University of Central Florida

Department of Electrical Engineering & Computer Science

COP 3402: System Software

Spring 2014

Homework #4 (Extra Credit)

Due Friday, November 21th, 2014 by 11:59 p.m.

REQUIREMENT:

All assignments must compile and run on the Eustis server. Please see course website for details concerning use of Eustis.

Objective:

As extra credit for homework 4, you may expand your compiler to implement functional value returns and parameter parsing. To get the extra credit, a separate project with the additional functionality must be submitted, completely independent of the project submitted for HW4.
Functional Value return

In the basic PL/0 grammar, the resulting computation from a procedure must be stored in a common variable, so the calling procedure may use that result for something else. The following program is an example of this:

var x, y;

procedure foo;

var w;

begin

w := x;

w := w*w*w;

y := w;

end;

begin

x := 5;

call foo;

write y;

end.

In this example, x and y are used as common variables to send information to procedure foo (the value 5 is stored in x for foo to read it) and to recover information from foo (foo stores it’s result in variable y, so the calling procedure may recover it). Instead of this, we can make that the procedure returns its computation directly, like this:

var x,y;

procedure foo;

var w;

begin

w := x;

w := w*w*w;

return := w;

end;

begin

x := 5;

y := call foo;

write y;

end.

What’s the difference? Procedure foo is not linked to variable y anymore, so we are free to store its result in any variable that we need. Even more, now we can use foo inside any expression, and the call to foo will be replaced by foo’s returned value.
var x,y;

procedure foo;

var w;

begin

w := x;

w := w*w*w;

return := w;

end;

begin

x := 5;

y := 25 + call foo / 10;

write y;

end.

In order to return the functional value from a procedure, we are going to use an implicit variable called ‘return’. This is an implicit variable because we do not declare it explicitly, like we did for variables x, y, and w. Every procedure will have its own implicit variable ‘return’, which is inserted into the symbol table immediately after the procedure declaration has been parsed. The address of variable ‘return’, of course, will be the position of the Functional Value (FV) inside the Activation Record (AR), which in our case is address 0. Using this method, when we parse the statement ‘return := w;’, w’s value will be saved into the FV position of the AR. Now the tricky part is to recover this value in the calling procedure.
We must differentiate between two types of calls. In the first type, we don’t care about the functional value of the procedure, so we just discard it. For example:

var x,y;

procedure foo;

var w;

begin

w := x;

w := w*w*w;

return := w;

end;

begin

x := 5;

call foo;
end.

In this code, we don’t care about foo’s return value. This example generates the following PM/0 code:

00
JMP 0 14
01
JMP 0 2

02
INC 0 5
03
LOD 1 4
04
STO 0 4

05
LOD 0 4

06
LOD 0 4

07
OPR 0 MUL

08
LOD 0 4

09
OPR 0 MUL

10
STO 0 4

11
LOD 0 4

12
STO 0 0

13
OPR 0 RET

14
INC 0 6
15
LIT 0 5

16
STO 0 4

17
CAL 0 1

18
OPR 0 RET
As it can be seen on the blue code, the call to foo is exactly the same we have always used. Nothing has to be done to discard the functional value.

In the second type of call, we want to recover the functional value, so we must perform extra work after we call the function. Using a previous example the following code:
var x,y;

procedure foo;

var w;

begin

w := x;

w := w*w*w;

return := w;

end;

begin

x := 5;

y := call foo;

write y;

end.

Will be compiled to the following machine code:
00
JMP 0 14
01
JMP 0 2

02
INC 0 5

03
LOD 1 4

04
STO 0 4

05
LOD 0 4

06
LOD 0 4

07
OPR 0 MUL

08
LOD 0 4

09
OPR 0 MUL

10
STO 0 4

11
LOD 0 4

12
STO 0 0

13
OPR 0 RET

14
INC 0 6

15
LIT 0 5

16
STO 0 4

17
CAL 0 1

18
INC 0 1 // here we recover the functional value
19
STO 0 5

20
LOD 0 5

21
SIO 0 1

22
OPR 0 RET
As you can see, foo’s code (in black) does not change. The extra work to recover the functional value is done inside the calling procedure, and this work amounts to add an INC 0 1 instruction after the CAL instruction. This simple change allows the use of the procedure’s functional value inside any expression. This method works because foo’s AR was created immediately after the current position of the stack pointer (SP), and even when this AR is logically deleted after foo’s return, it’s values still exist in the stack, therefore if we increment SP by 1 we will have the first position of the AR in the top of the stack, ready to be used by any expression. It is really convenient that the first position of the AR is the functional value that we want to recover!
PL/0 grammar must be modified to differentiate between first and second types of calls. The first type of call will be handle by the statement function, as usual, and will generate the code that we already are familiar with. The second type of call will be handled inside the factor function, because this will allow us to treat the call as any other factor and use it inside any expression. The rule for ‘factor’ will be changed as follows:

 factor ::= ident | number | "(" expression ")" | "call" ident.
When we parse a call inside the factor function, we will add an INC 0 1 instruction after the call in order to recover the functional value.
Parameter Passing

In all given examples, it was cumbersome to use variable x to send information to procedure foo. Just as we decouple information output from procedure foo by using functional value return, it is possible to decouple information input to procedure foo by using parameter passing. Using parameter parsing and functional value return we can rewite our example as follows:
var x,y;

procedure foo(w);

begin

w := w*w*w;

return := w;

end;

begin

x := 5;

y := call foo(x);

write y;

end.

