COP3402 Spring 2011	Page | 2	Final Exam	
[bookmark: _GoBack]COP3402	 Spring 2011	Final Exam	Name 	Cheat Sheet 			

	1.	Write a sequence of lex-style regular expressions for each of the following sets

A =

B =	

	2.	Consider the following grammar that leads to correct parse trees for the language consisting of expressions involving the operand v, parentheses and the operators described below.

Blah, blah

Fill in the following table with associativity (left-to-right or right-to-left or non-associative), precedence, and whether or not the associated operator is binary or unary. Assume that 1 indicates the lowest precedence operators, 2 the next higher, etc.

	OPERATOR
	ASSOCIATIVITY
	PRECEDENCE
	BINARY/UNARY

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Present a parse tree, using this grammar, for the string

Blah blah blah

	3.	Consider the blah statement, which has the following description:

blah lots of blahs

You may assume the existence of functions int whoKnows () etc. These return the number of the triple associated with their intermediate code generation. Write the function, int blah(), needed to do a recursive descent parse of a blah statement. Assume tokens are returned by procedure token() which sets a global variable SY. Assume SY = …. Your routine should produce triples that represent intermediate code associated with the blah statement. Use the triples we did in class, including the …

	4.	Consider the following bison grammar for …. Add actions following each rule so the printf will print …:

%%
…
%%
…
EXAMPLE: Input = …; Output is …

	5.	Present the CKY recognition matrix for the string a – a + a - a assuming the Chomsky Normal Form grammar specified by the rules

E 	E F | M E | P E | a
F 	M F | P F | M E | P E
P 	+
M 	

	
	a
	
	a
	+
	a
	
	a

	1
	
	
	
	
	
	
	

	2
	
	
	
	
	
	

	3
	
	
	
	
	

	4
	
	
	
	

	5
	
	
	

	6
	
	

	7
	

	

Be sure to note whether or not the string is accepted.
	
	6.	Consider the grammar
G = (…),
where P is: …
	Convert this to a right recursive grammar.

	Compute the FIRST and FOLLOW sets for this grammar's non-terminals.

	Produce the LL(1) parsing table based on these sets. Fill in production numbers, not productions. If there are any conflicts, circle those entries

	7.	Consider the following context free grammar
…
	(a)	Produce the description of an SLR(1) parser. There are no more than x states. I already did y of them. Point out any and all conflicts that arise.
State		Item(s)				Action			Goto
0		

Once again, consider the above context free grammar
	(b)	Produce the description of an LR(1) parser. There are no more than w states. I already did z of them. Point out any and all conflicts that might arise.
State		Item(s)				Action			Goto
0		

	8.	Consider the following context free grammar
…
The LR(1) parser is specified by the following table:
State		Item(s)				Action			Goto
0		
Indicate what states are merged to create the corresponding LALR(1) parser, and show the combined States, Items, Actions and Gotos.
State		Item(s)				Action			Goto

	9.	Recall the … dataflow analysis problem. This computes for each basic block the values …, where
XX[B] = { }
YY[B] = { }
Etc. – like the sample I already gave you.

	10.
Indicate which of the following are true (T) and which are false (F).
	Statement
	True (T) or False (F)

	Recursive descent parsers are easy to create from left recursive grammars
	F

	…
	?

	Remo is a way cool GTA
	T

	11.	Some questions about things I didn’t cover in the rest of exam.

