Program Flow Analysis
Basic type is Scalar Analysis

Concentrates on simple variable names

Indexed array ref. A[I] is treated as a reference to all of object A

This basic coverage ignores aliasing (multiple names for same object)

Basic Block

One in, one out sequence of code

Local Analysis – done on single basic blocks

Intraprocedural Analysis – done within procedures

Interprocedural Analysis – done across procedures

Control Flow

intra creates flow graph with procedure entry as initial node

inter creates a call graph with main body as initial node

Data Flow

determines accessibility of definitions and uses to each other

UD chaining – given a variable use, what definitions reach this use

DU chaining – given a variable definition, what uses are made of it

Data Flow Notations
Program P consists of procedures, one of which is denoted p.

We assume one entry / one exit procedures.
A flowgraph G = (N, E, s) refers to a directed graph (N, E) and an initial node s in N, where there is a path from s to every node of G. Nodes can be statements or basic blocks. Commonly, they are the latter.

Program SquareRoot;

var
L, N, K, M : integer; C : boolean;

begin

(* start of block B1 *)

read(L);

N (0;

K (0;

M (1;

(* end of block B1 *)

loop

(* start of block B2 *)

K (K + M;

C (K > L;

if C then break;

(* end of block B2 *)

(* start of block B3 *)

N (N + 1;

M (M + 2

(* end of block B3 *)

end loop;

(* start of block B4 *)

write(N)

(* end of block B4 *)

end. (* SquareRoot *)

Extracting Loops
Let G = (N,E,s)

(1)
a node s’ (N is the entry point for a loop in G iff there is an s” (N such that
(s”,s’) (E and s’ dominates s”. (s’ dominates s” if s’ is on every path from s (start node) to s”)

(2)
Let s’ be an entry point of a loop. The max loop with entry s’ is G’ = (N’,E’,s’), where
N’ = {s” | (a path from s” to s’ which contains only nodes “dominated” by s’}.
E’=E ((N’(N’)

To do data flow analysis we often wish to obey dominances, doing loop entries before their bodies, if conditions before their choices, etc.

Depth First Numbering
A depth first traversal can be used to number nodes so that

s’ < s” (s’ dominates s”) implies #(s’) < #(s”).

Note that it is not true that #(s’) < #(s”) implies s’ < s”.

DFT(G : flowgraph)

(* G = (N,E,s) *)

E’ ({ };

i (| N |;

for every t in N do t.mark (false;

search(s)

Search(t : node)

t.mark (true;

while t.unmarked_successors ({ } do begin

t’ (select(t.unmarked_successor);

E’ (E’ + { (t,t’) };

Search(t’)

end; (* while *)

rPostOrder[t] (i;

i (i – 1

This produces one of the natural orders. Visiting nodes based on these numbers speeds up data flow analysis.

Arcs are forward (unvisited node); back (visited but not numbered); cross (numbered).

Back arcs denote loops.

Categorizing Arcs in DFS Tree

[image: image1.wmf]1

2

4

5

6

9

3

10

7

8

cross

back

back

forward

More Notation
Below, s stands for a statement and n for a basic block

S_DEFS = { s | s is a statement that defines variables }

S_USES = { s | s is a statement that uses variables }

DEF[s] = { v | s is a definition of variable v } // This set has cardinality 1 or 0 for our puposes

USE[s] = { v | s is a use of variable v } // This set has cardinality (0

DEF[n] = { v | (an outward exposed defn of v in n }

USE[n] = { v | (an outward exposed use of v in n }

PRE[n] = VAR – DEF[n] /* preserved defs */

S_DEF[n] = { s | s is an outward exposed defn in n }

S_USE[n] = { s | s is an outward exposed use in n }

S_PRE[n] = { s’ | s’ (S_DEFS and, for all
s (S_DEF[n], DEF[s’] (DEF[s] = Ø } // PRE stands for preserves
Note that if we assume |DEF[s”]| (1, for all s”, then above is DEF[s’] (DEF[s]

Reaching Definitions

RD[n] = { s | s (S_DEFS and s reaches n }

Types of Data Flow
Notation: For any node n, pred[n] is the set of all immediate predecessors of n and
succ[n] is the set of all immediate successors.

