COP3402	– –	
COP3402	Spring 2011	Final Exam	Sample Problems	

1. Write a sequence of lex-style regular expressions for each of the following sets

A = { w | w is over the alphabet {a,b,1,2} and with every numerical character preceded by an alphabetic one }

· Could be any number of alphabetic characters with no constraints e.g. aab, aabbabab …
· Each numerical character is preceded by an alphabetic one

B = { x | x is a binary string of odd parity }	= string has odd number of 1s

·
All strings with even number of 1s :
· Add one more 1 (makes their number odd) and arbitrary number of 0s :

2. Write an unambiguous grammar that leads to correct parse trees for the language consisting of expressions involving the operand ID and the operators described below.

OPERATOR	ASSOCIATIVITY	PRECEDENCE	BINARY/UNARY
-, +			right to left		High (3)		Unary	
^			right to left		Medium (2)		Binary
&, |			left to right		Low (1)		Binary

Parentheses are also allowed, with their usual interpretation.

Present a parse tree, using your grammar, for the string

- + ID & ID ^ - ID ^ ID

Here is the leftmost derivation:	

And here is the parse tree:	

[image:]

3. Consider the repeat statement, which has the following description:

repeat_stmt REPEAT POSITIVE IDENT = expression SEMICOLON

Wan expression involves IDENTs, positive numbers and the binary operators, +, and *, with normal precedence and associativity. Expressions can also involve parentheses for subexpressions. Write the procedures, repeat_stmt() and expression(), needed to do a recursive descent parse of a REPEAT statement. Assume token are returned by a procedure token() which sets a global variable SY. Assume SY = REPEAT at start. Assume SY = IDENT on an identifier, SY = POSITIVE on a positive number, ASSIGN on “=”, SEMICOLON on ";", LPAREN on a “(“, RPAREN on a “)”, PLUS on a “+” and TIMES on a “*”

4. Redo #3 but with a Bison grammar. Recall how precedences are set.

5. What are the triples that might be generated as intermediate code for?

REPEAT 7 a = (b+a) * e * 2 + d;

6. Consider the following bison grammar for binary real numbers. Add actions at each rule so the printf will print the real version of the input:

%union{	int ival;
float rval; }

[bookmark: _GoBack]%type <rval> R F
%type <ival> N B D

%%
N: 	R		{ printf("value = %f\n", $1); };
R: 	B '.' F 	{ $$ = $1 + $3 / 2.0f; } |
	B		{ $$ = $1; }
	;
B: 	B D 		{ $$ = 2 * $1 + $2; } |
	D		{ $$ = $1; }
	;
F:	D F 		{ $$ = $2 / 2.0f + $1} |
	D		{ $$ = $1; }
	;
D: 	'0' 		{ $$ = 0; } |
	'1'		{ $$ = 1; }
	;%%
#include "lex.yy.c"

where the Flex is created by

%%
.	{ return(yytext[0]); }
EXAMPLE: Input = 101.101. Output is 5.625
7.
Consider the following context free grammar

S : E ';' | 'if' E 's' | B 's' | 'if' B ';'	(1) to (4)
E : 'exp'				(5)
B : 'exp'				(6)

(a) Produce an LR(1) parser. There are fewer than 15 states.

 (b) Show what states would be merged to create an LALR(1) parser.
Point out any conflicts that arise.

state 0
$accept : _S	, $end
S : _E ; 	, $end
S : _if E s 	, $end
S : _B s	, $end
S : _if B ;	, $end
E : _exp	, ;
B : _exp	, s
if shift 3
exp shift 5
S goto 1
E goto 2
B goto 4

state 1
$accept : S_	, $end
$end accept

state 2
S : E_;	, $end
; shift 6

image2.wmf
(01010)

oleObject2.bin

image3.wmf
(01010)10

oleObject3.bin

image4.wmf
112122

2323

3334

41

&|"|"|

^|

||

()|ID

AAAAAA

AAAA

AAAA

AA

®

®

®-+

®

oleObject4.bin

image5.wmf
11222323232

4223242

23232

4223

4

&&&&&

&ID&ID&^ID&^

ID&ID^ID&ID^^ID&ID^^

ID&ID^^ID&ID^ID^ID&ID^ID^

ID&ID^ID^ID&ID^ID^ID

AAAAAAAAAAA

AAAAAAA

AAAAA

AAAA

A

®®®®-®-+

®-+®-+®-+®-+

®-+®-+®-+-

®-+-®-+-®-+-

®-+-®-+-

oleObject5.bin

image6.emf
A

1

A

1

& A

2

ID

A

2

A

3

- A

3

+ A

3

A

4

A

3

^ A

2

ID

A

4

A

3

^ A

2

ID

- A

3

A

4

ID

A

3

A

4

image1.wmf
(

)

[][12]?

ab

*

oleObject1.bin

