
Systems Software

Charles E. Hughes
COP 3402 – Spring 2011

Notes

OVERVIEW
(DAYS #1,2)

4/21/11 © UCF EECS 2

4/21/11 © UCF EECS 3

Who, What, Where and When
•  Instructor: Charles Hughes;

Harris Engineering 247C; 823-2762
(phone is not a good way to get me);
Office Hours: TR 9:45AM-11:15AM
charles.e.hughes@knights.ucf.edu
(e-mail is a good way to get me)
Subject: COP3402

•  GTA: Remo Pillat; rpillat@knights.ucf.edu
Office Hours: M 2:30PM-4:30PM

•  Web Page:
http://www.cs.ucf.edu/courses/cop3402/spring2011

•  Meetings: TR 12:00PM-1:15PM, HEC-118;
28 periods, each 75 minutes long.
Final Exam is separate from class meetings

•  Labs: S11:R8:30-9:20; S12:R 9:30-10:20; HEC110
•  Final exam: Thursday, April 28, 10:00AM – 12:50PM

3

4/21/11 © UCF EECS 4

Text Material
•  Textbook: System Software Knights, University of

Central Florida Custom Edition, Pearson Custom
Publishing 2008, ISBN 978-0-555-04647-0. Taken from:
–  System Software: An Introduction to Systems Programming,

Third Edition by Leland Beck.
–  Concepts of Programming Languages, Eighth Edition by Robert

W. Sebesta.
–  Compilers: Principles, Techniques, & Tools, Second Edition by

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
–  Operating Systems: Internals and Design Principles, Sixth

Edition by William Stallings.

•  Other material linked from web site and in these notes

4

Goals of Course
•  Course Outline: This course is designed to provide a fundamental

understanding of real and virtual machines as language processor. We will
study the processor as an instruction interpreter. Compilers, assemblers,
and virtual machines will be presented as systems software for program
development. An introduction to operating system will be given. The course
is a blend of theory and practice, with a heavy dose of both.

•  Course Topics: introduction to compilers and interpreters, virtual
machines, computer architecture and assembler, loaders and linkers,
macro-preprocessors, run time environments and operating systems

•  Prerequisites: COP 3502 – Computer Science I

4/21/11 © UCF EECS 5 5

4/21/11 © UCF EECS 6

Expected Outcomes
•  You will gain a solid understanding of various types of

systems software (purpose, challenges, theoretical
framework, various options for implementation).

•  You will have a strong sense of the computational
bounds that drive various strategies and compromises.

•  You will hone your skills as software designers and
programmers.

•  You will (hopefully) come away with stronger formal
proof skills and a better appreciation of the importance of
discrete mathematics to all aspects of CS.

6

4/21/11 © UCF EECS 7

Keeping Up
•  I expect you to visit the course web site regularly

(preferably daily) to see if changes have been made or
material has been added.

•  Attendance is preferred, although I do not typically take
role. Role may be taken if attendance and interaction
drops off. This is also true of the labs.

•  I do ask lots of questions in class and give lots of hints
about the kinds of questions I will ask on exams. It would
be a shame to miss the hints, or to fail to impress me
with your insightful in-class answers.

•  You are responsible for all material covered in class,
whether in the text or not.

7

4/21/11 © UCF EECS 8

Rules to Abide By
•  Do Your Own Work

–  When you turn in an assignment, you are implicitly telling me
that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and solutions to
problems not posed as assignments is encouraged.

•  Late Assignments
–  I will accept late assignments up to two days past the due date,

except for the final project for which no leeway will be given.
Lateness has its consequences as seen on the grading policy.

•  Exams
–  No communication during exams, except with me or a

designated proctor, will be tolerated. A single offense will lead to
termination of your participation in the class, and the assignment
of a failing grade (F or possibly ZF, see http://z.ucf.edu/).

8

Make Ups and Extra Credits
•  Exams can only be made up under extreme extenuating

circumstances. Traffic and malfunctioning alarm clocks
are not valid excuses. If you miss an exam, you are
responsible for contacting the instructor immediately. If
you have not contacted the instructor within one day of
the exam, you cannot make it up even if you had a
legitimate reason for missing the exam, unless the
circumstances preventing you from taking the exam also
caused you to be unable to contact the instructor.

•  I don’t do extra credits unless I do them for the whole
class and that is very, very rare.

4/21/11 © UCF EECS 9

4/21/11 © UCF EECS 10

Evaluation (tentative)
•  Grading Policy:

–  (20%) Programming and Other Assignments
–  (20%) Mid-term Exam(s)
–  (30%) Final Exam
–  (25%) Final Programming Project
–  (5%) Open as to where that will go
•  The weights of exams will be adjusted to your personal benefits,

as I reward good trends and downplay (but don’t totally
disregard) bad anomalies.

•  Each assignment will have a due date and 10% will be subtracted
for each day late (up to 2 days late, 20% off; more than two days
late results in no credit).

•  Grading will be A >= 90%, B+ >= 87%, B >= 80%, C+ >= 77%, C
>= 70%, D >= 60%, F < 60%

10

4/21/11 © UCF EECS 11

Important Dates

•  Drop/Swap – Thursday, Jan. 13
•  Exam#1 – Tuesday, Feb. 22 (tentative)
•  Withdraw Deadline – Friday, March 4
•  Spring Break – March 7-12
•  There may be a second midterm; I will

decide right after Spring Break.
•  Final – Thurs, April 28, 10:00AM–12:50PM

11

System Software
•  Systems Software consists of programs that support the

operation of a computer system, help simplify the
programming process and create an environment to run
application software efficiently.

•  Examples of systems software include:
–  Text Editors and Integrated Development Environments (IDEs)
–  Language Processors (compilers, interpreters, analyzers, …)
–  Linkers and Loaders
–  Debuggers
–  Assemblers and Just-In-Time Translators (JITs)
–  Operating Systems

4/21/11 © UCF EECS 12

Categories of Sys Software
•  Components for program development

–  Text Editor
–  Macro Preprocessor
–  Compiler
–  Assembler
–  Linker
–  IDE

•  Components for run-time
–  Loader
–  Dynamic Linker
–  Debugger
–  Operating System

4/21/11 © UCF EECS 13

Program Development
•  Text editor: Permits the creation and editing of text files (e.g.

application programs).
•  Macro Preprocessor: Expands macros and other directives either as

part of immediate source analysis or as part of language translation.
•  Compiler: Translates programs written in a high level language to

object or machine code (sometimes for an abstract machine).
•  Assembler: Translates programs written in assembly language to

object or machine code.
•  Static Linker: Combines and resolves references between object

programs and creates the executable code.

•  IDE: Integrates all of above in a language-aware context.

4/21/11 © UCF EECS 14

Run-time
•  Loader: Loads and starts execution of machine code
•  Dynamic Linker: Loads and links shared libraries at run-time.
•  Debugger: Helps to debug executable programs using object code

and (usually) symbolic information from source program.
•  Operating System: An event driven program that makes an

abstraction of the computer system. The operating system handles
all resources efficiently, creates an environment in which application
programs can run, and provides a friendly interface between the
user and the underlying computer system.

4/21/11 © UCF EECS 15

4/21/11 © UCF EECS 16

Source
Program

Compiler/
assembler

Object
Module

Link Editor
 (Linker)

Other Object
 Modules

 Loader

Executable
 File

System
Library

Dynamically
Loaded System
Library

Running
Program Computer hardware + OS

Load time

Compile time

Execution time

A BRIEF INTRODUCTION TO
MACHINE ORGANIZATION

4/21/11 © UCF EECS 17

Von Neumann Machine

4/21/11 © UCF EECS 18

PC

MAR

A MDR OP ADDRESS

MEMORY

 A L U

Decoder

Instruction Cycle
•  The Instruction Cycle, or Machine Cycle, in the

Von-Neumann Machine (VN) is composed of 2
steps:
1. Fetch Cycle: Instruction is retrieved from

 memory.
2. Execution Cycle: Instruction is executed.

•  A simple Hardware Description Language will be
used in order to understand how instructions are
executed in VN.

4/21/11 © UCF EECS 19

Simple Processor Model
•  Program Counter (PC) is a register that holds the address of

the next instruction to be executed.
•  Instruction Register (IR) is a register that stores the

instruction to be executed by the processor.
•  DECODER is a circuit that decides which instruction the

processor will execute. For example, it takes the instruction
op-code from the IR as input and outputs a signal to the ALU
to control the execution of the ADD instruction.

•  Arithmetic Logic Unit (ALU) is used to execute
mathematical instructions such as ADD or SUB.

•  Accumulator (A) is used to store data to be used as input to
the ALU. (usually there are many registers for this purpose)

4/21/11 © UCF EECS 20

Simple Memory Model
•  Main Storage (MEM) is used to store programs and

data. Random Access Memory (RAM) is an
implementation of MEM.

•  Memory Address Register (MAR) is a register used to
store the address to a specific memory location in Main
Storage so that data can be written to or read from that
location.

•  Memory Data Register (MDR) is a register used to store
data that is being sent to or received from the MEM. The
data that it stores can either be in the form of instructions
or simple data such as an integer.

4/21/11 © UCF EECS 21

Fetch-Execute Cycle
•  In the VN, the Instruction Cycle is defined

by the following loop:
 Fetch

 Execute

•  In order to fully explain the Fetch Cycle we
need to study the details of the VN data
flow. The data flow consists of 4 steps.

4/21/11 © UCF EECS 22

Data Movement 1
•  Given registers PC

and MAR, the transfer
of the contents of PC
into MAR is indicated
as:
 MARPC

4/21/11 © UCF EECS 23

A

PC

MAR

MDR OP ADDRESS

MEMORY

 A L U

Decoder

Data Movement 2
•  To transfer information

from a memory location
to the register MDR, we
use:

 MDRMEM[MAR]

•  The address of the
memory location has
been stored previously
into the MAR register

4/21/11 © UCF EECS 24

PC

MAR

MDR OP ADDRESS

MEMORY(MEM)

 A L U

Decoder

A

MEM[MAR]

Data Movement 2 (Cont.)

•  To transfer information from the MDR
register to a memory location, we use:
 MEM [MAR] MDR
 *see previous slide for diagram

•  The address of the memory location has
been previously stored into the MAR

4/21/11 © UCF EECS 25

Data Movement 3
•  Transferring the

contents of MDR into
IR is indicated as:
 IRMDR

4/21/11 © UCF EECS 26

A

PC

MAR

MDR OP ADDRESS

MEMORY

 A L U

Decoder

Instruction Register

•  The Instruction Register (IR) has two
fields:

 Operator (OP) and ADDRESS.

•  These fields can be accessed using the
selector operator “.”

4/21/11 © UCF EECS 27

Data Movement 4
•  The Operation portion of the field is

accessed as IR.OP
•  The operation field of the IR register is

sent out to the DECODER using:
 DECODERIR.OP

•  DECODER: If the value of IR.OP==00,
then the decoder can be set to execute the
fetch cycle again.

4/21/11 © UCF EECS 28

Data Movement 4 (Cont.)