RD[n] = ReachIn[n] = { s | p (pred[n] and s (ReachOut[p] }

ReachOut[n] = (ReachIn[n] (S_PRE[n]) (S_DEF[n]

We now have a recurrence relation and hence seek a fixed point. We want the least fixed point.

MAY – determine if a property may be possible. This is attacked by assuming no elements satisfy, then union in all those that might have the property. By starting with the empty set, we get the Least Upper Bound (LUB). This is conservative.

MUST – determine if a property must be true. This is attacked by assuming all elements satisfy, then intersecting all those that must have the property. By starting with everything, we get the Greatest Lower Bound (GLB). This is conservative.

FORWARD FLOW – information flows from the root towards leaves of the control flow graph.

BACKWARD FLOW – information goes from the leaves towards the root of the control flow graph.

Reaching Definitions is MAY / FORWARD FLOW

Reaching Definitions Algorithm
for i = 1 to NBlocks do begin

ReachOut[i] (S_DEF[i];

ReachIn[i] ({ }

end;

change (true;

while change do begin

change (false;

for i = 1 to NBlocks do begin

newIn ({ s | p (pred[n] & s (ReachOut[p] };

if ReachIn[i] (newIn then begin

ReachIn[i] (newIn;

oldOut (ReachOut[i];

ReachOut[i] ((ReachIn[i] (S_PRE[i]) (S_DEF[i];

if oldOut (ReachOut[i] then change := true

end

end

end
Scalar Data Dependence
S1:

A (1.0;

S2:

B (A + 3.1415;

S3:

A (.333 * (C – D);

…

…

S4:

A ((B * 3.8) / 2.718;

S2 is true dependent on S1

S3 is anti-dependent on S2

S4 is output dependent on S3

[image: image2.wmf]S1

S2

S3

S4

out

true

true

anti

out

Can use scalar data flow analysis to determine these dependencies.

Vector Data Dependence

for i = 1 to 100 do begin

S:

A[2*i] (B[i] + 1;

S’:

D[i] (A[2*i + 1]

end

If treat A, B and D as scalars then S’ is true dependent on S and S is anti-dependent on S’. But it can’t be so since S references only even numbered elements of A and S’ references only off numbered elements of A. Thus, we can do the iterations independently. But how do we recognize this? The basis is Diophantine analysis – provided indices are linear in the for variable. In above, we can ask if there is an integral solution to

1 (X, Y (100 such that 2X = 2Y + 1

The answer is no, hence the indices cannot overlap. Even if we had for i:=1 to N, we can determine this.

for i = 2 to 10 do begin

S:

A[i] (B[i] + 1;

S’:

D[i] (A[i – 1]

end

The relation is X = Y – 1, for 2 (X, Y (10. Can solve for all 2 (X (9, so there is true dependence.

Testing Data Dependence
There are exact and inexact (but faster) tests for the existence of solutions to linear Diophantine equations. There is no test for polynomials of degree (4, and in fact exact solutions for lower degree polynomials are very hard.

One simple test is the GCD (Greatest Common Divisor) test. It is easiest seen by example.

for i = 1 to N do

for j = 2 to M do begin

S:

A[2*i + 2*j] (…;

…

…

S’:

… (A[4*i – 6*j + 3]

end

These are independent if there is no solution to 2 A + 2 B = 4 C – 6 D + 3

Can rewrite as 2 A + 2 B – 4 C + 6 D = 3

But evenness of left says no solution is possible. This is recognized by gcd(left) = 2, gcd(right) = 3, but 2 is not a divisor of 3.

