COP3402
–
 –
Exam#1

COP3402
Exam #1
Spring 2011
Name

1. Write a sequence of regular expressions (lex-style or standard notation) for each of the following sets

A = { w |w is over the alphabet {a,b} and each ‘a’ must be immediately followed by at least one ‘b’ }

Examples: abbab, bbbb, babbabbbabbbb

2
A = ___

B = { x | x is a pair of whole numbers surrounded by parentheses and separated by colons}
Examples: (5:7), (57:777), (0:0)

2
B = ___

C = { list | list consists of strings consisting of single alphabetic character followed by an optional single digit separated by colons or semicolons }

Examples: a1;b:c0;d:e9

4
C = ___

2. Consider the language

 L = { ai bj ck | j ≥ i or j ≥ k }

The following is a grammar for L.
 S (TC | AU

 T (aTb | B

 U(bUc | B

 A (aA | (
 B (bB | (
 C (cC | (
4
Show this is an ambiguous grammar. You may show by demonstrating two distinct Leftmost Derivations or two distinct Rightmost Derivations for some string that is in L.
3. Consider the concept of Context Free Grammars.
1
What is legal as the form of a string on the left-hand side of a production?

1
What is legal as the form of a string on the right-hand side of a production?

4. Consider expressions over involving operands called ID where the operators are defined by the following precedences and associativity.
OPERATOR
ASSOCIATIVITY
PRECEDENCE
BINARY/UNARY

!

right to left

High (3)

Unary

@

right to left

Medium (2)

Binary

&, %

left to right

Low (1)

Binary

Parentheses are also allowed, with their usual interpretation.
4
Write an unambiguous grammar that leads to correct parse trees for this expression language.
4
Present a parse tree (root at base), using your grammar, for the string

!
ID
%
ID
@
ID
&
ID

5. Consider the mechanisms on the left and the processes in the first column on the right.
5
Fill in the letter associated with the mechanism to the right of the associated process. I did the first.

	Mechanisms
	
	Processes
	Matching Mechanism

	A. Left recursive grammar
	
	Intermediate code representation
	C

	B. Right recursive grammar
	
	Lexical analysis
	

	C. Abstract stack machine
	
	Syntactic analysis
	

	D. Finite state automata
	
	Top-down parsing
	

	E. Pushdown automata
	
	Bottom-up parsing
	

6. Consider the Pascal-like CASE statement, which has the following description in EBNF:

case_stmt ::= CASE expression OF case_element { ';' case_element } END
10
Assume procedures have already been written to do a recursive descent parse of expressions, expression() and of case elements, case_element(). Write the procedure, case_statement(), needed to do a recursive descent parse of a CASE statement. Assume tokens are returned by a procedure token() which sets a global variable SY. Assume SY = CASE at start. Assume SY = OF on “OF”, SY = SEMICOLON on ";", and ENDSY on "END".

void case_statement() {

}

7. Short questions (one to three word answers)

1
What tree traversal technique is commonly used to visit the nodes of a parse tree?

1
What algorithmic technique is associated with the Cocke-Kasami-Younger parsing algorithm?

1
What is the algorithmic complexity of CKY, given an input length of N tokens?
8. Consider a grammar
G = ({Stmt, Var, Qualifier}, {REPEAT, UNTIL, BASIC, ID, DOT }, Stmt, P),
where P is:

1. Stmt
(
REPEAT Stmt UNTIL Var

2.

 |
BASIC
3.

 |
(
4. Var
(
Qualifier ID

5. Qualifier
(
ID DOT Qualifier
6.

 |
(
6
Compute the FIRST and FOLLOW sets for this grammar's non-terminals.

FIRST(Stmt) = {

}
FOLLOW(Stmt) = {

}

FIRST(Var) = {

}
FOLLOW(Var) = {

}

FIRST(Qualifier) = {

}
FOLLOW(Qualifier) = {

}

4
Produce the LL(1) parsing table based on these sets. Fill in production numbers, not productions.

	
	REPEAT
	UNTIL
	BASIC
	ID
	DOT
	$

	Stmt
	
	
	
	
	
	

	Var
	
	
	
	
	
	

	Qualifier
	
	
	
	
	
	

1
Does this parse table contain any conflicts?

1
If so, what can be done to eliminate the conflicts and yet maintain the same syntax?
If not, what does it mean to be conflict-free?
9. The following grammar contains occurrences of left recursion.
stmt

(
stmt SEMICOLON simple_stmt

|
simple_stmt
simple_stmt
(
VAR DOT VAR

|
VAR LEFT VAR RIGHT

|
VAR
Here SEMICOLON, VAR, DOT, LEFT and RIGHT are terminals.

3
Rewrite the original grammar in Extended BNF notation.

3
Remove left recursion

3
Perform left factoring

10. Consider a grammar
G = ({St, Var, Qual}, {RPT, TIL, B, ID, DOT }, St, P), where P is:
St

(
RPT St TIL Var

 |
B

 |
(
Var
(
ID Qual

Qual
(
DOT ID Qual

 |
(
8
Show the contents of the stack at every step of a top-down predictive parse of the string. Be sure to show what remains of the input string at every stage as well.

RPT RPT B TIL ID TIL ID DOT ID $

The stack starts with two items. On the bottom is a $, signifying end of input and on the top is the non-terminal St. The following is to simplify your writing but is guaranteed to have more steps that needed.
Stack = St $

Input = RPT RPT B TIL ID TIL ID DOT ID $

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