4/21/11 © UCF EECS 29

DECODERIR.OP PC

MAR

MDR OP ADDRESS

MEMORY

 A L U

Decoder

A

00 Fetch Cycle
•  1.MAR PC
•  2.MDR MEM[MAR]
•  3.IR MDR
•  4.PC PC+1
•  5.DECODER IR.OP

1. Copy contents of PC into
MAR

2. Load content of memory
location into MDR

3. Copy value stored in
MDR to IR

4.  Increment PC Register
5. Copy the OP code into

the DECODER

4/21/11 © UCF EECS 30

Execution: 01 LOAD
1. MAR IR.ADDR
2. MDR MEM[MAR]
3. A MDR
4. DECODER 00

1. Copy the IR address
value field into MAR

2. Load the content of a
memory location into
MDR

3. Copy content of MDR
into A register

4. Set Decoder to
execute Fetch Cycle

4/21/11 © UCF EECS 31

Execution: 02 ADD
1. MAR IR.ADDR
2. MDR MEM[MAR]
3. A A + MDR
4. DECODER 00

1. Copy the IR address
value field into MAR

2. Load content of
memory location to
MDR

3. Add contents of MDR
and A register and
store result into A

4. Set Decoder to
execute Fetch cycle

4/21/11 © UCF EECS 32

Execution: 03 STORE
1. MAR IR.ADDR
2. MDR A
3. MEM[MAR] MDR
4. DECODER 00

1. Copy the IR address
value field into MAR

2. Copy A register
contents into MDR

3. Copy content of MDR
into a memory
location

4. Set Decoder to
execute Fetch cycle

4/21/11 © UCF EECS 33

Execution: 07 HALT
1.  STOP 1.  Program ends

normally

4/21/11 © UCF EECS 34

Instruction Set Arch (ISA)
00 Fetch (hidden instruction)

 MAR PC
 MDR MEM[MAR]
 IR MDR
 PC PC+1
 DECODER IR.OP

02 Add
 MARIR.Address
 MDR MEM[MAR]
 A  A + MDR
 DECODER 00

01 Load
 MARIR.Address
 MDR MEM[MAR]
 A  MDR
 DECODER00

03 Store
 MARIR.Address
 MDR A
 MEM[MAR] MDR
 DECODER 00

07 Halt
4/21/11 © UCF EECS 35

One Address Format

4/21/11 © UCF EECS 36

OP ADDRESS

LOAD 0000 0000 0010

1-Address ISA
01 - LOAD <X>
Loads the contents of memory location “X” into the A (A stands
for Accumulator).

02 - ADD <X>
The data value stored at address “X” is added to the A and the
result is stored back in the A.

03 - STORE <X>
Store the contents of the A into memory location “X”.

04 - SUB <X>
Subtracts the value located at address “X” from the A and stored
the result back in the A.

4/21/11 © UCF EECS 37

1-Address ISA (Cont.)
05 - IN <Device #>
A value from the input device is transferred into A.
06 - OUT <Device #>
Print out the contents of A in the output device.

 Device # Device
 5 Keyboard
 7 Printer
 9 Screen

07 - Halt
The machine stops execution of the program.
(Return to the OS)
08 - JMP <X>
Causes an unconditional branch to address “X”.
PC  X

4/21/11 © UCF EECS 38

1-Address ISA (Cont.)
09 - SKIPZ
If the contents of Z
flag = 1, skip the next
instruction.
(If the output of the
ALU equals zero, the
Z flag is set to 1. In
this machine, it means
A = 0)

4/21/11 © UCF EECS 39

MAR

A MDR OP ADDRESS

 MEMORY

 A L U

Decoder

PC

0

A = 0

Z

Z =Condition Code

Condition Flags
•  For this tiny assembly language, we are

 using only one condition code (CC) Z = 0 .

•  Condition codes indicate the result of the most
 recent arithmetic/logical operation

•  Two more flags (CC) can be incorporated to test
negative and positives values:
 G = 1 Positive value
 Z = 1 Zero
 L = 1 Negative value

4/21/11 © UCF EECS 40

Program Status Word

4/21/11 © UCF EECS 41

PC

Interrupt Flags MASK

Mode
OV MP PI

To be defined later
I/O TI SVC

In addition to the Z flag, there are two more flags:
 1) G meaning “greater than zero”
 2) L meaning “less than zero”

CC

Z G L

The PSW is a register in the CPU that provides the OS
with information on the status of the running program

Instruction Semantics
opcode mnemonic meaning

0001 LOAD <x> A  Mem[x]
0010 ADD <x> A  A + Mem[x]
0011 STORE <x> Mem[x]  A
0100 SUB <x> A  A – Mem[x]
0101 IN <Device_#> A  read from Device
0110 OUT <Device_#> A  output to Device
0111 HALT Stop
1000 JMP <x> PC  x
1001 SKIPZ If Z = 1 Skip next instruction
1010 SKIPG If G = 1 Skip next instruction
1011 SKIPL If L = 1 Skip next instruction

4/21/11 © UCF EECS 42

Sample Execution

4/21/11 © UCF EECS 43

Memory
000 Load <004>
001 Add <005>
002 Store <006>
003 Halt
004 1245
005 1755
006 0000

Memory
000 Load <000>
001 Add <001>
002 Store <002>
003 Halt
004 1245
005 1755
006 3000

After execution

1-Address Layout
•  The instruction format of this one-address

architecture consists of 16 bits: 4 bits to
represent instructions and 12 bits for addresses :

•  LOAD (opcode=0001) ADDR (here it’s 17)

4/21/11 © UCF EECS 44

OP ADDRESS

0001 0000 0001 0001

Assembler Language Ex.

4/21/11 © UCF EECS 45

 Label opcode address
 start .begin
 in x005
 store a
 in x005
 store b
 load a
 sub TWO
 add b
 out x009
 halt
 a .data 0
 b .data 0
 TWO .data 2
 .end start

Data section

Text section (code)

Load/Store Instr. Format

4/21/11 © UCF EECS 46

A load/store architecture has a “register file” in the CPU and
might use three instruction formats. Therefore, its assembly
language is different from that of the accumulator machine.

OP

OP

OP

ADDRESS

ADDRESS R1

R 1 R 2 R 3

JMP <address>

Load R1, <address>

Add R1, R2, R3

Load/Store Architecture

4/21/11 © UCF EECS 47

PC

MAR

MDR OP

MEMORY

 A L U

Decoder

R0
R1

R2
R3

+

INPUT/OUT

Comparison of Code

4/21/11 © UCF EECS 48

 Label opcode address
 start .begin
 in x005
 store a
 in x005
 store b
 here load result
 add a
 store result
 load b
 sub ONE
 store b
 skipz
 jmp here
 load result
 out x009
 halt
 a .data 0
 b .data 0
 ONE .data 1
 result .data 0
 .end start

One address Architecture

 Label opcode address
 start .begin
 in x005
 store R0, a
 in x005
 store R0, b
 load R2, result
 load R3, a
 load R0, b
 load R1, ONE
 here add R2, R2, R3
 sub R0, R0, R1
 skipz
 jmp here
 out R2, x009
 halt
 a .data 0
 b .data 0
 ONE .data 1
 result .data 0
 .end start

Load/Store architecture

VIRTUAL MACHINE
P-CODE

(DAYS #2,3)

4/21/11 © UCF EECS 49

P Code VM
•  The Pseudo-code machine is a software (virtual) machine

that implements the instruction set architecture of a stack
computer.

•  P-code was implemented in the 70s as the target architecture
for Pascal compilers. Execution was by interpretation.

•  Another example of a virtual machine is the JVM (Java Virtual
Machine) whose intermediate language is commonly referred
to as Java bytecode.

•  Another is Microsoft .NET Common Language Runtime
(CLR).

•  The up and comer, especially at Apple, is the Low-Level
Virtual Machine (LLVM). We will look at LLVM later in course.

4/21/11 © UCF EECS 50

Pluses and Minuses
•  Programs that have been translated to p-code are

interpreted by a program that emulates the behavior of
the hypothetical machine and/or compiled to machine
code by a JIT (just-in-time translator).

•  Why VM ?
–  Portability (Architecture and language independence), Simple

Implementation, Compact Size, Optimizations, Debugging

•  Why not VM ?
–  Overhead at run-time --> slower run-time (but LLVM is only 10%

slower than GCC optimized code).

4/21/11 © UCF EECS 51

P-machine Architecture
•  The p-machine is a stack machine: most

instructions take their operands from the stack,
and place results back on the stack.

•  Example: the "add" instruction replaces the two
topmost elements of the stack with their sum.

•  Uses one stack which is used in computation
and for procedure stack frames.

4/21/11 © UCF EECS 52

Pictorial Stack Operation

4/21/11 © UCF EECS 53

P-machine registers
•  PC the program

counter
•  SP the stack pointer
•  MP the mark stack

pointer
•  NP the new pointer
•  EP the extreme stack

pointer

4/21/11 © UCF EECS 54

Stack Frames for P4

4/21/11 © UCF EECS 55

Static link is back to stack frame of
enclosing procedure. It is needed for
access to local variables of parent.

Dynamic link is back to stack frame of
who called this routine.

Stack Frame (low to high)
MP -> function return value space (if needed)

 static link (MP of enclosing procedure)
 dynamic link (previous MP)
 previous EP
 return address (previous PC)
 parameters (variable size)
 locals

SP -> somewhere past or at end of locals
 expansion space for local stack

EP -> highest stack address this procedure might need

* Note if EP>NP (heap bottom) then memory exceeded

4/21/11 © UCF EECS 56

Instruction Format

4/21/11 © UCF EECS 57

OP A P

OP: 6 bit instruction code (max 64 codes)
P: 4 bit modifier

 often nesting level (max nesting is 16)
 P=0 is self; P=1 is parent; etc.
 often data type (e.g., used for base of constants)

A: 20 bit address (limited to 1MB / space)
 can be stack offset; can be code offset;
 can be constant data offset

Stack Frames for Pascal-S
0: return value space
1: return address (old PC value)
2: display ptr (data structure for called routines)
3: previous MP (dynamic link)
4: Called proc id (index to get info on routine);

 Used for static linking as well –
 no need to follow chain back

5… Zeroed-out for parameters and temps

4/21/11 © UCF EECS 58

Pascal Nesting
program factor(input,output);

 var f: integer;
 function factorial(f:integer):integer;
 function fact(n:integer):integer;
 begin
 if n=1 then fact := 1 else fact := n*fact(n-1)
 end; (* end fact *)
 begin
 if f<=0 then factorial := 0 else factorial := fact(f)
 end; (* end factorial *)

begin
 readln(f);
 writeln(factorial(f));
 readln (* just to be able to read results on console *)

end.
4/21/11 © UCF EECS 59

Pascal-S P-Code #1
fact(n:integer):integer (level 3)
0: LDO n (3,5)*
1: LDC 1
2: EQUAL // if n=1
3: FJP 8
4: LDA fact (3,0)*
5: LDC 1
6: STO // fact := 1
7: JMP 18
8: LDA fact (3,0)*
9: LDO n (3,5)*
* static link, offset

10: MST fact (32)**
11: LDO n (3,5)*
12: LDC 1
13: SUB
14: CALL 5***
15: UPD 2,3****
16: MPI
17: STO // fact:=n*fact(n-1)
18: Exit
** space checked. SP=SP+5
*** back to top of frame
**** unwind display after recursion

4/21/11 © UCF EECS 60

Pascal-S P-Code #2
factorial(f:integer):integer (level 2)
19: LDO f (2,5)
20: LDC 0
21: LE // if f<=0
22: FJP 27
23: LDA factorial (2,0)
24: LDC 0
25: STO // factorial := 0
26: JUMP 32

27: LDA factorial (2,0)
28: MST fact (32);
29: LDO f (2,5)
30: CALL 5
31: STO // factorial := fact(f)
32: EXIT;

4/21/11 © UCF EECS 61

Pascal-S P-Code #3
factor(input,output)
33: LDA f (1,5);
34: READINT // readln(f)
35: READLN
36: MST factorial (30)
37: LDO f (1,5)
38: CALL 5
39: WRITEINT // writeln(factorial(f))
40: WRITELN
41: READLN // readln
42: END

4/21/11 © UCF EECS 62

LANGUAGE PROCESSORS:
COMPILER, INTERPRETERS &

ANALYZERS
(DAY #4)

4/21/11 © UCF EECS 63

Compilers
•  A compiler is a program that takes high level languages

(e.g. Pascal, C, C++, Ruby, Java, C#) as input, and
translates it to a low-level representation which the
computer can understand and execute.