The technique is conservative, especially since it ignores regions. So, it says the following are possibly dependent

for i = 0 to 10 do

for j = 0 to 10 do begin

S:

A[2*i + j] (…;

…

…

S’:

… (A[–i + 2*j – 21]

end

which translates to 2 A + B + C – 2 D = -21. gcd(left)=1; gcd(right) = 21. But the restriction that
0 (A, B, C, D (10 can be used to deny a solution since the left side can be no smaller than -20.

Examples of Vectorizing

for i = 1 to N do

S:

A[i + 1] (A[i] * B[i]
(* True Dependence *)

==

for i = 1 to 100 do begin

S:

D[i] (A[i – 1] * D[i];
(* S depends on S’ *)

S’:

A[i] (B[i] + C[i]

end

Reorder S and S’

for i = 1 to 100 do begin

S’:

A[i] (B[i] + C[i]

S:

D[i] (A[i – 1] * D[i];
(* S depends on S’ *)

end

Loop Distribution

for i = 1 to 100 do

S’:

A[i] (B[i] + C[i]

for i = 1 to 100 do

S:

D[i] (A[i – 1] * D[i];
(* S depends on S’ *)

Change to Vector Operations

S’:

A[1:100] (B[1:100] + C[1:100]

S:

D[1:100] (A[0:99] * D[1:100];

==

for i = 1 to N do

for j = 1 to N do

C[i, j] (C[i – 1, j] – D[i – 1, j + 1]

Dependence is on outer loop only, so vectorize as

for i := 1 to N do

C[i, 1:N] (C[i – 1, 1:N] – D[i – 1, 2:N+1]

Program Transformations Used to Parallelize Code

Privatization -- Give each process a copy of a variable

Scalar Expansion -- Replace a scalar by an array

Loop Distribution -- Split one loop into two separate ones

Loop Fusion -- Combine two loops into one

Loop Interchange -- Interchange inner and outer loops

Loop Unrolling -- Replace loop body and do fewer iterations

Strip Mining -- Divide iterations of one loop into two nested loops

Unroll and jam -- Combine interchange, strip mining and unrolling

Loop Skewing -- Alter loop bounds to expose wavefront parallelism

Loop Blocking (Tiling) -- Divide iteration space into rectangular blocks

Logic Programming – A Prolog Program
First Program
chase(X, Y)
:-
dog(X), cat (Y).

cat(fuzzy).

cat(magic).

dog(rover).

Query
?-chase(X, fuzzy).

Answer
X = rover

Query
?-chase(fuzzy, Y).

Answer
No

Query
?-chase(X, Y).

Answer
X = rover, Y = fuzzy

X = rover, Y = magic

The Vocabulary of Logic Programming
The basic element in a Prolog program is a term.

Terms can be simple – variable or constant

or complex – a functor and arguments or a list.

A variable is an upper case name.

A constant is a number or a lower case name.

A functor is also lower case.

A list is a predefined functor of two arguments which is written in the form [head | tail], where head is the first element of the list and tail is the remainder. The corresponding functor is just concatenation.

A variable can be bound only once to another term

Binding normally occurs through unification, where a variable must match another term

A clause has a head and an optional body.

Programs and Clauses
Example general forms of clauses are

H.

or

H :– B1 , B2 , … , Bn.

The first clause states a fact, e.g.,

factorial (5, 120).

The second states that proposition H is supported by the truth of all of B1 , … Bn. We read

factorial (N, Fact1) :–

N>0, factorial (N-1, Fact2), Fact1 = N * Fact2.

as “the proposition that N is related to Fact1 by the functor factorial is supported if N>0, and N-1 is related to Fact2 by the functor factorial, and Fact1 is equal to N times Fact2.”

We also say that we can achieve the goal factorial(N, Fact1), if we can achieve the other subgoals.

