UCF 3402 - a RISC architecture for COP 3402

The UCF 3402 machine is based on typical RISC (reduced instruction set computer) architectures and was developed for the course COP 3402 - System Software. It incorporates common RISC features, but draws most heavily from the DLX architecture presented in Computer Architecture: a Quantitative Approach, by John Hennessy and David Patterson, Morgan Kaufman Publishers, 1990, 1996.

The UCF 3402 architecture consists of:

	32 - 32-bit General Purpose Registers called R0 … R31

R0 always holds the value 0 (i.e., you can't store data in R0)

R31 is used to store the return address when a Jump and Link command is executed

any register (except R0) can be used to store condition codes

signed integers are stored as 2's compliment numbers

the UCF 3402 does not include any floating point capabilities

	The Program Counter (PC) is a 32-bit register, thus the total address space is 4 GB.

Memory is byte-addressable and can be loaded or stored in byte (8-bit), halfword (16-bit) and

word (32-bit) increments. However, address alignment is required:

halfwords can only be accessed at even memory addresses

full words of memory can only be accessed at memory locations that are divisible by 4

When loaded into a 32-bit register, bytes and halfwords are converted into 32-bit numbers as follows:

signed numbers are stored as sign-extended 2's compliment numbers

unsigned numbers are stored as binary numbers with leading zeros to fill the register

Byte ordering in registers follows the big-endian convention where the most significant bit is in location 0 and the least significant bit is at bit 31. Byte operations (LB, SB) access the least significant 8 bits of a 32-bit register (bits 24-31) and halfword operations (LH, SH) access the least significant 16 bits (bits 16-31) except in the case of the LUHI (Load Upper Halfword Immediate) instruction which loads a halfword into the most significant 16 bits (bits 0-15) and fills the other 16 bits (bits 16-31) with zeros.

0 7�
8 15�
16 23�
24 31�
�
zeros or sign extension�
byte�
�
zeros or sign extension�
halfword�
�

32-bit register employing big-endian byte ordering

Addition and subtraction can be performed on either signed or unsigned numbers, using the corresponding

command. Multiplication and division are only done on signed numbers.

All instructions are 32 bits in total length. There are three instruction formats (see Instruction Formats below) and all use the first 6 bits of the instruction to hold the opcode. Since there are 32 general purpose registers, instructions that refer to registers use 5 bits for each register field. One format (type 3) does not refer to any registers, one format (type 1) references one source register and one destination register and the remaining format (type 2) refers to two source registers and one destination register.

�
UCF 3402 Instruction Formats

Type 1: Register-Immediate Format

The immediate field in type 1 instructions is a 16-bit number which is interpreted as a signed integer (range: 2-15 (x (215) when used with instructions that expect signed arguments, such as ADDI or DIVI, or as an unsigned 16-bit integer (range: 0 (x (216) when used with instructions that expect unsigned arguments, such as ADDUI or SLLI.

opcode�
source

register�
destination

register�
immediate value�
�
6 bits�
5 bits�
5 bits�
16 bits�
�

Type 1 is used for:

load instructions: LB, LH, LUHI, LW – the immediate field will contain a signed 16-bit integer

store instructions: SB, SH, SW – the immediate field will contain a signed 16-bit integer

all arithmetic/logic instructions with an immediate value: ADDI, SLLI, SLTI, etc. – the immediate field may contain a signed or unsigned 16-bit integer depending on the instruction

the branch instructions: BEQZ, BNEZ – the immediate field is a signed 16-bit integer

jump instructions with an absolute address: JA, JAL – do not use the immediate field

Type 2: Register-Register Format

The 11-bit function field in type 2 instructions is not used at this time, It may be used later to extend the UCF 3402 to handle floating point operations or other features.

opcode�
source

register # 1�
source

register # 2�
destination

register�
function bits

(not used)�
�
6 bits�
5 bits�
5 bits�
5 bits�
11 bits�
�

Type 2 is used for:

all arithmetic/logic instructions that use two source registers: ADD, SLL, SLT, etc.

Type 3: Relative Jump Format

The offset address field in type 3 instructions holds a 26-bit signed number that can be used for PC-relative addressing. Destination addresses are specified by labels in assembly code, however the assembler resolves them to a PC-relative offset using the target label's address. Local subroutine calls and unconditional jumps are implemented using relative jumps (JR & JRL). External subroutine calls use absolute jumps (see JA & JAL above).

opcode�
address offset

(signed integer, added to PC)�
�
6 bits�
26 bits�
�

Type 3 is used for:

jump instructions that use a relative address: JR, JRL – local jumps are PC-relative and are limited to (2-25 (x (225) or ±33,554,432 bytes from the current PC location

the EXIT instruction, which uses the operand to return an error code (0 = no error)

the NOP instruction, which has no operand

�
UCF 3402 Assembly Language

This language is not case-sensitive: opcodes, register identifiers, labels and assembler directives can be in either upper or lower case, although general practice is to use upper case for everything but comments. However, character strings contained in quotes should retain their original case.