4/21/11 © UCF EECS 64

Compiler Source
Program
(i.e. C++)

ELF
(binary)

ELF: Executable Linkable File

Language Translators
•  Programming languages are notations for

describing computations to people and to
machines.

•  Programming languages can be implemented by
any of three general methods:

1. Compilation

2. Interpretation

3. Hybrid Implementation (JIT)

4/21/11 © UCF EECS 65

Phases of a Compiler
The process of compilation and program execution takes
place in several phases:

Front end: Scanner  Parser  Semantic Analyzer

Back end: Code generator

4/21/11 © UCF EECS 66

Front End Back End
Source

Code

Intermediate

 Code

Target

 Code

Details on Compiler Process

4/21/11 © UCF EECS 67

Lexical
analyzer

Syntax
analyzer

Intermediate
 code
 generator
 (semantic
 analyzer)

Code
generator

 Code
 Optimizer
 (optional)

Source
program

Lexical units
 (Tokens)

Parse trees
Intermediate
 code

Computer

Machine
language

Symbol table

Lexical & Syntactic Analysis

4/21/11 © UCF EECS 68

| f | a | h | r | e | n | h | e | i | t | : | = | 3 | 2 | + | c | e | l | s | I | u | s | * | 1 | . | 8 | ; |

Lexical analyzer (scanner)
(converts from character stream into

 a stream of tokens.)

[id, 1] [: =][int, 32][+][id, 2][*][real, 1.8][;]
Symbol Table

fahrenheit real

celsius real

1

2
Syntax analyzer (parser)
(Construct syntactic structure of the program)

 : =

 id1 +

 int32 *

 id2 real 1.8

Getchar()

name attribute

index in symbol table

Context Analysis

4/21/11 © UCF EECS 69

Symbol Table

fahrenheit real

celsius real

1

2 Context analyzer

:=

id1 +r

inttoreal *r

id2 real 1.8 int32

Determines the type of
the identifier

 : =

 id1 +

 int32 *

 id2 real 1.8

Intermediate Code Gen

4/21/11 © UCF EECS 70

Symbol Table

fahrenheit real

celsius real

1

2
Intermediate code generator

Intermediate code

Temp1 := inttoreal(32)
Temp2 := id2
Temp2 := Temp2 * 1.8
Temp1 := Temp1 + Temp2
id1 := Temp1

:=
id1 +r

inttoreal *r
id2 real 1.8 int32

Code Improvement

4/21/11 © UCF EECS 71

Symbol Table

fahrenheit real

celsius real

Code optimizer

Intermediate code

Temp1 := inttoreal(32)
Temp2 := id2
Temp2 := Temp2 * 1.8
Temp1 := Temp1 + Temp2
id1 := Temp1

Temp1 := id2
Temp1 := Temp1 * 1.8
Temp1 := Temp1 + 32.0
id1 := Temp1

optimized code

Code Generation

4/21/11 © UCF EECS 72

Symbol Table

fahrenheit real

Celsius real

1

2

Code generator

Temp1 := id2
Temp1 := Temp1 * 1.8
Temp1 := Temp1 + 32.0
id1 := Temp1

optimized code

movf id2, r1
mulf #1.8, r1
addf #32.0, r1
movf r1, id1

assembly instructions

Lexical and Syntactic
Lexical analyzer:
Gathers the characters of the source program into lexical units.
Lexical units of a program are:

 identifiers
 special words (reserved words)
 operators
 special symbols
 Comments are ignored!

Syntax analyzer:
Takes lexical units from the lexical analyzer and use them to construct
a hierarchical structure called parse tree

 Parse trees represent the syntactic structure of the program.

4/21/11 © UCF EECS 73

Interm. Code & Optimization
Intermediate code:
Produces a program in a different language representation:

 Assembly language
 Similar to assembly language
 Something higher than assembly language

Note: semantic analysis is integral part of intermediate code generator

Optimization (really should be called improvement):
 Makes programs smaller or faster or both.
 Most optimization is done on the intermediate code.

4/21/11 © UCF EECS 74

Code Gen & Symtab
Code generator:
Translate the optimized intermediate code into machine language.

The symbol table:
Serve as a database for the compilation process.
Maintain contents type and attribute information of each user-defined
name in the program.

4/21/11 © UCF EECS 75

Symbol Table

fahrenheit real

Celsius real

1

2

Index name type attributes

Flow of Interpreter

4/21/11 © UCF EECS 76

 Source
program

Interpreter Input data

Result

Interpreters

4/21/11 © UCF EECS 77

Programs are interpreted (executed) by another program called the interpreter.
 Advantages: Easy implementation of many source-level
 debugging operations, because all run-time errors operations
 refer to source-level units.
 Disadvantages: 10 to 100 times slower because statements are
 interpreted each time the statement is executed.

Background:
Early sixties  APL, SNOBOL, Lisp.
By the 80s  Lisp, Prolog
Recent years  Significant comeback

 some Web scripting languages: JavaScript, php

Preparation for Hybrid

4/21/11 © UCF EECS 78

 Java
program

Translator Byte code

They translate high-level language programs to an
intermediate language designed to allow easy
Interpretation and fast just-in-time translation

Byte code
Interpreter

Byte code
interpreter Intermediate

 code

Machine A

Machine B

Just-in-Time (JIT)
Programs are translated to an intermediate language.

During execution, it compiles intermediate language
methods into machine code when they are called (or based
on profiling hot spots).

The machine code version is kept for subsequent calls.

.NET and Java programs are implemented with JIT
systems.
4/21/11 © UCF EECS 79

Pascal-S Language
program multiply(input,output);
const m = 7; const n = 85;
var x,y,z : integer;
procedure mult;
 var a, b : integer;
begin
 a := x; b := y; z := 0;
 while b > 0 do
 begin
 if odd(b) then z := z+a;
 a := 2*a; b := b div 2;
 end
end;
begin
 x := m; y := n;
 mult;
 writeln(x,'*',y,'=',z); readln
end.
4/21/11 © UCF EECS 80

As in any language, in Pascal-S we need
to identify what is the vocabulary and what
are the names and special symbols that we
accept as valid.

Reserved words are shown in red.

Operators and special symbols in green

Numeric constants are shown in purple

String constants are shown in gold

Identifiers are shown in black

LEXICAL ANALYSIS
Hand carving the Scanner

(DAY #5)

4/21/11 © UCF EECS 81

Tasks of Lexical Analysis

1. Read input one character at a time

2. Group characters into tokens

3. Remove white spaces, comments and control
characters

4. Encode token types

5. Detect errors and generate error messages

4/21/11 © UCF EECS 82

Scanner Example
The stream of characters in the assignment statement
 \tfahren := 32 + celsius * 1.8;\n (* F to C formula *)

control character white space control character white space comment

is read in by the Scanner (Lexical Analyzer), which translates it into a stream of
tokens in preparation for the Parser (Syntax Analyzer).

[id, fahren] [assign][int, 32][plus][id, celsius][times][real, 1.8][semicolon]

White space (blanks, tabs) are removed. Comments are also not passed along, but
they are processed in Scanner if directives can be embedded in them.

4/21/11 © UCF EECS 83

1.  Lookahead plays an important role in lexical analysis.

2.  It is not always possible to decide if a token has been found
without looking ahead one character.

3.  For instance, if only one character, say “i”, is used it would
be impossible to decide whether we are in the presence of
identifier “i” or at the beginning of the reserved word “if”.

4.  Lookahead is needed for an = in C, as it could be Assign or the
start of Equal (==).

5.  You must be careful to be consistent. That means always be at
the character after the token you just transmitted.

4/21/11 © UCF EECS 84

Scanner Data Structures
•  Define the token types (internal representation)
•  Create tables with initial values:

–  Reserved words:
•  begin, const, do, end, if, procedure, then, else, while, etc.
•  Maybe predefined functions and procedures in separate table

–  Special symbols:
•  ‘+’, ‘-‘, ‘*’, ‘/’, ‘(‘, ‘)’, ‘=’, ’,’ , ‘.’, ‘ <’, ‘>’, ‘;’

–  Symbol table (maybe defer to syntax analysis)
–  Constant tables (strings are sometimes done by scanner with all else

deferred to parser.
•  String constants are often stored in very compact fashion by recognizing

substrings

4/21/11 © UCF EECS 85

Scanner and Ordinals

•  Scanner must often mess with ordinals of
characters. Ordinals are usually expressed
in decimal, octal or hex.

•  I will discuss the Pascal-S scanner and
show you where knowing the ordinals
really comes in handy.

4/21/11 © UCF EECS 86

ASCII #1

4/21/11 © UCF EECS 87

Dec Hex ASCII
0 00 NUL (null)
1 01 SOH (start of heading)
2 02 STX (start of text)
3 03 ETX (end of text)
4 04 EOT (end of transmission)
5 05 ENQ (enquiry)
6 06 ACK (acknowledge)
7 07 BEL (bell)
8 08 BS (backspace)
9 09 HT (horizontal tab)
10 0A LF (line feed)
11 0B VT (vertical tab)
12 0C FF (form feed)
13 0D CR (carriage return)
14 0E SO (shift out)
15 0F SI (shift in)

Dec Hex ASCII
16 10 DLE (data link escape)
17 11 DC1 (device control 1)
18 12 DC2 (device control 2)
19 13 DC3 (device control 3)
20 14 DC4 (device control 4)
21 15 NAK (negative acknowledge)
22 16 SYN (synchronous idle)
23 17 ETB (end of transmission block)
24 18 CAN (cancel)
25 19 EM (end of medium)
26 1A SUB (substitute)
27 1B ESC (escape)
28 1C FS (file separator)
29 1D GS (group separator)
30 1E RS (record separator)
31 1F US (unit separator)

Dec Hex ASCII
32 20 SP (space)
33 21 !
34 22 "
35 23 #
36 24 $
37 25 %
38 26 &
39 27 '
40 28 (
41 29)
42 2A *
43 2B +
44 2C ,
45 2D -
46 2E .
47 2F /

ASCII #2

4/21/11 © UCF EECS 88

Dec Hex ASCII
 48 30 0
 49 31 1
 50 32 2
 51 33 3
 52 34 4
 53 35 5
 54 36 6
 55 37 7
 56 38 8
 57 39 9
 58 3A :
 59 3B ;
 60 3C <
 61 3D =
 62 3E >
 63 3F ?

