COP3402
Final Exam Topics and Promises
Spring 2011

1. Phases of a compiler --

Analysis: Lexical, syntactic, semantic,

Synthesis: int. code gen., code gen., code opt.

Helpers -- Table management, Error Handling

Machine independence of all but code gen. and certain parts of optimization.

Cost of general parsing (O(2^N) with backtrack, O(N^3) with CKY algorithm, want O(N).)

2. Lexical Analysis:

Your lexical analyzer for Pascal-S.

Common errors in lexical analysis -- Comments, inconsistency on look-ahead.

Transition diagrams, regular expressions.

Elementary concepts of deterministic and non-deterministic FSAs.

FLEX as a basis for lexical analysis.

3. Grammars, languages, recognizers -- Chomsky hierarchy:

Phrase Structured grammars (PSG); Turing Mach.

Context Sensitive grammars (CSG); CSL; LBAs

Context free grammars (CFG) ; CFL ; PDAs

Regular grammars (Right Linear); Regular langs. ; FSAs

Non-determinism in recognizers.

4. Basic idea behind context free grammars and syntax-directed translations.

Leftmost, rightmost derivations and parse trees.

Top-down versus bottom-up approaches to parsing.

Non-recursive predictive parsing: LL(1) parsing. LL(k)>LL(k-1).

Ambiguity, distinction between ambiguous grammar and ambiguous language.
Simple ambiguous expression grammar.

Relation of rightmost to Bottom-up and leftmost to Top-down.

Decision problems about grammars, e.g., the meaning of the unsolvability of the ambiguity problem.

More complex, non-ambiguous expression grammar.

Translation of infix to prefix by syntax directed translation
Annotated syntax trees (attached attributes).
Translation schemes (essentially procedural with embedded actions.)

Carrying out simple syntax directed definitions by translation schemes.

5. Top-down Parsing -- looking at mini compilers.

Control structure parsing in Pascal-S.

Backtrack and its problems.
Predictive parsers require no backtrack.
Elimination of left recursion.

Left Factoring

Extended Bachus-Naur Form (EBNF)

Railroad charts (syntax graphs).

Recursive descent is an example of predictive parsing.
One procedure per non-terminal.
Compute FIRST and FOLLOW to decide which rule to use.
Abstract stack machines.
Adding syntax-direction translation to a recursive descent parser.
6. Top Down Parsing: Stack and Parse table

Basic idea is to start with S on stack and end up with empty stack when input exhausted

This approach runs rules forward to produce a match for input

General technique --

Push S onto stack

Basis is top of stack and next input.
Repeat

If tos=input then pop and read
If tos is a non-term then consult table entry for this non-term/input pair

Until input exhausted and stack is empty

Want to avoid conflict by just looking at next token

Computation of FIRST and FOLLOW.

Creation of parse table.

LL(1) grammars. No multiple entries in parse table OR

Said differently A -> x | y implies FIRST(x) intersect FIRST(y) is null and
 if y is NULLABLE, then FIRST(x) intersect FOLLOW(y) is null.

Parse Table and parsing algorithm.

7. Bottom Up Parsing: Shift/Reduce with Stacks.

Basic idea is to start with empty stack and end up with S as only element in stack when input exhausted

This approach runs rules backwards, shifting input into stack to help form right hand sides of rules

General technique --

Empty stack

Basis is top of stack and next input.

Repeat

If tos == right side of some rule, we may replace rhs with symbol on left
We may always shift next input symbol to tos

Until input exhausted and (stack contains just S OR cannot find a rule matching tos
Want to avoid conflict (reduce/reduce or shift/reduce or both)

LR(1) grammar allows us to disambiguate with one symbol look-ahead
8. Bottom Up Parsing of arbitrary CFL (CKY)

Start with CF grammar; convert to Chomsky Normal Form (CNF)

For input of length n, a1a2…an, build n by n upper triangular matrix

Populate first row so that A is in the j-th column if A (aj.

