COP 3402 - System Software�
Spring 2001 - Assignment # 4�
�

For this assignment, you will write a scanner that will tokenize the assembly-language programs used in Pass 1 of the assembler project. In this case, however, you will use lex to create the scanner instead of writing it in C. Your task, therefore, is to write the lex specifications that will be used to generate the scanner program. This assignment will be graded on the Olympus system using lex and the gcc compiler. Make sure your program works under those conditions.

Input files:

The input files for the scanner will be programs written in the assembly language used for Pass 1. To simplify this assignment, we will not use the files that contain errors. Your scanner does not have to look for or identify errors in the input files. Your scanner will expect that the input file name is include on the command line when the scanner is executed. Details on how to do this will be included in the example available on Olympus.

Lex specifications:

You will write the input file for lex which contains the specifications for the scanner. An example of a lex input file will be provided on Olympus and information from the lex manual will be provided in class. You will have to determine the regular expressions needed to produce the scanner.

Output format:

The output format is shown below. Look closely at the messages produced for each kind of token. A large part of your grade on this assignment will be based on how closely you match the output format.

This assignment will be submitted electronically on Olympus (not until after Pass 2 submission is over).

Use make data4 to get the sample lex file and sample data files.

Your lex specification file should be named assign4.l (that's an L).

Use make assign4 (note: leave off the .l) to compile your scanner.

Use assign4 inputfilename to execute your scanner. This example used: assign4 last.asm

The box below contains a sample input file which is used for the output sample shown below.

LAST.ASM

.PROGRAM	LAST

.CONST	

	MAX	HALF	%3F

	SIZE	HALF	^01010

	LTR	BYTE	$'A'

	STR	BYTE	$"Last time"

.DATA	

	CHAR	DEFB	3	# array of 3 bytes

	X	DEFW	1

	SHORT	DEFH	1

	SUBR	DEFX	1

.CODE	

		ADDI	R10, R0, MAX

		MULT	R22, R10, R10

	LOC:	SLLI	R14, R10, ^01

		SGE	R7, R14, R22

		BEQZ	R7, LOC

		ADDI	R22, R7, %03A

		SW	R0, X, R14

		EXIT	0

.EXTERN

	SUBR	LIB1	# external subroutine

.END

�
�
�
The box below shows the correct screen output for the above input.

COP 3402 Spring 2001 - LEX scanner - YOUR NAME HERE

Scanning: last.asm...

Found comment: # LAST.ASM

Found directive: .PROGRAM	

Found identifier: LAST

Found directive: .CONST		

Found identifier: MAX	

Found CONST directive: HALF	

Found hexadecimal literal: %3F	

Found identifier: SIZE	

Found CONST directive: HALF	

Found binary literal: ^01010	

Found identifier: LTR	

Found CONST directive: BYTE	

Found character literal: $'A'	

Found identifier: STR	

Found CONST directive: BYTE	

Found string literal: $"Last time"

Found directive: .DATA		

Found identifier: CHAR	

Found DATA directive: DEFB	

Found decimal literal: 3	

Found comment: # array of 3 bytes	

Found identifier: X	

Found DATA directive: DEFW	

Found decimal literal: 1	

Found identifier: SHORT	

Found DATA directive: DEFH	

Found decimal literal: 1	

Found identifier: SUBR	

Found DATA directive: DEFX	

Found decimal literal: 1

Found directive: .CODE			

Found type1 opcode: ADDI	

Found register: R10

Found register: R0

Found identifier: MAX		

Found type2 opcode: MULT	

Found register: R22

Found register: R10

Found register: R10	

Found label: LOC:	

Found type1 opcode: SLLI	

Found register: R14

Found register: R10

Found binary literal: ^01		

Found type2 opcode: SGE	

Found register: R7

Found register: R14

Found register: R22		

Found type1 opcode: BEQZ	

Found register: R7

Found identifier: LOC

Found type1 opcode: ADDI	

Found register: R22

Found register: R7

Found hexadecimal literal: %03A		

Found type1 opcode: SW	

Found register: R0

Found identifier: X

Found register: R14		

Found type3 opcode: EXIT	

Found decimal literal: 0

Found directive: .EXTERN	

Found identifier: SUBR	

Found identifier: LIB1	

Found comment: # external subroutine

Found directive: .END

Program contains 26 lines overall, with

	4 lines of CONST

	8 lines of CODE

	5 lines of DATA

�
�

This assignment is due by midnight Saturday April 21. No late submissions!