Constants:

Constants can be declared using one of the following allocation sizes. Note that integer constants must

fit in 16 bits or less, no 32-bit constants can be used. However, through the use of the LUHI instruction, 32-bit constants can be constructed in a register by loading the upper and lower halfwords in two steps.

16-bit integers (signed or unsigned) allocated as HALFWORDS

8-bit ASCII characters, either individually or in strings, allocated as BYTES

Integers can be declared using decimal, hexadecimal or binary notation but must be stored as halfword constants. Non-decimal literal values specified in the constant declaration must be preceded by the correct symbol to indicate which notation is being used. Decimal numbers are entered without a prefix, but hexadecimal numbers must be preceded by the % symbol and binary numbers by the ^ symbol. Individual characters must be allocated in bytes and must be placed between single quotes and preceded by the $ symbol to indicate their data type. Strings, composed of one or more characters, must also be allocated in bytes and must be placed between double quotes and preceded by the $ symbol to indicate their data type.

17 indicates a literal with the decimal value 17

%1A3C indicates a literal with the hexadecimal value 1A3C (6716 decimal)

^01100111 indicates a literal that is the binary number 01100111 (103 decimal)

$'X' indicates a single ASCII character, the letter X

$”your name here” indicates a 14-character ASCII string

Data Storage:

Storage space for variables can be defined using one of the following allocation units:

word, a 32-bit allocation unit

halfword, a 16-bit allocation unit

byte, an 8-bit allocation unit

Each of the three allocation units can be used to store signed or unsigned integers but only the 8-bit size can be used to store ASCII characters. An array of integers or characters (a string) can be allocated by specifying more than one allocation unit. The number of allocation units must be a decimal number or integer constant.

Comments:

Comments are preceded by the # symbol. Comments in a program can appear on a line by themselves or on the same line as a program statement. All text after the # symbol is considered to be a comment and is ignored by the assembler. If a comment appears after code on a line, there should be at least one space between the end of the code and the comment.

This is a comment on a line by itself

		ADD		R1, R2, R3		# a comment that follows code

�
Identifiers (labels):

Identifiers are used as labels for constants or data storage and as labels that indicate specific locations in the program (targets for jump and branch instructions). Because of the range of symbols used for other purposes, identifiers can only consist of alphabetic characters (a-z or A-Z) or decimal digits (0-9), with the requirement that identifiers must not begin with a digit.

You can not use reserved words (opcode names and assembler directives) as identifiers. Since registers are identified by an 'R' followed by the register number (for example, R0, R11, R21), you can't use that combination for identifiers either.

Labels used as the target of a branch or jump instruction (appearing on the left of an opcode) must have a colon (:) appended to the identifier name, but the colon is not used when they appear as an operand.

	LOOP:		JR	LOOP		# this is an infinite loop

Instruction formats:

Although there are no designated columns or fixed indenting rules, the following apply:

there must be at least one space between the label (if present) and the operator and at least one space between the operator and the first operand (if present)

multiple operands must be separated by commas, spaces between operands are optional

Assembler directives:

There are a number of reserved words, called assembler directives, that provide a variety of information to the assembler including program layout, data storage definitions and constant declarations. Some directives appear on a separate line and are preceded by a . (period). Other directives appear in data definitions or constant declarations to specify the size or type of data being stored.

Program layout assembler directives:

.PROGRAM – the first (non-blank, non-comment) line of the program file, includes the program name

.CONST – marks beginning of the section where constants are declared

.DATA – marks the beginning of the section where data storage locations are defined

.EXTERN – marks the beginning of the section where external references are listed

.CODE – marks the beginning of the section where program code is found

.END – the last line of the program file

Assembler directives that are used for data definitions or constant declarations:

Note: <label> must be replaced by a valid identifier. <value> can be a 32-bit integer (.DATA section only), a 16-bit integer or one or more 8-bit ASCII characters (see examples below). Hexadecimal

or binary numbers must be preceded by the appropriate prefix (% or ^).