Dec Hex ASCII
 64 40 @
 65 41 A
 66 42 B
 67 43 C
 68 44 D
 69 45 E
 70 46 F
 71 47 G
 72 48 H
 73 49 I
 74 4A J
 75 4B K
 76 4C L
 77 4D M
 78 4E N
 79 4F O

Dec Hex ASCII
 80 50 P
 81 51 Q
 82 52 R
 83 53 S
 84 54 T
 85 55 U
 86 56 V
 87 57 W
 88 58 X
 89 59 Y
 90 5A Z
 91 5B [
 92 5C \
 93 5D]
 94 5E ^
 95 5F _

ASCII #3

4/21/11 © UCF EECS 89

Dec Hex ASCII
 96 60 `
 97 61 a
 98 62 b
 99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C l
109 6D m
110 6E n
111 6F o

Dec Hex ASCII
 112 70 p
 113 71 q
 114 72 r
 115 73 s
 116 74 t
 117 75 u
 118 76 v
 119 77 w
 120 78 x
 121 79 y
 122 7A z
 123 7B {
 124 7C |
 125 7D }
 126 7E ~
 127 7F DEL

Const Declarations
program PascalSLex(input, output, srcfil);
(* N. Wirth, E.T.H CH-8092 Zurich *)
label 99; (* escape when input consumed *)

const nkw = 27; (* no. of key words *)
 alng = 10; (* no. of significant chars in identifiers *)
 blankID = ' '; (* blank string of length alng *)
 llng = 80; (* input line length *)
 emax = 308; (* max exponent of real numbers *)
 emin = -324; (* min exponent *)
 kmax = 15; (* max no. of significant digits *)
 smax = 78; (* max size of string *)
 ermax = 58; (* max error no. *)
 nmax = maxint; (* largest integer value on this machine *)
 CRLF = TRUE; (* true, if palatform uses CR/LF *)

4/21/11 © UCF EECS 90

Type Declarations
type (* The token types recognized by lex analyzer*)
 symbol = (intcon, realcon, charcon, stringt,
 notsy, plus, minus, times, idiv, rdiv, imod, andsy, orsy,
 egl, neg, gtr, geg, lss, leg,
 lparent, rparent, lbrack, rbrack, comma, semicolon, period,
 colon, becomes, constsy, typesy, varsy, functionsy,
 proceduresy, arraysy, recordsy, programsy, ident,
 beginsy, ifsy, casesy, repeatsy, whilesy, forsy,
 endsy, elsesy, untilsy, ofsy, dosy, tosy, downtosy, thensy);

 (* maximum string needed for identifier or keyword *)
 alfa = packed array [1..alng] of char;

4/21/11 © UCF EECS 91

VAR Declarations
var sy: symbol; (* last symbol read by insymbol *)
 id: alfa; (* identifier from insymbol *)
 inum: integer; (* integer from insymbol *)
 rnum: real; (* real number from insymbol *)
 ch: char; (* last character read from source program *)
 line: array [1..llng] of char;
 cc: integer; (* character counter *)
 lc: integer; (* program location counter *)
 ll: integer; (* length of current line *)
 errs: set of 0..ermax; (* retains list of errors encountered *)
 errpos: integer; (* error position for lexical error just found*)
 progname: array[1..20] of char; (* input file name *)
 key: array [1..nkw] of alfa; (* set of keywords *)
 ksy: array [1..nkw] of symbol; (* symbols associated with keywords *)
 sps: array [char] of symbol; (* special symbols *)
 st: packed array [0..smax] of char; (* string from insymbol *)
 srcfil: text; { source input file }
 synames: array[symbol] of alfa; (* strings names for symbols *)

4/21/11 © UCF EECS 92

Next Character
procedure nextch; (* read next character; process line end *)
const TAB=9; charPerTab = 8;
begin if cc = ll then
 begin if eof(srcfil) then
 begin writeln; writeln(' source completed'); goto 99 end;
 if errpos <> 0 then begin writeln; errpos := 0 end;
 write(lc:5, ' '); ll := 0; cc := 0; lc := lc+1;
 while not eoln(srcfil) do
 begin read(srcfil, ch);
 if ch >= ‘ ‘ then begin ll := ll+1; write(ch); line[ll] := ch end
 else if ord(ch)=TAB then

 repeat ll:=ll+1; write(' '); line[ll]:=' ‘ until (ll mod charPerTab)=1
 end;
 writeln; ll := ll+1; read(srcfil, line[ll]); if CRLF then read(srcfil, line[ll])
 end;
 cc := cc+1; ch := line[cc];
end (* nextch *);

4/21/11 © UCF EECS 93

Errors
procedure error(n: integer); (* position carat (^) under error *)
begin
 if errpos = 0 then write(' ****');
 if cc > errpos then begin
 write(' ': cc-errpos, '^', n:2);
 errpos := cc+3; errs := errs + [n]
 end
end (* error *);

4/21/11 © UCF EECS 94

Read scale
procedure insymbol; (* reads next symbol *)
 label 1, 2, 3; (* EVIL!!!! *)
 var i, j, k, e: integer;

 procedure readscale;
 var s, sign: integer;
 begin
 nextch; sign := 1; s := 0;
 if ch = '+' then nextch
 else if ch = '-' then begin nextch; sign := -1 end;
 while ch in ['0'..'9'] do begin s := 10*s + ord(ch) - ord('0'); nextch end;
 e := s*sign + e
 end (* readscale *);

4/21/11 © UCF EECS 95

Adjust scale
procedure adjustscale;
 var s: integer; d, t: real;
begin
 if k+e > emax then error(21)
 else if k+e < emin then rnum := 0
 else begin
 s := abs(e); t := 1.0; d := 10.0;
 repeat
 while not odd(s) do begin s := s div 2; d := sqr(d) end;
 s := s-1; t := d*t
 until s = 0;
 if e >= 0 then rnum := rnum*t else rnum := rnum/t
 end
end (* adjustscale *);
4/21/11 © UCF EECS 96

Handle names (ID, Keyword)
begin (* insymbol *)
1: while ch <= ' ' do nextch;
 if ch in ['a'..'z'] then begin (* word *)
 k := 0; id := ' '; (* Ugly because requires alng knowledge *)
 repeat
 if k < alng then
 begin k := k+1; if ch in ['A'..'Z'] then ch := chr(ord(ch)+32); id[k] := ch end;
 nextch
 until not (ch in ['A'..'Z', 'a'..'z', '0'..'9']);
 i := 1; j := nkw; (* binary search *)
 repeat
 k := (i+j) div 2; if id <= key[k] then j := k-1; if id >= key[k] then i := k+1
 until i > j;
 if i-1 > j then sy := ksy[k] else sy := ident
 end

4/21/11 © UCF EECS 97

Handle numbers
 else if ch in ['0'..'9'] then begin (* number *)
 k := 0; inum := 0; sy := intcon;
 repeat inum := inum*10 + ord(ch) - ord('0'); k := k+1; nextch until not (ch in ['0'..'9']);
 if (k > kmax) or (inum > nmax) then begin error(21); inum := 0; k := 0 end;
 if ch = '.' then begin
 nextch;
 if ch = '.' then ch := ':'
 else begin
 sy := realcon; rnum := inum; e := 0;
 while ch in ['0'..'9'] do
 begin e := e-1; rnum := 10.0*rnum + (ord(ch)-ord('0')); nextch end;
 if ch = 'e' then readscale; if e <> 0 then adjustscale
 end
 end
 else if ch = 'e' then begin
 sy := realcon; rnum := inum; e := 0; readscale; if e <> 0 then adjustscale
 end
 end

4/21/11 © UCF EECS 98

Colon (:), <, >, period (.)
 else case ch of
':': begin nextch;
 if ch = '=' then
 begin sy := becomes; nextch end (* := *)
 else sy := colon
 end;
'<': begin nextch;
 if ch = '=' then begin sy := leg; nextch end
 else if ch = '>' then begin sy := neg; nextch end else sy := lss
 end;
'>': begin nextch;
 if ch = '=' then begin sy := geg; nextch end else sy := gtr
 end;
'.': begin nextch;
 if ch = '.' then
 begin sy := colon; nextch end (* ellipsis *)
 else sy := period
 end;

4/21/11 © UCF EECS 99

Quote (‘) – char or string
'''': begin k := 0;
 2: nextch;
 if ch = '''' then begin nextch; if ch <> '''' then goto 3 end;
 if k <= smax then begin
 k := k+1; st[k] := ch
 end;
 goto 2;
 3: if k = 1 then
 begin sy := charcon; inum := ord(stab[sx]) end
 else if k = 0 then
 begin error(38); sy := charcon; inum := 0 end
 else
 begin sy := stringt; inum := sx; sleng := k; sx := sx+k end
 end;

4/21/11 © UCF EECS 100

Left paren or other special
'(': begin nextch;
 if ch <> '*' then sy := lparent
 else begin (* comment *)
 nextch;
 repeat
 while ch <> '*' do nextch;
 nextch
 until ch = ')';
 nextch; goto 1
 end
 end;
'+', '-', '*', '/', ')', '=', ',', '[', ']', '#', '&', ';':
 begin sy := sps[ch]; nextch end;
'$', '%', '@', '\', '~', '{', '}', '^':
 begin error(24); nextch; goto 1 end (* More ugliness *)
 end; (* case ch *)
 write(synames[sy],' ') (* Tracing output *)
end (* insymbol *);

4/21/11 © UCF EECS 101

Init – Keywords
procedure init;
begin
 key[1] := 'and '; key[2] := 'array ';
 key[3] := 'begin '; key[4] := 'case ';
 key[5] := 'const '; key[6] := 'div ';
 key[7] := 'do '; key[8] := 'downto ';
 key[9] := 'else '; key[10] := 'end ';
 key[11] := 'for '; key[12] := 'function ';
 key[13] := 'if '; key[14] := 'mod ';
 key[15] := 'not '; key[16] := 'of ';
 key[17] := 'or '; key[18] := 'procedure ';
 key[19] := 'program '; key[20] := 'record ';
 key[21] := 'repeat '; key[22] := 'then ';
 key[23] := 'to '; key[24] := 'type ';
 key[25] := 'until '; key[26] := 'var '; key[27] := 'while ';

4/21/11 © UCF EECS 102

Init – Keywords to Tokens
(* Just used in tracing output *)
 ksy[1] := andsy; ksy[2] := arraysy;
 ksy[3] := beginsy; ksy[4] := casesy;
 ksy[5] := constsy; ksy[6] := idiv;
 ksy[7] := dosy; ksy[8] := downtosy;
 ksy[9] := elsesy; ksy[10] := endsy;
 ksy[11] := forsy; ksy[12] := functionsy;
 ksy[13] := ifsy; ksy[14] := imod;
 ksy[15] := notsy; ksy[16] := ofsy;
 ksy[17] := orsy; ksy[18] := proceduresy;
 ksy[19] := programsy; ksy[20] := recordsy;
 ksy[21] := repeatsy; ksy[22] := thensy;
 ksy[23] := tosy; ksy[24] := typesy;
 ksy[25] := untilsy; ksy[26] := varsy;
 ksy[27] := whilesy;

4/21/11 © UCF EECS 103

Init – Special Characters
(* Special characters *)
 sps['+'] := plus; sps['-'] := minus;
 sps['*'] := times; sps['/'] := rdiv;
 sps['('] := lparent; sps[')'] := rparent;
 sps['='] := egl; sps[','] := comma;
 sps['['] := lbrack; sps[']'] := rbrack;
 sps['#'] := neg; sps['&'] := andsy;
 sps[';'] := semicolon;