So far, our AR consist of functional value (FV), static link (SL), dynamic link (DL), return address (RA) and variable slots. To handle parameter passing, we will add another section to the AR: the parameter slots. Since parameters are declared before variables, it is convenient to place the parameter slots before the variable slots (just after the RA).
Parameters are nearly identical to local variables with one key distinction: parameters are initialized outside of the called function (just before the function is called), while local variables are not initialized until a value is assigned to them. In the above example the parameter ‘w’ must have a value assigned to it by the caller before procedure foo may actually be called. In order to assign a value to a parameter, the calling code must store the value in the stack by predicting the location of the parameter. To do this the compiler must keep track of the current stack pointer in relation to the top of the current AR. This is because the location of a called procedure activation record is dependent upon the current stack pointer, but the only way we have to store data is by using an offset from the base pointer (which is a known distance of #locals + #parameters + Activation Record Size away from the top of the Activation Record).
The simplest way to keep track of this offset is to use a global variable which is increased, decreased or reset to zero depending on what instructions are being emitted during code generation. Any instruction that would increase the stack pointer should increase this variable by the same amount and any instruction that would decrease the stack pointer should do the same to this variable. After a SIO, STO and CAL this variable would be reset to zero (as it should be impossible for a well formed PL/0 program to leave the stack offset not equal to zero (unbalanced) after emitting a complete statement).

The last example would compile to the following PM/0 code:

00
JMP 0 14
01
JMP 0 2

02
INC 0 5

03
LOD 1 4

04
STO 0 4

05
LOD 0 4

06
LOD 0 4

07
OPR 0 MUL

08
LOD 0 4

09
OPR 0 MUL

10
STO 0 4

11
LOD 0 4

12
STO 0 0

13
OPR 0 RET

14
INC 0 6

15
LIT 0 5

16
STO 0 4

17
LOD 0 4

18
STO 0 10 // Here we insert w’s value into stack

19
CAL 0 1

20
INC 0 1 // here we recover the functional value

21
STO 0 5

22
LOD 0 5

23
SIO 0 1

24
OPR 0 RET
The PL/0 grammar, modified to use functional value returns and parameter passing, is shown in Appendix A.

Appendix A:
Modifications to EBNF of PL/0:
program ::= block "." .

block ::= const-declaration int-declaration procedure-declaration statement.

constdeclaration ::= ["const" ident "=" number {"," ident "=" number} ";"].

int-declaration ::= ["int "ident {"," ident} “;"].
procedure-declaration ::= { "procedure" ident parameter-block ";" block ";" }
parameter-block ::= "(" [ident { "," ident }] ")".
parameter-list ::= " (" [expression { "," expression }] ")".
statement ::= [ident ":=" expression

| "call" ident parameter-list

| "begin" statement { ";" statement } "end"

| "if" condition "then" statement ["else" statement]

| "while" condition "do" statement

| "read" ident

| "write" expression

| e] .

condition ::= "odd" expression

| expression rel-op expression.

rel-op ::= "="|“!="|"<"|"<="|">"|">=“.
expression ::= ["+"|"-"] term { ("+"|"-") term}.
term ::= factor {("*"|"/") factor}.

factor ::= ident | number | "(" expression ")" | "call" ident parameter-list.
number ::= digit {digit}.
ident ::= letter {letter | digit}.
digit ;;= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9“.
letter ::= "a" | "b" | … | "y" | "z" | "A" | "B" | ... | "Y" | "Z".
Based on Wirth’s definition for EBNF we have the following rule:
[] means an optional item.
{ } means repeat 0 or more times.
Terminal symbols are enclosed in quote marks.
A period is used to indicate the end of the definition of a syntactic class.
Appendix B:
Additions to Parsing Psudocode:
procedure parameter-block();

begin

if(token <> “(”) then ERROR(“Procedure must have parameters”);

get_token();

if(token = ident) then begin

// Add parameter to symbol table

get_token();

while (token = “,”) begin

get_token();

if(token <> ident) then ERROR();

// Add parameter to symbol table

get_token();

end;

end;

if token <> “)” then ERROR(“Bad procedure declaration”);

get_token();
end;
procedure parameter-list();

begin

if(token <> “(”) then ERROR(“Missing parameter list at call”);

get_token();

expression();

// generate code to store expression’s result

// into first parameter slot

while (token = “,”) begin

get_token();

expression();

// generate code to store expression’s result

// into next parameter slot

end;

if (token <> “)”) then ERROR(“Bad calling formating.”);

get_token();
end;