Format for constant declarations:

<label>	HALF		<value> 	# used to declare a 16-bit integer constant

<label>	BYTE		<value> 	# used to declare an 8-bit character constant

Format for data storage definitions:

<label>	DEFW		<value>	# reserves one or more 32-bit memory locations

<label>	DEFH		<value> 	# reserves one or more 16-bit memory locations

<label>	DEFB		<value> 	# reserves one or more 8-bit memory locations

<label>	DEFX		<value>	# reserves one word for an external reference

�
Program layout:

The first non-blank line of the program file must be the .PROGRAM directive and the last line must be the .END directive. Programs are divided into four sections for program code, declaration of constants and the definition of static (local) variables, plus a section where external references are listed. Each section is marked by a specific assembler directive. The section containing constants must appear in the program file before the other sections. Beyond that restriction, the data, external reference and code sections may be placed in any order. There can only be one of each section in a program file. Each declaration of a constant, data storage declaration or program instruction will appear on a separate line of the file. There are no line numbers and no fixed columns for each portion of a line, but each label, operator or operand must be properly delimited and consistent indenting is strongly suggested. Any number of blank lines may appear between sections or lines of the program.

Constant Declarations:

The section where constants are declared follows the assembler directive .CONST. There are two kinds

of declaration statements (see above), indicating storage in either 16-bit integers or 8-bit characters. Characters can only be declared using the BYTE directive and numeric constants can only be declared using the HALF directive, which indicates the 16-bit (or halfword) size. Numeric arrays can not be declared as constants but character strings are allowed. Once declared, constants can be used in both the .DATA and .CODE sections. Both signed and unsigned integers are allowed, but signed integers must be in the range 2-15 (x (215 and unsigned integers must be in the range 0 (x (216. Constants are typically used in the immediate field of type1 instructions.

Data Definitions

Data storage definitions follow the .DATA directive. Storage locations for variables are defined using one of the three available allocation units, word, halfword or byte, specified by the DEFW, DEFH or DEFB directives, respectively. Space for numeric variables can be defined using any one of the three allocation units, but characters (and character string) variables can only be defined using the DEFB directive. The DEFX directive is used to declare storage space for the target location of jumps to external subroutines.

Example of .CONST and .DATA sections:

.CONST

ONE	HALF	1	# decimal constant

SIZE	HALF	%A	# decimal 10

BINH	HALF	^0110010100110100	# decimal 25908

HEXH	HALF	%7FA4	# decimal 32676

CH	BYTE	$'X'	# char constant

NAME	BYTE	$”WHO ARE YOU?”	# string constant

.DATA

	ARRAY1	DEFW	SIZE	# array of 32-bit numbers

	CHAR	DEFB	1	# single character

	SHORT	DEFH	5	# array of 16-bit numbers

	LONG	DEFW	ONE	# single 32-bit number

	SUB1	DEFX	1	# external subroutine

	STR1	DEFB	12	# array of characters

�
How Constants are Handled:

Numeric and single character constants are used as immediate values in Type 1 instructions. Therefore,

in Pass 1, the assembler will store the name of those constants in the symbol table along with their value. In Pass 2, the assembler will perform a substitution, replacing any single character or numeric constant's name with the actual value of the constant. However, when a string constant exists, the entire string can't be used an immediate value, so the string must be treated as a literal. In Pass 2, the assembler will allocate space for each string constant ahead of the storage space allocated for data variables and it will place the constant's value (using ASCII encoding) in that space. The characters that make up the string can be accessed in the same way as an array of characters. However, unlike an array variable, string constants can not be changed by storing new values in their memory location.

External References:

References to subroutines that are outside of the program file are called external references. Since their location is unknown at the time the program is assembled, the address of each subroutine reference must be determined when the program is loaded into memory in a process called linking. The use of external subroutines is described below. In order to successfully link to external references, the linker must know which external references appear in the program file, where they appear and what external subroutine they refer to. The .EXTERN directive indicates a section where all external references are listed. The assembler uses this information to add records to the object file so that the linker can determine which external references must be resolved. Since the existence of unresolved references would normally generate errors in pass 1, the data directive DEFX is used to indicate an external reference that the assembler can overlook when error checking. Each DEFX declaration is automatically a single 32-bit word (initially filled with zeros) and the <value> field is ignored.

Calling External Subroutines:

Since external subroutines may be located anywhere in the machine's memory space, they must be accessed via the absolute jump instructions JA and JAL. The JAL instruction must be used if you expect the subroutine to return to the calling program, JA can be used to transfer execution to another program when you do not expect a return. Any parameters needed by the called subroutine must be loaded into registers before the subroutine is called, it will not have access to the calling program's local variables. The symbolic name of the subroutine itself must be declared in the .DATA section using the DEFX directive. Both the symbolic name of the subroutine and the program file where it can be found must be specified in the .EXTERN section. Since the absolute jump instructions must use a 32-bit address that was loaded into a register, an LW instruction must first be used to load the subroutine's address. However, the subroutine's value field does not contain the subroutine's address at the time of assembly, it will actually be inserted when the program is loaded into memory for execution. This is not a problem, because the location that will hold the subroutine's address is allocated by the DEFX directive and that location is reported to the loader via the .EXTERN directive.