4/21/11 © UCF EECS 104

Init – Token Names
 synames[andsy] := 'andsy'; synames[arraysy] := 'arraysy';
 synames[beginsy] := 'beginsy'; synames[casesy] := 'casesy';
 synames[constsy] := 'constsy'; synames[idiv] := 'idiv';
 synames[dosy] := 'dosy'; synames[downtosy] := 'downtosy';
 synames[elsesy] := 'elsesy'; synames[endsy] := 'downtosy';
 synames[forsy] := 'forsy'; synames[functionsy] := 'functionsy';
 synames[ifsy] := 'ifsy'; synames[imod] := 'imod';
 synames[notsy] := 'notsy'; synames[ofsy] := 'ofsy';
 synames[orsy] := 'orsy'; synames[proceduresy] := 'procedursy';
 synames[programsy] := 'programsy'; synames[recordsy] := 'recordsy';
 synames[repeatsy] := 'repeatsy'; synames[thensy] := 'thensy';
 synames[tosy] := 'tosy'; synames[typesy] := 'typesy';
 synames[untilsy] := 'untilsy'; synames[varsy] := 'varsy';
 synames[whilesy] := 'whilesy';

4/21/11 © UCF EECS 105

Init – Simple Counters

 lc := 0; (* line count *)
 ll := 0; (* number of characters in current line *)
 cc := 0; (* character position in current line *)
 ch := ' '; (next character *)
 errpos := 0; (position of most recent error *)
 errs := []; (* empty set of errors encountered so far *)
end; (* init *)

4/21/11 © UCF EECS 106

Main PascalSLex routine
begin (* PascalSLex main program *)
 writeln;
 writeln('Pascal-S compiler/interpreter');

 write('Enter name of file to be compiled: ');
 readln(progname);
 assign(srcfil,progname);
 reset(srcfil);

 init; (* tables and more done here *)
 while true do insymbol;
99:
 readln;
end. (* PascalSLex *)

4/21/11 © UCF EECS 107

C Version of nextch()
void nextch() { /* read next character; process line end */

 const integer tab = 9; integer charPerTab = 8;
 if (cc == ll) {

 if (eof(srcfil)) {
 output << NL << " program incomplete" << NL; errormsg(); goto L99; }
 if (errpos != 0) { output << NL; errpos = 0; }
 output << format(lc++,5) << " "; ll = 0; cc = 0;
 while (! eoln(srcfil)) {
 srcfil >> ch;
 if (ch >= ‘ ‘) {output << ch; line[++ll] = ch; }
 else if (ord(ch)==tab)
 do { ll = ll+1; output << ' '; line[ll] = ' '; } while (!((ll % charPerTab) == 1)); }
 output << NL; srcfil >> line[++ll]; if (CRLF) srcfil >> line[ll]; }
 ch = line[++cc];

} /* nextch */

4/21/11 © UCF EECS 108

Keyword Lookup

•  Wirth’s Pascal-S compiler used binary
search across 27 elements. Cost to search
is log2(27) or 5 iterations. Could have done
hash, but there would be no real gain.

•  However, symbol table (not built here) is
often large and amenable to hash table.

4/21/11 © UCF EECS 109

LEXICAL ANALYSIS
Using Regular Expressions

(DAY #5)

4/21/11 © UCF EECS 110

Alphabets
An alphabet is a finite set of symbols and the Greek letter sigma (Σ) is
often used to denote it.

 For example: Σ = {0,1}  the binary alphabet
A string (string = sentence = word) over an alphabet is a finite sequence of symbols
drawn from that alphabet.

 Alphabet Strings
 Σ = {0,1} 15, 201, 3
 Alphabet Strings
 Σ = {a, b, c, …, z} while, for, const

The length of a string s, usually written | s |, is the number of occurrences of symbols in
s.
For example: If B = while the value of | s | = 5
Note: the empty string, denoted ε (epsilon), is the string of length zero.

 | ε | = 0
Note: the empty string is sometimes denoted λ (lambda).

4/21/11 © UCF EECS 111

Languages
A language is any countable set of strings over some fixed alphabet.

For example:
Let L be the alphabet of letters and D be the alphabet of digits:

 L = { A, B, …, Z, a, b, …, z} and D = {0, 1, 2, 3, …, 8, 9}

 Note: L and D are languages all of whose strings
 happen to be of length one. Therefore, an
 equivalent definition is:

 L is the language of uppercase and lowercase letters.
 D is the language of digits.

4/21/11 © UCF EECS 112

Regular Expressions
•  Let Σ be a finite alphabet, then
•  Φ is an regular expression (re) denoting the set (language) {a}. We say L(Φ)

= {} to denote this.
•  ε (or λ) is an re denoting the language L(ε) = {ε}
•  If a ∈ Σ, then a is a re denoting the set (language) {a}.
•  If r and s are regular expressions then

r | s is an re denoting the set L(r|s) = L(r) ∪ L(s)
r ⋅ s is an re denoting the set L(r⋅s) = L(r) ⋅ L(s)
 Here, ⋅ denotes pairwise concatenation, i.e.,
 A ⋅ B = { x y | x ∈ A, y ∈ B }
r* is an re denoting the set L(r*) = L(r)*
 Here, * is called the Kleene star operator, where
 ε ∈ A* ; if x ∈ A* and y ∈ A, then xy ∈ A*

•  Precedence is *, ⋅, | Parentheses can override this.
•  Nothing else is a regular expression over Σ

4/21/11 © UCF EECS 113

More on the Kleene Star

•  Let R be an arbitrary regular expression,
– R0 = ε Note that x ⋅ ε = ε ⋅ x = x
– R1 = R
– R2 = R ⋅ R, L(R2) = { xy | x ∈ R, y ∈ R }
– …
– Rn = Rn-1 ⋅ R = R ⋅ Rn-1, when n>0

– R* = R0 | R1 | R2 | … | Rn | …
– R+ = R1 | R2 | … | Rn | …
– R? = R | ε ? Denotes 0 or 1 occurrence

4/21/11 © UCF EECS 114

Extensions
•  We can specify a sequence of letters that are consecutive in ASCII

by showing [x-y] where x is the lowest lexically and y the highest
lexically in the desired range.

•  Thus, our identifiers can be specified as [a-zA-Z]([a-zA-Z0-9])+
•  Note that the | is omitted in this notation when multiple expressions

are chosen from. This can only be done inside the square brackets.
•  [^letters] means anything not matching any one of these letters.

Thus [^0-9] is any non-digit character.
•  Slash, as in \c, can be used to indicate the character c when c is

one of the special characters, e.g., z\+ is the string z+, whereas z+
is one or more z’s.

•  Period stands for any character as in .*HUGHES.* is any string with
the word HUGHES embedded in it. If you want a “.”, quote it or use
the escape character “\” in front of it, as in \.

4/21/11 © UCF EECS 115

More reg exp Notation

•  The concatenation symbol ⋅ is often
omitted in regular expressions

•  Examples
–  (C|c)(H|h)21 = {CH21,Ch21, cH21, ch21}
–  (+ | -)? [0-9]+ = [0-9]+ | + [0-9]+ | - [0-9]+

•  Above is a signed or unsigned integer constant
•  This use of a sign is rarely used in our lexical

analyzers as the meaning of a sign versus a binary
operator is more of a syntax issue

4/21/11 © UCF EECS 116

Identifiers as re’s
•  The identifiers in our simple language are

alphanumeric and must start with an alphabetic
symbol. Can describe as
–  letter(letter | digit)*

where letter is [A-Za-z]
and digit is [0-9]

•  We can also use a grammar to describe as
–  letter → A | B | … | Z | a | b | … |z
–  digit → 0 | 1 | … | 9
–  id → letter rest
–  rest → letter rest | digit rest | ε

4/21/11 © UCF EECS 117

Lexemes, Patterns,Tokens
A Lexeme is the sequence of input characters in the source program that
matches the pattern for a token (the sequence of input characters that the
token represents).

A Pattern is a description of the form that the lexemes of a token may take.

A Token is the internal representation of a lexeme. Some tokens may
consist only of a name (internal representation) while others may also have
some associated values (attributes) to give information about a particular
instance of a token.
Examples:
Lexeme Pattern Token Attribute
Any identifier letter(letter | digit)* idsym pointer to symbol table
If if ifsym --
>= < | <= | > | >= | = | <> relopsym GE
57 digit+ intcon 57
4/21/11 © UCF EECS 118

LEXICAL ANALYSIS
Using Lex
(DAY #6)

4/21/11 © UCF EECS 119

Lex (Flex)
•  Lex is a program that generates lexical analyzers from

regular expressions. Flex is a descendant of Lex.
•  Input sections

%{
copied to generated code
%}
{definitions}
%%
{rules}
%%
{user routines – copied to generated code}

4/21/11 © UCF EECS 120

Definitions (Calc)
%{
#include <stdio.h>

int top = 0, intval;
int stack[20], reg[26];

int ord(letter) {
 if (islower(letter)) return (letter - 'a');
 else return (letter - 'A');

}

%}
%%

4/21/11 © UCF EECS 121

Rules (Calc)
\n { top = 0; }
=[\t]*[a-zA-Z] { if (top>0) { reg[ord(yytext[yyleng-1])] = stack[top-1];

 printf("%d\n", stack[top-1]); } }
[0-9]+ { sscanf(yytext,"%d",&intval); stack[top++] = intval; }
[a-zA-Z] { stack[top++] = reg[ord(yytext[0])]; }
"+" { if (top>0) { stack[top-2] += stack[top-1]; top--; } }
"-" { if (top>0) { stack[top-2] -= stack[top-1]; top--; } }
"*" { if (top>0) { stack[top-2] *= stack[top-1]; top--; } }
"/" { if (top>0) { stack[top-2] /= stack[top-1]; top--; } }
[\t] ;
. { printf("error\n"); }
%%

4/21/11 © UCF EECS 122

User Routines (Calc)
int yywrap () {
 return(1);
}

int main(argc, argv)
int argc;
char **argv;
{
 ++argv, --argc; /* skip over program name */
 if (argc > 0) yyin = fopen(argv[0], "r");
 else yyin = stdin;
 yylex();
 return(0);
}

4/21/11 © UCF EECS 123

Pascal-S Scanner in Lex
%{

#include <stdio.h> // standard i/o
#include “y.tab.h“ // includes tokens typically defined in parser
int line_no = 1; // use for line count

%}

4/21/11 © UCF EECS 124

Definitions Section
A [aA]
B [bB]
C [cC]
D [dD]
E [eE]
F [fF]
G [gG]
…
U [uU]
V [vV]
W [wW]
X [xX]
Y [yY]
Z [zZ]
NQUOTE [^']

%%

4/21/11 © UCF EECS 125

Rules Section #1
{A}{N}{D} return(ANDSY);
{A}{R}{R}{A}{Y} return(ARRAYSY);
{B}{E}{G}{I}{N} return(BEGINSY);
{C}{A}{S}{E} return(CASESY);
{C}{O}{N}{S}{T} return(CONSTSY);
{D}{I}{V} return(IDIV);
{D}{O} return(DOSY);
{D}{O}{W}{N}{T}{O} return(DOWNTOSY);
{E}{L}{S}{E} return(ELSESY);
{E}{N}{D} return(ENDSY);
{F}{O}{R} return(FORSY);
{F}{U}{N}{C}{T}{I}{O}{N} return(FUNCTIONSY);
{I}{F} return(IFSY);

4/21/11 © UCF EECS 126

Rules Section #2
{M}{O}{D} return(IMOD);
{N}{O}{T} return(NOTSY);
{O}{F} return(OFSY);
{O}{R} return(ORSY);
{P}{R}{O}{C}{E}{D}{U}{R}{E} return(PROCEDURESY);
{P}{R}{O}{G}{R}{A}{M} return(PROGRAMSY);
{R}{E}{C}{O}{R}{D} return(RECORDSY);
{R}{E}{P}{E}{A}{T} return(REPEATSY);
{T}{H}{E}{N} return(THENSY);
{T}{O} return(TOSY);
{T}{Y}{P}{E} return(TYPESY);
{U}{N}{T}{I}{L} return(UNTILSY);
{V}{A}{R} return(VARSY);
{W}{H}{I}{L}{E} return(WHILESY);

[a-zA-Z]([a-zA-Z0-9])* return(IDENT);

4/21/11 © UCF EECS 127

Rules Section #3
"=" return(EGL);
">=" return(GEG);
">" return(GTR);
"<=" return(LEG);
"<" return(LSS);
"<>" return(NEG);
“#” return(NEG);
"+" return(PLUS);
"-" return(MINUS);
"/" return(RDIV);
"*" return(TIMES);
"[" return(LBRACK);
"]" return(RBRACK);
"(" return(LPAREN);
")" return(RPAREN);

4/21/11 © UCF EECS 128

Rules Section #4
":=" return(BECOMES);
".." return(COLON);
":" return(COLON); // extension over what Wirth handles in Pascal-S
"," return(COMMA);
"." return(DOT);
";" return(SEMICOLON);

'({NQUOTE}|'')+' return(STRINGT);
([0-9])+ return(INTCON);
/* How would you handle exponents? Can even occur with no decimal point!! */
([0-9])+".“([0-9])* return(REALCON);

[\t\f] ;
\n line_no++;

4/21/11 © UCF EECS 129

Rules Section #5
“{" { register int c;
 while ((c = input())) {
 if (c == '}') break;
 else if (c == '\n') line_no++;
 else if (c == 0) commenteof();
 }
 }
"(*" { register int c;
 while ((c = input())) {
 if (c == '*') {
 if ((c = input()) == ')') break; else unput (c);
 }
 else if (c == '\n') line_no++;
 else if (c == 0) commenteof();
 }
 }
. fprintf (stderr, "'%c' (0%o): illegal character at line %d\n", yytext[0], yytext[0], line_no);
%%

4/21/11 © UCF EECS 130

User Section
void commenteof() {
 fprintf (stderr, "unexpected EOF inside comment at line %d\n", line_no);
 exit (1);
}
int yywrap () {
 return (1);
}
int main(argc, argv)
int argc; char **argv;
{ ++argv, --argc; /* skip over program name */
 if (argc > 0) yyin = fopen(argv[0], "r"); else yyin = stdin;
 yylex();
 return(0);
}

4/21/11 © UCF EECS 131

Altered for Test (pascal.lex)
%%

{A}{N}{D} printf("ANDSY ");
{A}{R}{R}{A}{Y} printf("ARRAYSY ");
{C}{A}{S}{E} printf("CASESY ");
…
[a-zA-Z]([a-zA-Z0-9])* printf("IDENT %s ", yytext);
…
\'({NQUOTE})*\' printf("STRINGT %s ", yytext);
([0-9])+\.([0-9])* printf("REALCON %s ", yytext);
([0-9])+ printf("INTCON %s ", yytext);
[\t\f] ;
\n line_no++; printf("\n%5d ", line_no);
…
 if (argc > 0) yyin = fopen(argv[0], "r");
 else yyin = stdin;
 printf("\n%5d ", line_no);

4/21/11 © UCF EECS 132

LEXICAL ANALYSIS
Finite State Automata

(DAY #6)

4/21/11 © UCF EECS 133

Transition Diagrams
Transition diagrams or transition graphs are used to match a lexeme to a pattern.

Each Transition diagram has:

 States  represented by circles.
 Actions  represented by arrows between the states.

 Start state  represented by an arrowhead (beginning of a pattern)
 Final state  represented by two concentric circles (end of pattern).

All transition diagrams are deterministic, which means that there is no need to
choose between two different actions for a given input.

Example:

4/21/11 © UCF EECS 134

letter other

letter or digit

1 2 3

ID and Number Diagram

4/21/11 © UCF EECS 135

The following state diagrams recognize identifiers and numbers (integers)

letter other

letter or digit

1 2 3

digit other

digit

4 5 6

not
letter

 not
 digit

7

accept token “id” and
retract (unget char)

accept token “number” and
retract (unget char)

Diagram to Code

4/21/11 © UCF EECS 136

Translating transition diagrams to code:

{state 1} ch = getchar();
 If isletter (ch) {

{state 2} name = (string)ch;
 while (isletter(ch) or isdigit(ch)) do{
 name = concat(name, string(ch));
 ch = getchar();
 }

{state 3} retract(ch); // we have scanned
 // one character too far
 token = (id, name);
 return(token);
 }

{state 4} else if isdigit(ch) {
 value := ord(ch)-ord(‘0’);

{state 5} ch = getchar();
 while (isdigit (ch)) do{
 value := 10 * value + ord(ch)-ord(‘0’)
 ch := getchar
 }

{state 6} retract(ch);
 token:= (int, value);
 return (token);
 }

{state 7} else {
 …
 }

Finite State Automata (FSA)

•  Formal Model for diagrams
– Finite number of states
– Transitions based on next character read
– One (or more) start states
– Usually many final states
– Every re has an associated FSA
– Every FSA has an associated re

4/21/11 © UCF EECS 137

Deterministic FSA

•  If every state/character combination is
associated with precisely one transition
then the FSA is deterministic.

•  If there are transitions on ε or there is at
least one state/character combination for
which there is not precisely one transition
then the FSA is non-deterministic.

4/21/11 © UCF EECS 138

Pattern Matching
•  GREP – pattern matching from Unix
•  Covering an re to an FSA naturally leads to a non-

deterministic one (NFA)
•  Converting to a det. FSA (DFA) leads to state explosion

(can be exponential)
•  DFA runs in linear time; NFA requires backtrack
•  Convert if can amortize cost of conversion
•  Can amortize in a lexical analyzer because it’s run over

and over again; can amortize if looking for patterns in a
large corpus of text; cannot amortize on trivial scan

4/21/11 © UCF EECS 139

CONTEXT FREE GRAMMARS
(DAY #7)

4/21/11 © UCF EECS 140

Parsing
Regular language nested structures cannot be expressed.

Nested structures can be expressed with the aid of
recursion.

For example, a FSA cannot suffice for the recognition of
sentences in the set

 { an bn | n is in { 0, 1, 2, 3, …}}

 where a represents “(“ or “{“

 and b represents “)” or “}”

4/21/11 © UCF EECS 141

Regular + Recursion
So far we have been working with three rules to define regular
sets (regular languages):

 Concatenation  (s r)

 Alternation (choice)  (s | r)

 Kleene closure (repetition)  (s)*

Regular sets are generated by regular expressions and recognized
by scanners (FSA).

By adding recursion as an additional rule we can define context
free languages.

4/21/11 © UCF EECS 142

Context Free
Any set of strings that can be defined using concatenation,
alternation, Kleene closure and recursion is called a
Context Free Language (CFL).

CFLs are generated by Context Free Grammars (CFG) and
can be recognized by Pushdown Automatas.

“Every language has a structure called its grammar”

Parsing is the task of determining the structure or syntax of
a program.

4/21/11 © UCF EECS 143

Simple Example of Grammar
Let us observe the following three rules (grammar):

1) <sentence>  <subject> <predicate>

 where “” means “is defined as” or “derives”

2) <subject>  John | Mary

3) <predicate>  eats | talks

 where “ | ” is called alternation and means “or”

With these rules we define four possible sentences:

John eats John talks Mary eats Mary talks

4/21/11 © UCF EECS 144

Another Simple Grammar
We will refer to the formulae or rules used in the former example as

Syntax rules, productions, syntactic equations, or rewriting rules.

<subject> and <predicate> are syntactic classes or categories, also
called non-terminals.

Using a shorthand notation we can write the following syntax rules

S  A B

A  a | b

B  c | d

4/21/11 © UCF EECS 145

S is the start symbol

L = { ac, ad, bc, bd} = set of sentences

L is called the language that can be generated
From the syntax rules by repeated substitution

History of Formal Language
•  In 1940s, Emil Post (mathematician) devised rewriting systems as a

way to describe how mathematicians do proofs. Purpose was to
mechanize them.

•  Early 1950s, Noam Chomsky (linguist) developed a hierarchy of
rewriting systems (grammars) to describe natural languages.

•  Late 1950s, Backus-Naur (computer scientists) devised BNF (a
variant of Chomsky’s context-free grammars) to describe the
programming language Algol.

•  1960s was the time of many advances in parsing. In particular,
parsing of context free was shown to be no worse than O(n3). More
importantly, useful subsets were found that could be parsed in O(n).

•  Will discuss the issues faced in 1960s in much more detail as we go
along.

4/21/11 © UCF EECS 146

Formalism for Grammars
Definition : A language is a set of strings of characters from some alphabet.

The strings of the language are called sentences or statements.

A string over some alphabet is a finite sequence of symbols drawn from that
alphabet.

A meta-language is a language that is used to describe another language.

A very well known meta-language is BNF (Backus Naur Form)

It was developed by John Backus and Peter Naur, in the late 50s, to describe
programming languages.

Noam Chomsky in the early 50s developed context free grammars which can
be expressed using BNF.

4/21/11 © UCF EECS 147

Languages – The Big Picture

4/21/11 © UCF EECS 148

Context Free Grammars
G = (V, Σ, S, P) where
V is a finite set of symbols called the non-terminals or variables. They
are not part of the language generated by the grammar.
Σ is a finite set of symbols, disjoint from V, called the terminals. Strings
in the language are made up entirely of terminal symbols.
S is a member of V and is called the start symbol.
P is a finite set of rules or productions. Each member of P is one the
form
A → α where α is a strings (V∪Σ)*

 Note that the left hand side of a rule is a letter in V;
 The right hand side is a string from the combined alphabets
 The right hand side can even be empty (ε)

4/21/11 © UCF EECS 149

Interesting Sample CFG
Example of a grammar for a small language:

G = ({<program>, <stmt-list>, <stmt>, <expression>},
 {begin, end, ident, ;, =, +, -}, <program>, P) where P is

 <program>  begin <stmt-list> end

 <stmt-list>  <stmt> | <stmt> ; <stmt-list>

 <stmt>  ident = <expression>

 <expression>  ident + ident | ident - ident | ident

Here “ident” is a token return from a scanner, as are “begin”, “end”, “;”, “=”,
“+”, “-”

Note that “;” is a separator (Pascal style) not a terminator (C style).

4/21/11 © UCF EECS 150

Derivation

4/21/11 © UCF EECS 151

A sentence generation is called a derivation.

Grammar for a simple
assignment statement:

R1 <assgn>  <id> := <expr>
R2 <id>  a | b | c
R3 <expr>  <id> + <expr>
R4 | <id> * <expr>
R5 | (<expr>)
R6 | <id>

The statement a := b * (a + c)
Is generated by the left most derivation:

<assgn> ⇒ <id> := <expr> R1
 ⇒ a := <expr> R2
 ⇒ a := <id> * <expr> R4

 ⇒ a := b * <expr> R2
 ⇒ a := b * (<expr>) R5
 ⇒ a := b * (<id> + <expr>) R3
 ⇒ a := b * (a + <expr>) R2
 ⇒ a := b * (a + <id>) R6
 ⇒ a := b * (a + c) R2 In a left most derivation only the

left most non-terminal is replaced

Parse Trees

4/21/11 © UCF EECS 152

A parse tree is a graphical representation of a derivation
For instance the parse tree for the statement a := b * (a + c) is:

 <assign>

 <id> := <expr>

 a <id> * <expr>

 b (<expr>)

 <id> + <expr>

 a <id>

 c

Every internal node of a
parse tree is labeled with
a non-terminal symbol.

Every leaf is labeled with a
terminal symbol.

The generated string is read
left to right

Ambiguity
A grammar that generates a sentence for which there are two or more
distinct parse trees is said to be “ambiguous”

For instance, the following grammar is ambiguous because it generates
distinct parse trees for the expression a := b + c * a

 <assgn>  <id> := <expr>
 <id>  a | b | c
 <expr>  <expr> + <expr>

 | <expr> * <expr>
 | (<expr>)

 | <id>

4/21/11 © UCF EECS 153

Ambiguous Parse

4/21/11 © UCF EECS 154

This grammar generates two parse trees for the same expression.

If a language structure has more than one parse tree,
the meaning of the structure cannot be determined uniquely.

 <assign>

 <id> := <expr>

 A <expr> + <expr>

 <id> <expr> * <expr>

 B <id> <id>

 C A

 <assign>

 <id> := <expr>

 A <expr> * <expr>

 <expr> + <expr> <id>

 <id> <id> A

 B C

Precedence

4/21/11 © UCF EECS 155

Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

 <assign>  <id> := <expr>
 <id>  a | b | c
 <expr>  <expr> + <term>

 | <term>
 <term>  <term> * <factor>

 | <factor>
 <factor>  (<expr>)
 | <id>

This grammar indicates the usual
precedence order of multiplication and
addition operators.

This grammar generates unique parse
trees independently of doing a
rightmost or leftmost derivation

Left (right)most Derivations

4/21/11 © UCF EECS 156

Rightmost derivation:
 <assgn> ⇒ <id> := <expr>
 ⇒ <id> := <expr> + <term>
 ⇒ <id> := <expr> + <term> *<factor>

 ⇒ <id> := <expr> + <term> *<id>
 ⇒ <id> := <expr> + <term> * a
 ⇒ <id> := <expr> + <factor> * a
 ⇒ <id> := <expr> + <id> * a
 ⇒ <id> := <expr> + c * a
 ⇒ <id> := <term> + c * a
 ⇒ <id> := <factor> + c * a
 ⇒ <id> := <id> + c * a

 ⇒ <id> := b + c * a
 ⇒ a := b + c * a

Leftmost derivation:
 <assgn>  <id> := <expr>
  a := <expr>
  a := <expr> + <term>

  a := <term> + <term>
  a := <factor> + <term>
  a := <id> + <term>
  a := b + <term>
  a := b + <term> *<factor>
  a := b + <factor> * <factor>
  a := b + <id> * <factor>

  a := b + c * <factor>
  a := b + c * <id>
  a := b + c * a

Avoiding Ambiguity
Dealing with ambiguity:

Rule 1: * (times) and / (divide) have higher precedence
than + (plus) and – (minus).

Example:
 a + c * 3  a + (c * 3)

Rule 2: Operators of equal precedence associate to the left.

Example:
 a + c + 3  (a + c) + 3

4/21/11 © UCF EECS 157

Unambiguous Grammar
Rewrite the grammar to avoid ambiguity.

The grammar:

<expr>  <expr> <op> <expr> | id | int | (<expr>)
<op>  + | - | * | /

Can be rewritten it as:

<expr>  <term> | <expr> + <term> | <expr> - <term>
<term>  <factor> | <term> * <factor> | <term> / <factor>.
<factor>  id | int | (<expr>)

4/21/11 © UCF EECS 158

RECURSIVE DESCENT PARSING
(DAY #8,9)

4/21/11 © UCF EECS 159

Parsing Problem
The parsing Problem: Take a string of symbols in a language (tokens)
and a grammar for that language to construct the parse tree or report
that the sentence is syntactically incorrect.

 For correct strings:

 Sentence + grammar  parse tree

 For a compiler, a sentence is a program:

 Program + grammar  parse tree

 Types of parsers:

 Top-down aka predictive (recursive descent parsing)

 Bottom-up parsing.

 “We will focus on top-down parsing at present”.
4/21/11 © UCF EECS 160

Top Down Parsing
Recursive Descent parsing uses recursive procedures to model the
parse tree to be constructed. The parse tree is built from the top down,
trying to construct a left-most derivation.

Beginning with start symbol, for each non-terminal (syntactic class) in
the grammar a procedure which parses that syntactic class is
constructed.

 Consider the expression grammar:
 E  T E’

 E’  + T E’ | e
 T  F T’
 T’  * F T’ | e
 F  (E) | id

 The following procedures have to be written:
4/21/11 © UCF EECS 161

Recursive Descent

4/21/11 © UCF EECS 162

Procedure E
 begin { E }
 call T
 call E’
 print (“ E found ”)
 end { E }

Procedure E’
 begin { E’ }
 If token = “+” then
 begin { IF }
 print (“ + found “)
 Get next token
 call T
 call E’
 end { IF }
 print (“ E’ found “)
 end { E’ }

Procedure T
 begin { T }
 call F
 call T’
 print (“ T found ”)
 end { T }

Procedure T’
 begin { T’ }
 If token = “ * ” then
 begin { IF }
 print (“ * found “)
 Get next token
 call F
 call T’
 end { IF }
 print (“ T’ found “)
 end { T’ }

Procedure F
 begin { F }
 case token is
 “(“:
 print (“ (found ”)
 Get next token
 call E
 if token = “)” then
 begin { IF }
 print (“) found”)
 Get next token
 print (“ F found “)
 end { IF }
 else
 call ERROR
 “id“:
 print (“ id found ”)
 Get next token
 print (“ F found “)
 otherwise:
 call ERROR
 end { F }

Left Recursion & Top-Down
Ambiguity is not the only problem associated with recursive descent parsing.
Other problems to be aware of are left recursion and left factoring:

Left recursion: A grammar is left recursive if it has a non-terminal A such that
there is a derivation A  A α for some non-empty string α.

A is left-recursive if the left-most symbol in any of its alternatives either immediately
(direct left-recursive) or through other non-terminal definitions (indirect/hidden
left-recursive) rewrites to a string with A on the left.

Top-down parsing methods cannot handle left-recursive grammars,
so a transformation is needed to eliminate left recursion.

4/21/11 © UCF EECS 163

Prediction and Left Recursion
Immediate left-recursion: A  A α

E.g., Expr  Expr + Term
Top-down parser implementation:
function expr() {
 expr(); match(‘+’); term();
}

Do you see the problem ?

Indirect left-recursion: A  Ba | C
 B  Ab | D

A ⇒ Ba ⇒ Aba

4/21/11 © UCF EECS 164

Removing Left Recursion
Given left recursive and non left recursive rules
A → Aα1 | … | Aαn | β1 | … | βm
Can view as
A → (β1 | … | βm) (α1 | … | αn)*
Star notation is an extension to normal notation with
obvious meaning
Now, it should be clear this can be done right recursive as
A → β1 | … | βm B
B → α1B| … | αnB | ε

4/21/11 © UCF EECS 165

Right Recursive Expressions
Grammar: Expr  Expr + Term | Term

 Term  Term * Factor | Factor
 Factor  (Expr) | Int

Fix: Expr  Term ExprRest
 ExprRest  + Term ExprRest | ε
 Term  Factor TermRest
 TermRest  * Factor TermRest | ε
 Factor  (Expr) | Int

This is syntactically fine, but semantically it can cause trouble.
We will address that issue next.

4/21/11 © UCF EECS 166

Syntax Directed Left Rec
Syntax directed translation adds semantic rules to be
carried out when syntactic rules are applied. Let’s do
conversion of infix to postfix.
Expr  Expr + Term {out(“ + “);}
 | Term
Term  Term * Factor {out(“ * “);}
 | Factor
Factor  (Expr)
 | int {out(“ “, int.val, “ “);}

4/21/11 © UCF EECS 167

How It Works

Examples of applying previous syntax
directed translation

Input: 15 + 20 + 7 * 3 + 2
Output: 15 20 + 7 3 * + 2 +

Input: 15 + 20 + 7 + 3 * 2
Output: 15 20 + 7 + 3 2 * +
4/21/11 © UCF EECS 168

Direct Placement of Actions
Expr  Term ExprRest
ExprRest  + Term ExprRest {out (“ + “);}
 | ε
Term  Factor TermRest
TermRest  * Factor TermRest {out(“ * “);}
 | ε
Factor  (Expr)
 | int {out(“ “,int.val,” “);}

4/21/11 © UCF EECS 169

Problems Galore

Examples of applying previous syntax
directed translation

Input: 15 + 20 + 7 * 3 + 2
Output: 15 20 7 3 * 2 + + +

Input: 15 + 20 + 7 + 3 * 2
Output: 15 20 7 3 2 * + + +
4/21/11 © UCF EECS 170

Treat Actions as Terminals
Expr  Term ExprRest
ExprRest  + Term {out (“ + “);} ExprRest
 | ε
Term  Factor TermRest
TermRest  * Factor {out(“ * “);} TermRest
 | ε
Factor  (Expr)
 | int {out(“ “,int.val,” “);}

4/21/11 © UCF EECS 171

Top Down Parsing
Recursive Descent parsing uses recursive procedures to model the
parse tree to be constructed. The parse tree is built from the top down,
trying to construct a left-most derivation.

Beginning with start symbol, for each non-terminal (syntactic class) in
the grammar a procedure which parses that syntactic class is
constructed.

 Consider the expression grammar (:
 E  T E’

 E’  + T E’ | ε
 T  F T’
 T’  * F T’ | ε
 F  (E) | id

 The following procedures have to be written:
4/21/11 © UCF EECS 172

Recursive Descent

4/21/11 © UCF EECS 173

Procedure E
 begin { E }
 call T
 call E’
end { E }

Procedure E’
 begin { E’ }
 If token = “+” then
 begin { addition }
 nextsy
 call T
 out(“ + “)
 call E’
 end { addition }
 end { E’ }

Procedure T
 begin { T }
 call F
 call T’
 end { T }

Procedure T’
 begin { T’ }
 If token = “ * ” then
 begin { multiply }
 nextsy()
 call F
 out(“ * “)
 call T’
 end { multiply }
 end { T’ }

Procedure F
 begin { F }
 case token is
 “(“:
 nextsy()
 call E
 if token = “)” then
 nextsy()
 else
 ERROR()
 “id“:
 out(id.val)
 Get next token
 otherwise:
 ERROR()
 end { F }

Process

•  Write left recursive grammar with semantic
actions.

•  Rewrite a right recursive with actions
treated as terminals in original rules.

•  Develop recursive descent parser.