Running a Prolog program consists of posing a query, e.g.,
?– factorial (5, Fact)

Another Prolog Program
Second Program
append([], Y, Y).

append([H | X], Y, [H | Z]) :- append(X, Y, Z).

Query
?-append([a, b], [c, d], Z).

Answer
Z = [a, b, c, d]

Query
?-append([a, b], Y, [a, b, c, d]).

Answer
Y = [c, d]

Query
?-append(X, [c, d], [a, b, c, d]).

Answer
X = [a, b]

Query
?-append(X, [c], [a, b]).

Answer
No

Abstract Prolog Sample
Prolog Program
p(X, Y)
:-
q(X), r(X, Y).

q(4).

q(X)

:-
s(X), t(X).

r(X, Y)
:-
u(X), v(Y).

r(X, 3)
:-
w(X).

s(5).

s(6).

t(6).

u(1).

v(3).

w(6).

Query
?-p(X, Y).

Answer
X = 6, Y = 3

Solution Tree (Depth First)

 EMBED Word.Picture.8

 Logic Programming and Parallelism

In logic programming there are 3 clear opportunities for parallelism. Or-parallel pursues multiple choices. This requires separate traces with separate data spaces for each option so backtracking can be done and so the variable bindings of the choices are kept separate. And-parallel makes a choice and then follows one or more of the terms in this clause in parallel. Only one data space is required since each path shares the same bindings. The problem here is variable locking or data flow (generator-consumer) analysis to avoid variable locking. Unification-parallel matches heads of clauses in parallel. This is orthogonal to the other two types of parallelism. It is, in fact, possible to combine all three in a given system.

And-Parallelism
In the clause

H :– B1 , B2 , … , Bn.

The subgoals B1 , B2 , … , Bn must be simultaneously satisfied. An obvious form of parallelism is to do all n subgoals in parallel. There are some associated problems

1)
What if two or more of the subgoals reference the same variable? This can create a problem if both try to write it at the same time. They might both assume success if the variable starts as unbound (free to receive a value.)

2)
What happens if a conflict is found? Won’t backtracking be very complicated?

Sharing a Variable
Example:

F(X,Y) :– G(X), H(X,Y).

G(0).

H(1,1).

H(0,0).

Clearly

?– F(X,Y)

should be answered X=0,Y=0.

But, how do we protect X if we are matching G(X) to G(0) at the same time as we are matching H(X,Y) to H(1,1)? The conflict may go unnoticed!

We could add a lock to X’s access. But that would make access very time consuming.

We could apply data flow analysis – either static or dynamic.

We could use a generator / consumer approach.
Data Flow Analysis
Consider the following abstract clause

 EMBED Word.Picture.8

Once p0 is unified to some goal, we must satisfy the subgoals p1, p2, p3 , p4 and p5. We could run p1 and p4 in parallel. Once p1 is done we could start a process for p2. p3 has to await completion of p2, and p5 must await completion of both p3 and p4. This approach would retain the LR semantics whenever a choice is possible.

Generator / Consumer
A problem with the data flow approach is that it doesn’t work very effectively if we can’t distinguish clauses that assign from clauses that use bindings. The generator consumer approaches are similar to data flow, except that they release a subgoal for processing as soon as its turn comes or its variables have bindings assigned by others. So for the previous example, we would release all subgoals if p0’s unification bound all variables. Or less dramatically, we would release p2 with p1 and p4, if p0 provided a binding for t.

Backtracking
Once an error is found in one of the subgoals of a goal B, we must backtrack in an intelligent manner. This is a difficult topic that I will not really cover, but I’ll point out a few problems.

Bindings must be undone.

We cannot backtrack above some choice point that could have succeeded.

It is foolish to try an option that is guaranteed to fail.

Backtracking is considerably harder if we add in or-parallelism.

COP 5021 — Program Analysis
–
 –
Spring 2008

_1047108011.unknown

_1047108013.unknown

_984398736.doc

S1

S2

S3

S4

out

true

true

anti

out