During Pass 1, the assembler creates entries in the symbol table for all subroutine names specified by DEFX directives, allocating each a full word of storage space.

During Pass 2, the assembler treats each subroutine label the same as a local memory reference, calculating the PC-relative address offset for each LW instruction that specifies the subroutine's name.

At load time, the loader finds the external subroutine in memory and inserts its address into the storage location that was allocated for the subroutine's label during Pass 2.

�
Pass 1 of the Assembler:

Pass 1 produces the symbol table listing all constants, data declarations and correctly-formed identifiers, along with their value or location. At this time, syntax checking and checking for duplicate identifiers is done, along with checking for the correct number of operands for each opcode. Single characters and numeric constants will be stored in the symbol table in pass 1, but will be converted into immediate values and imbedded into the object code in pass 2. String constants must be treated as literals and will have space allocated for them in pass 2. External references must also have space allocated in pass 2. The space allocated for string constants and data and the space allocated for code must be stored for use by pass 2 and the program's name should be extracted for later use as well.

As the assembler makes the first pass, it must write an intermediate file to the disk, listing all information in the original file. It must add the memory address of each string constant, data declaration and jump label. When it has completed pass 1, it also writes the contents of the symbol table into a file.

Pass 2 of the Assembler:

Pass 2 reads the intermediate file and uses that information, along with the data in the opcode table and symbol table, to construct two output files. One file, called the listing file, shows all of the information in the intermediate file, plus it includes the address and completed object code for each instruction. This provides useful debugging information for the assembly programmer. The listing file also includes all constants and data declarations along with their value and/or address. The other output file is the object file which contains only the object code and such information as is necessary for use by the linker/loader. For example, the object file would include the program's name and the length of the data/literal section and the code section. It should also include any external references that must be resolved at load time.

Object Code Output Format:

The object file must follow a specific format so that the linker/loader can read the information that it contains. Other than the program name, character strings and the names of any external references, everything is stored as hexadecimal bytes. The number of bytes for each item is shown below.

Header information:

the word PROGRAM followed by one hex byte that indicates the length of the program's name

the program's name (stored as ASCII characters)

four hex bytes that indicate the combined length of string constants and data

four hex bytes that indicate the total length of the code section

Code, string constants and data are stored in that order and all are stored as hexadecimal bytes.

All code is 4 bytes in length. Data must follow the address alignment rules mentioned above. Remember, constant strings of all sizes are stored in memory as literals (using ASCII encoding).

Trailer information:

Each external reference declared by a DEFX directive will have an entry in the trailer.

The format for these external references is as follows:

the character string EXTERN followed by one hex byte with the number of entries (00 if none)

each entry will include the length of the symbolic name (1 hex byte), an ASCII character string containing the symbolic name (from the DEFX), the length of the external name (1 hex byte), an ASCII character string containing the external name (from the .EXTERN directive) and the local address of the symbolic name (4 hex bytes).

�
Program Code:

Note that any operands that are literal values must be preceded by the correct data type indicator, just as in the .CONST section. The last line of program code will normally contain the EXIT opcode with the value 0 as an operand to indicate that no errors occurred. Multiple EXIT instructions may be used.

Example of program layout with constant and data sections:

.PROGRAM		example1				# program name: example1

.CONST

SEVEN		HALF		7			# 16-bit integer constant

NAME		BYTE		$”your name”	# character string constant

NUM1		HALF		%51			# 16-bit integer constant

SIZE		HALF		^1010			# 16-bit integer constant

.EXTERN

	SQRT		MATHLIB				# file containing SQRT

.CODE

	MOV		R10, R0

	ADDI		R5, R0, SEVEN

	TOP:		SGEI		R11, R10, SIZE

			BNEZ		R11, BOTTOM

			SW		R10, NUM_ARRAY, R5

			ADDI		R10, R10, 1

			JR		TOP

	BOTTOM:	NOP

			LW		R30, R0, SQRT

			ADDI		R1, R0, NUM1

			JAL		R30

			SW		R0, NUM1, R1

			EXIT		0

.DATA

NUM_ARRAY	DEFW		SIZE			# array of 10 words

SHORT1	DEFH		1			# 16-bit integer variable

STR1		DEFB		%14			# space for string of size 20

NUM2		DEFW		1			# 32-bit integer variable

SQRT		DEFX		1			# external subroutine

.END	

Object file from Pass 2:

PROGRAM08example10000005100000034

240A000014050007754B000A2C00001C200A000C414A0001C4000008CC000000141E004C14010051352C000020010048D0000000796F7572206E616D6500

EXTERN0104SQRT07MATHLIB0000004C

COP 3402 – (William Allen – Spring 2001			Page � PAGE �8� of � NUMPAGES �8�

