University of Central Florida

School of Electrical Engineering & Computer Science

COP 3402: System Software

Fall 2014
Homework #3 (Parser- Code Generator)

Due Sunday, Oct. 19, 2014 by 11:59 p.m.

REQUIRMENT:

Two-person groups are mandatory. All assignments must compile and run on the Eustis server. Please see course website for details concerning use of Eustis.

Objective:

In this assignment, you must implement a Recursive Descent Parser and an Intermediate Code Generator for tiny PL/0. In addition, you must create a compiler driver to combine all of the compiler parts into one single program.

Your compiler driver must support the following compiler directives:

-l : print the list of lexemes/tokens (scanner output) to the screen

-a : print the generated assembly code (parser/codegen output) to the screen

-v : print virtual machine execution trace (virtual machine output) to the screen

Example commands:

./compile –l –a –v
Print all types of output to the console

./compile –v

Print only the VM execution trace to the console

./compile

Print nothing to the console except for “in” and “out”

instructions.
Note: You may want to also print all forms of output to a single output file in order to avoid losing points on the other requirements if your implementation of compiler directives does not work.
Example of a program written in PL/0:

var x, w;

begin

 x:= 4;

 read w;

 if w > x then

w:= w + 1

 else

w:= x;

 write w;

end.
Component Descriptions:

The compiler driver is a program that manages the parts of the compiler. It must handle the input, output, and execution of the Scanner (HW2), the Parser/Code Generator (HW3) and the Virtual Machine (HW1).

The Parser is a program that reads in the output of the Scanner (HW2) and parses the lexemes (tokens). It must be capable of reading in the tokens produced by your Scanner (HW2) and produce, as output, a message that states whether the PL/0 program is well-formed (syntactically correct) if it follows the grammar rules in Appendix B. Otherwise, if the program does not follow the grammar, a message indicating the type of error present must be printed. A list of the errors to be considered can be found in Appendix C. In addition, the Parser must generate the Symbol Table, which contains all of the variables, procedure names and constants within the PL/0 program. See Appendix E for more information regarding the Symbol Table. If the program is syntactically correct and the Symbol Table is created without error, the execution of the compiler driver continues with intermediate code generation.

The Intermediate Code Generator is a program that takes, as input, the output from the Parser, i.e. the Symbol Table and parsed code. As output, it produces the assembly language for your Virtual Machine (HW1). This functionality will be interleaved with the Parser functionality (i.e. generate assembly code as you parse the token list). Once the code has been generated for your Virtual Machine, the execution of the compiler driver continues by executing the generated assembly code on your Virtual Machine (HW1).

Submission Instructions:

1.- Submit via Webcourses:

1. Source code of the tiny- PL/0 compiler (must include the source code for: scanner, parser/code generator, virtual machine and compile driver).

2. A text file (named “readme.txt”) with instructions on how to compile your project on Eustis, and how to use your compiler (instructions for all components must be included). The name of both students must be clearly indicated on this file.
3. A text file composed of an input file to your Scanner and the output of your Parser to demonstrate a correctly formed tiny- PL/0 program. The Parser output should indicate if the input program is syntactically correct. Following the statement that the program is syntactically correct, the text file should contain the generated code from your intermediate code generator and the stack output from your Virtual Machine running your code.

4. A document (in Microsoft Word or PDF format, the latter is preferred) with incorrectly formed PL/0 programs and screenshots of the output of your PL/0 compiler showing the corresponding error message to each incorrect PL/0 program. This document must demonstrate at least ten different errors.

5. All files should be compressed into a single file, in .zip format.
Appendix A:

Traces of Execution:

Example 1, if the input is:

var x, y;

begin

 x := y + 56;

end.

The output should look like:

1.- A print out of the token (internal representation) file:

29 2 x 17 2 y 18 21 2 x 20 2 y 4 3 56 18 22 19

2.- Print out the message “No errors, program is syntactically correct”.
3.- Print out the generated PM/0 (assembly) code.
4.- Print out the stack trace of the program on the virtual machine (HW1).
Example 2, if the input is:

var x, y;

begin

 x := y + 56;

end  (notice period expected after the “end” reserved word)

The output should look like:

1.- A print out of the token (internal representation) file:

29 2 x 17 2 y 18 21 2 x 20 2 y 4 3 56 18 22 19

2.- Print the message “Error number xxx, period expected”.
3.- Stop the compilation process. The VM is not executed since an error appeared at the parsing step.

Appendix B:

EBNF of tiny PL/0:

program ::= block "." .

block ::= const-declaration var-declaration statement.

const-declaration ::= [“const” ident "=" number {"," ident "=" number} “;"].

var-declaration ::= ["var" ident {"," ident} “;"].

statement ::= [ident ":=" expression

| "begin" statement { ";" statement } "end"

| "if" condition "then" statement

| "while" condition "do" statement

| "read" ident

| "write" ident

| e] .
condition ::= "odd" expression

| expression rel-op expression.

rel-op ::= "="|“<>"|"<"|"<="|">"|">=“.
expression ::= ["+"|"-"] term { ("+"|"-") term}.
term ::= factor {("*"|"/") factor}.

factor ::= ident | number | "(" expression ")“.
number ::= digit {digit}.
ident ::= letter {letter | digit}.
digit ;;= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9“.
letter ::= "a" | "b" | … | "y" | "z" | "A" | "B" | ... |"Y" | "Z".
Based on Wirth’s definition for EBNF we have the following rule:

[] means an optional item.
{ } means repeat 0 or more times.
Terminal symbols are enclosed in quote marks.

A period is used to indicate the end of the definition of a syntactic class.

Appendix C:

Error messages for the tiny PL/0 Parser:

1. Use = instead of :=.

2. = must be followed by a number.

3. Identifier must be followed by =.

4. const, var, procedure must be followed by identifier.

5. Semicolon or comma missing.

6. Incorrect symbol after procedure declaration.

7. Statement expected.

8. Incorrect symbol after statement part in block.

9. Period expected.

10. Semicolon between statements missing.

11. Undeclared identifier.

12. Assignment to constant or procedure is not allowed.

13. Assignment operator expected.

14. call must be followed by an identifier.

15. Call of a constant or variable is meaningless.

16. then expected.

17. Semicolon or } expected.

18. do expected.

19. Incorrect symbol following statement.

20. Relational operator expected.

21. Expression must not contain a procedure identifier.

22. Right parenthesis missing.

23. The preceding factor cannot begin with this symbol.

24. An expression cannot begin with this symbol.

25. This number is too large.

Note: Not all of these error messages may be used, and you may choose to create some error messages of your own to more accurately represent certain situations.
Appendix D:

Recursive Descent Parser for a PL/0 like programming language in pseudo code:

As follows you will find the pseudo code for a PL/0 like parser. This pseudo code will help you out to develop your parser and intermediate code generator for tiny PL/0:
procedure PROGRAM;

 begin

 GET(TOKEN);

 BLOCK;

 if TOKEN != "periodsym" then ERROR

 end;

procedure BLOCK;

 begin

 if TOKEN = "constsym" then begin

 repeat

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN);

 if TOKEN != "eqsym" then ERROR;

 GET(TOKEN);

 if TOKEN != NUMBER then ERROR;

 GET(TOKEN)

 until TOKEN != "commasym";

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 if TOKEN = "varsym" then begin

 repeat

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN)

 until TOKEN != "commasym";

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 while TOKEN = "procsym" do begin

 GET(TOKEN);

 if TOKEN != “identsym” then ERROR;

 GET(TOKEN);

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN);

 BLOCK;

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 STATEMENT

 end;

procedure STATEMENT;

 begin

 if TOKEN = "identsym" then begin

 GET(TOKEN);

 if TOKEN != "becomessym" then ERROR;

 GET(TOKEN);

 EXPRESSION

 end

 else if TOKEN = "callsym" then begin

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN)

 end

 else if TOKEN = "beginsym" then begin

 GET TOKEN;

 STATEMENT;

 while TOKEN = "semicolomsym" do begin

 GET(TOKEN);

 STATEMENT

 end;

 if TOKEN != "endsym" then ERROR;

 GET(TOKEN)

 end

 else if TOKEN = "ifsym" then begin

 GET(TOKEN);

 CONDITION;

 if TOKEN != "thensym" then ERROR;

 GET(TOKEN);

 STATEMENT

 end

 else if TOKEN = "whilesym" then begin

 GET(TOKEN);

 CONDITION;

 if TOKEN != "dosym" then ERROR;

 GET(TOKEN);

 STATEMENT

 end

 end;

procedure CONDITION;

 begin

 if TOKEN = "oddsym" then begin

 GET(TOKEN);

 EXPRESSION

 else begin

 EXPRESSION;

 if TOKEN != RELATION then ERROR;

 GET(TOKEN);

 EXPRESSION

 end

 end;

procedure EXPRESSION;

 begin

 if TOKEN = "plussym" or "minussym" then GET(TOKEN);

 TERM;

 while TOKEN = "plussym" or "minussym" do begin

 GET(TOKEN);

 TERM

 end

 end;

procedure TERM;

 begin

 FACTOR;

 while TOKEN = "multsym" or "slashsym" do begin

 GET(TOKEN);

 FACTOR

 end

 end;

procedure FACTOR;

 begin

 if TOKEN = "identsym then

 GET(TOKEN)

 else if TOKEN = NUMBER then

 GET(TOKEN)

 else if TOKEN = "(" then begin

 GET(TOKEN);

 EXPRESSION;

 if TOKEN != ")" then ERROR;

 GET(TOKEN)

 end

 else ERROR

 end;

Appendix E:

Symbol Table

Recommended data structure for the symbol.

#define MAX_SYMBOL_TABLE_SIZE 100
typedef struct symbol
 {

int kind;

// const = 1, var = 2, proc = 3

char name[12];
// name up to 11 chars

int val;

// number (ASCII value)

int level;
// L level

int addr;

// M address

 } symbol;

symbol symbol_table[MAX_SYMBOL_TABLE_SIZE];

For constants, you must store kind, name and value.

For variables, you must store kind, name, L and M.

For procedures, you must store kind, name, L and M.

