Used

16) A program is loaded in Partition #2. During execution, the process references a memory location at logical (virtual) address 4032:

What is the physical address of this referenced location?
20,000 + 4032 = 24,032

Should the process be allowed to reference this location?

NO, address references

location in partition 3
17) What is the starting address of partition #4?
24K + 8K = 32K (start of P3 + size of P3)
18) How large are Partitions 5 & 6 respectively?
Size #5 = 8K, Size #6 = 72K
I double checked my answer and 72K is correct for Partition 6. That partition starts at address 56K. 128K – 56K = 72K. The 16K used by the operating system is loaded from addresses 0 through 15,999 – that’s why Paritition 1 starts at address 16K.

19) Assuming that 20% of any used partition is an internal fragment and that Partition #2 is unused at the present time, what is the utilization of memory in this system?

There are numerous approaches to solving this problem. Here’s just one:

128K

(total memory in system)

 - 4K

(unused memory in partition 2)

 - 21.6K

(unused memory in other partitions (4K + 8K + 16K + 8K + 72K) * 20%)

 102.4K
(total used memory)

 108K * .2 = 21.6K

Utilization
=
Used Memory / Total Memory

=
102.4 / 128

=
80%
Consider the following code segments for the next three questions:

P1

P2

P3

P4

:

:

:

:

load X

load Z

load Y

load Z

X=X*3

X = Z

Y = Y +1
Z = Z / 7

store X

store X

store Y

store Z

:

:

:

:

20) Which processes are in a race condition (there may be more than one correct answer but choose only one of the following)?

a.
P3

Incorrect

b.
P1 & P2

Better Answer

c.
P2, P3 and P4

Incorrect

d.
P2 & P4

Acceptable Answer

e.
P1, P2 and P4

Best Answer

f .
all of the above

21) What is your rational for the answer in number 8?

A race condition occurs when two or more processes access and manipulate the same data concurrently, and the outcome of the execution depends on the order in which the accesses take place. P3 does not share any data with the other processes so is not part of the race.

(b) Clearly P1 & P2 are in a race condition since they both store to X and the final value of X will vary depending on if and when either of these processes are interrupted.

(d) P2 & P4 can also be considered to be in a raced condition even though the outcome with respect to Z will always be the same. The value of X can be different depending on if and when P4 is interrupted.

(e) The best answer is that P1 & P2 are in the race condition that is influenced by side effects from P4 – in other words, they are all part of the race.

22) Based on your answer to 8, how many semaphores are needed to ensure synchronization?

If you chose (b):
1 semaphore with respect to X is required.

If you chose (d):
1 semaphore with respect to Z is required.

If you chose (e):
2 semaphores, one with respect to X and the other with respect to Z

or

1 semaphore to control access to the critical section for all three processes. Limits the amount of concurrency but does the job.

The following scenario applies to the next five questions. Assume a system with 128M of main memory. The OS takes up 16M of RAM and uses a contiguous allocation, multiple static partition memory management policy. The size and status of the partitions are listed below in the following table:

	PARTITION ID
	STARTING ADDR
	SIZE
	STATUS

	#1
	16M
	4M
	Unused

	#2
	20M
	4M
	Unused

	#3
	24M
	8M
	Used

	#4
	32M
	16M
	Unused

	#5
	48M
	32M
	Used

	#6
	80M
	48M
	Unused

23) Begin by filling in the addresses and partitions sizes missing from the table.

24) Assume a job is in the job queue that requires 24M of main memory:

Can the job be turned into a process?

_______YES_______

If so, which partition(s) can be allocated to the job?

______#6 only______

25) Assume a job is in the job queue that requires 7M of main memory:

Which partition(s) can be allocated to the job?

______#4 and #6____

If loaded, allocating which partition would maximize

memory utilization?

_________#4_______

26) Assume each of the partitions is loaded (in order) with jobs of the following size: 3M, 4M, 6M, 15M, 22M, 43M:

How much memory is lost due to internal fragmentation?
______19 M________

What is the memory utilization of the entire system?

______85%_________

27) A programmer not versed in OS memory management policies writes a very large program (56M) but it won’t run in this system. As an OS expert, you have been called in to help solve the problem. Why won’t the program run. What changes can be made to the OS or the program to allow it to load and run properly?

The program will not run because it requires more memory (56M) than the amount of memory contained in the largest partition (48M). The OS could be modified to include a partition of at least 56M but will require that one or more of the other partitions be reduced in size or eliminated. You might recommend use of overlays, dynamic linking, or dynamic loading (assuming these features supported by the OS) to reduce the size of the code and its total memory requirement.
28) This same programmer has written another program that is 15M in size. He gave the compiler a starting address of 16M to use when binding addresses at compile time. Again, this program will not run. What are your recommendations for this programmer (other than choosing another career)?

The program will not run because the partition located at address 16M is only 4M in size – not the 15M required to run the program. Could recompile the program using starting addresses or 32M, 48M or 80M so that the program would be loaded in a larger partition. Or you might recommend postponing address binding to load or run time by using relocatable code. That way, the program could run in any free partition larger than 15M.
PAGE
4