Meaning of i-th row, j-th column, when j>1 is:

Place all A in this slot such that A (* aj…aj+i-1
If the slot in column 1, row n contains S then S A (* a1a2…an is verified
The key is to use Dynamic Programming in which the j-th row is not processed until all prior rows are done. Row 1 is easy. The notes show how to fill out others.

9. LR parsing -- The notion of states that summarize the rest of a stack.
ACTIONs and GOTOs. How an essentially finite automata approach can recognize non regular languages.
Viable prefixes. Handles.
Bison: Its input. Tokens, left, right, nonassoc., prec.

Handling of shift/reduce and reduce/reduce conflicts.

Semantic rules. Actions inside rhs of rules to avoid empty rules.
You must be able to both use and read Bison and FLEX descriptions.
10. SLR(1) parsing -- LR(0) items. CLOSURE of an LR(0) set. Kernels.
GOTO(I,X) set, where I is a set of items, X is a grammar symbol.

Canonical collection of LR(0) sets.
ACTION (shift, reduce) and GOTO construction.

Use of FOLLOW.
Why SLR(1) does not get all unambiguous grammars.

11. Canonical LR(1) parsing -- The deficiencies of SLR parsing.
LR(1) items.
CLOSURE of an LR(1) set.

Use of FIRST.

 GOTO(I,X) set, where I is a set of items.
ACTION (shift, reduce) and GOTO construction.

12. LALR(1) parsing -- Cores and the notion of merging them.

Relation of LALR parsing to canonical LR parsing on correct input and on incorrect input.
Why LALR is preferred to either SLR or canonical LR.
How to handle ambiguity without increasing the grammar size (conflict resolution.)

13. Project grammar -- Where do context sensitive and semantics issues arise?
Questions will arise just from what you had to do to finish this assignment.
14. Intermediate code generation – Parse vs Abstract syntax trees.

Control structures in syntax trees.
N-tuples. Three address code.

Quads and triples.

Relation of triples to trees.

Advantage of quads on code movement.
Indirect triples as a compromise.
Backpatching.
Generation of triples (Basic example).
Declarations in nested scopes

Equivalence and the use of amortization in UNION/FIND alg.

15. Attributed Translation Grammars -- Inherited versus synthesized attributes.
Action symbols in rules.
Dependency graphs.

Computing attribute values with one pass, depth first algorithm.

Topological sorts.
S-attributed. L-attributed.

16. Optimization – Peephole, local, intra, inter
Removal of loop invariants

Common subexpressions, constant folding, constant propagation,

Algebraic identities, strength reduction, commutativity.

Peephole -- redundant instructions, unreachable code,
Jumps to jumps
17. Data flow analysis -- Basic blocks, depth first numbers
Forward and backward flow
May and must information

Unions and intersections, recurrence equations and their solutions.
Least upper bound versus greatest lower bound
Reaching def. problem, Live variable problem

Available expression problem, (Very) Busy expression problem
Iterative versus worklist method of evaluation.
Problems with procedures and aliasing.

Promises:

1. An expression grammar that incorporates precedence and associativity.

2. Distinction between languages and grammars in a particular class.

3. Ambiguity

4. FLEX type answer to a regular expression problem.

5. EBNF / Railroad chart question

6. Creation of a recursive descent parser for some simple construct.

7. Creation of FIRST, FOLLOW and an LL(1) parse table.

8. Removal of left recursion and common prefixes.

9. Bottom-Up and Top-Down stack manipulation

10. Adding actions to Bison grammar, e.g., code generation, semantic error checks
11. Completion of the states, actions and gotos for an SLR(1) parser.

12. Completion of canonical LR(1) parser.

13. LALR(1) parser by doing merges on a canonical LR(1) parser's states.

14. Evaluation of attributes (inherited and synthesized) for some attributed translation grammar.

15. Data flow algorithm based on one of the four discussed in class.