4/21/11 © UCF EECS 174

Left Factoring

When have rules like
 A → αβ | αγ

which rule to choose is a problem
Factor as

 A → α X
 X → β | γ

4/21/11 © UCF EECS 175

EBNF
(DAY #9,10)

4/21/11 © UCF EECS 176

EBNF

Extended Backus Naur Form (EBNF)
non-terminal ::= rhs
Where the rhs can include quoted terminals,
non-terminal, designated keywords, and the
special symbols
 s1|…| sk choose one of k strings
 { s } repeat string s 0 or more times
 [s] optionally include string s
4/21/11 © UCF EECS 177

Pascal-S EBNF#1
RED indicates a reserved word or a special symbol
BLUE is an Identifier

Program ::= program_heading
 block '.'
program_heading ::= PROGRAM NAME '(' identifier_list ')' ';'
identifier_list ::= NAME { ',' NAME }

block ::= declaration_part statement_part
declaration_part ::= [constant_definition_part]
 [type_definition_part]
 [variable_declaration_part]
 procedure_and_function_declaration_part

4/21/11 © UCF EECS 178

Pascal-S EBNF#2
constant_definition_part ::= CONST constant_definition ';‘ { constant_definition ';' }
constant_definition ::= NAME '=' constant

constant ::= ['+' | '-'] (CONSTANT_NAME | NUMBER) | STRING

type_definition_part ::= TYPE type_definition ';' { type_definition ';' }
type_definition ::= NAME '=' type

variable_declaration_part ::= VAR variable_declaration ';' { variable_declaration ';' }
variable_declaration ::= identifier_list ':' type

procedure_and_function_declaration_part ::=
 { (procedure_declaration | function_declaration) ';' }

procedure_declaration ::= procedure_heading ';' block
function_declaration ::= function_heading ';' block

4/21/11 © UCF EECS 179

Pascal-S EBNF#3
type ::= simple_type | structured_type | TYPE_NAME

simple_type ::= constant '..' constant

structured_type ::= array_type | record_type

array_type ::= ARRAY '[' index_type { ',' index_type } ']' OF element_type
index_type ::= simple_type
element_type ::= type

record_type ::= RECORD field_list END
field_list ::= record_section { ';' record_section }
record_section ::= identifier_list ':' type

4/21/11 © UCF EECS 180

Pascal-S EBNF#4
procedure_heading ::= PROCEDURE NAME [formal_parameter_list]

function_heading ::= FUNCTION NAME [formal_parameter_list] ':' result_type

result_type ::= TYPE_NAME

formal_parameter_list ::= '(' formal_parameter_section { ';' formal_parameter_section } ')'
formal_parameter_section ::= [VAR]identifier_list ':' parameter_type
parameter_type ::= TYPE_NAME

4/21/11 © UCF EECS 181

Pascal-S EBNF#5
statement_part ::= BEGIN statement_sequence END
statement_sequence ::= statement { ';' statement }
statement ::= (simple_statement | structured_statement)
simple_statement ::= [assignment_statement | procedure_statement]

procedure_statement ::= PROCEDURE_NAME [actual_parameter_list]
actual_parameter_list ::= '(' expression { ',' expression } ')'

assignment_statement ::= (variable_access | FUNCTION_NAME) ':=' expression

variable_access ::= ACCESS_NAME { end_access }
end_access ::= { array_access | record_access | function_parameters }
array_access ::= '[' expression_list ']'
record_access ::= '.' variable_access
function_parameters ::= '(' [expression_list] ')'

expression_list ::= expression { ',' expression }

4/21/11 © UCF EECS 182

Pascal-S EBNF#6
expression ::= simple_expression [relational_operator simple_expression]
relational_operator ::= '=' | '<>' | '<' | '<=' | '>' | '>='

simple_expression ::= ['+' | '-'] term { addition_operator term }
addition_operator ::= '+' | '-' | OR

term ::= factor { multiplication_operator factor }
multiplication_operator ::= '*' | '/' | DIV | MOD | AND

factor ::= NUMBER | STRING | CONSTANT_NAME
 | variable_access | function_designator
 | '(' expression ')' | NOT factor

function_designator ::= FUNCTION_NAME [actual_parameter_list]

4/21/11 © UCF EECS 183

Pascal-S EBNF#7
structured_statement ::= compound_statement | repetitive_statement |

 conditional_statement

compound_statement ::= BEGIN statement_sequence END

repetitive_statement ::= while_statement | repeat_statement | for_statement
while_statement ::= WHILE expression DO statement
repeat_statement ::= REPEAT statement_sequence UNTIL expression
for_statement ::= FOR VARIABLE_NAME ':=' expression (TO | DOWNTO) expression

 DO statement

conditional_statement ::= if_statement | case_statement
if_statement ::= IF expression THEN statement [ELSE statement] .
case_statement ::= CASE expression OF case_element { ';' case_element } [';'] END
case_element ::= case_label_list ':' statement
case_label_list ::= constant { ',' constant }

4/21/11 © UCF EECS 184

SYNTAX GRAPHS (CHARTS)
RAILROAD CHARTS

(DAY #9,10)

4/21/11 © UCF EECS 185

Syntax Graphs #1
Transforming a grammar expressed in EBNF to syntax graph (also called syntax chart or
railroad chart) is advantageous to visualize the parsing process of a sentence because
the syntax graph reflects the flow of control of the parser.

Rules to construct a syntax graph:

R1.- Each non-terminal symbol A which can be expressed as a set of productions

A ::= P1 | P2 | . . . | Pn can be mapped into the following syntax graph:

4/21/11 © UCF EECS 186

Pn

P2

P1

Syntax Graphs #2
Transforming a grammar expressed in EBNF to syntax graph is advantageous to visualize the parsing
process of a sentence because the syntax graph reflects the flow of control of the parser.
Rules to construct a syntax graph:
R2.- Every occurrence of a terminal symbol T in a Pi means that a token has been recognized
and a new symbol (token) must be read. This is represented by a label T enclosed in a circle.

R3.- Every occurrence of a non-terminal symbol B in a Pi corresponds to an activation of the
recognizer B.

R4.- A production P having the form P = a1 a2 . . . am can be represented by the graph:

 where every ai is obtained by applying construction rules R1 through R6

4/21/11 © UCF EECS 187

 T

 B

a2 am a1

Syntax Graphs #3
Transforming a grammar expressed in EBNF to syntax graph is advantageous to visualize the parsing
process of a sentence because the syntax graph reflects the flow of control of the parser.
Rules to construct a syntax graph:

R5.- A production P having the form P = {a} can be represented by the graph:

 where a is obtained by applying constructing rules R1 through R6

R6.- A production P having the form P = [a] can be represented by the graph:

 where a is obtained by applying constructing rules R1 through R6

4/21/11 © UCF EECS 188

a

a

Syntax Graphs from EBNF

4/21/11 © UCF EECS 189

Example from N. Wirth:

A ::= “x” | “(“ B “)”
B ::= A C
C ::= { “+” A }

B ()

x

A

B
A C

A +

C

Strings from Syntax Graph

4/21/11 © UCF EECS 190

A +

A) (

x

x
(x)
(x + x)

Parser from Syntax Graph#1
Transforming a grammar expressed in EBNF to syntax graph is advantageous to
visualize the parsing process of a sentence because the syntax graph reflects the flow of
control of the parser.

Rules to construct a parser from a syntax graph (N. Wirth):
B1.- Reduce the system of graphs to as few individual graphs as possible
 by appropriate substitution.
B2.- Translate each graph into a procedure declaration according to the
 subsequent rules B3 through B7.
B3.- A sequence of elements

Is translated into the compound statement
 { T(S1) T(S2) … T(Sn) }

T(S) denotes the translation of graph S

4/21/11 © UCF EECS 191

 S2 Sm S1

Parser from Syntax Graph#2

4/21/11 © UCF EECS 192

Rules to construct a parser from a syntax graph:

B4.- A choice of elements

Sn

S2

S1

Conditional

if sy in x1 { insymbol(); T(S1) } else
if sy in x2 { insymbol(); T(S2) } else
. . .

if sy in xn { insymbol(); T(Sn) } else
error();

 x1

 xn

 x2

Parser from Syntax Graph#3
Rules to construct a parser from a syntax graph:

B5.- A loop of the form

is translated into the statement

 while sy in x do { insymbol(): T(S) }

where T(S) is the translation of S according to rules B3 through B7.

4/21/11 © UCF EECS 193

S x

Parser from Syntax Graph#4
Rules to construct a parser from a syntax graph:

B6.- A loop of the form

is translated into the statement

 if x in L { insymbol(); T(S) }

where T(S) is the translation of S according to rules B3 through B8.

4/21/11 © UCF EECS 194

S x

Parser from Syntax Graph#5
Rules to construct a parser from a syntax graph:

B7.- An element of the graph denoting another graph A

is translated into the procedure call statement A.

B8.- An element of the graph denoting a terminal symbol x

Is translated into the statement

 if (sy in x) insymbol(); else error();

Where error is a routine called when an ill-formed construct is encountered.

4/21/11 © UCF EECS 195

 A

 x

Parser from Syntax Graph#6

4/21/11 © UCF EECS 196

Useful variants of rules B4 and B5:

B4a.- A choice of elements

Sn

S2

S1

Conditional

if sy in x1 { insymbol(); T(S1) } else
if sy in x2 { insymbol(); T(S2) } else
. . .

if sy in xn { insymbol(); T(Sn) } else
error();

 x1

 xn

 x2

Example Graphs

4/21/11 © UCF EECS 197

Applying the above mentioning rules to create one graph to this example:

A ::= “x” | “(“ B “)”
B ::= A C
C ::= { “+” A }

B ()

x

A

B
A C

A +

C

Combining Graphs

4/21/11 © UCF EECS 198

A +

A) (

x

We will obtain this graph:

Using this graph and choosing from rules B1 to B8 a parser program
can be generated.

A

Pseudo-code Parser
void function A() {
 if (sy == ‘x’) insymbol(); // ‘x’ is replaced by its token
 else if (sy == ‘(‘) {
 insymbol();
 A();
 while sy == ‘+’ {
 insymbol();
 A();
 }
 if (sy == ‘)’) insymbol(); else error(err_number);
 else error(err_number);
}

4/21/11 © UCF EECS 199

PASCAL-S RECURSIVE DESCENT
(DAY #9,10)

4/21/11 © UCF EECS 200

Main for Pascal-S #1
(* First for some constructs *)
constbegsys := [plus, minus, intcon, realcon, charcon, ident];
typebegsys := [ident, arraysy, recordsy];
blockbegsys := [constsy, typesy, varsy, proceduresy, functionsy, beginsy];
facbegsys := [intcon, realcon, charcon, ident, lparent, notsy];
statbegsys := [beginsy, ifsy, whilesy, repeatsy, forsy, casesy];
stantyps := [notyp, ints, reals, bools, chars];

4/21/11 © UCF EECS 201

Main for Pascal-S #2
insymbol;
if sy <> programsy then error(3) else
 begin insymbol;
 if sy <> ident then error(2) else
 begin progname := id; insymbol;
 if sy <> lparent then error(9) else
 repeat insymbol;
 if sy <> ident then error(2) else insymbol
 until sy <> comma;
 if sy = rparent then insymbol else error(4);
 end
 end;
block(blockbegsys+statbegsys, false, 1);
if sy <> period then error(22);
emit(31); (* halt *)

4/21/11 © UCF EECS 202

Useful Tests
procedure skip(fsys: symset; n: integer);
begin error(n);
 while not (sy in fsys) do insymbol
end (* skip *);
procedure test(s1, s2: symset; n: integer);
begin
 if not (sy in s1) then skip(s1+s2, n)
end (* test *);
procedure testsemicolon;
begin
 if sy = semicolon then insymbol else
 begin error(14);
 if sy in [comma, colon] then insymbol
 end;
 test([ident]+blockbegsys, fsys, 6)
end (* testsemicolon *);
4/21/11 © UCF EECS 203

Part of Block
procedure block(fsys: symset; isfun: boolean; level: integer);
…..
 repeat
 if sy = constsy then constantdeclaration;
 if sy = typesy then typedeclaration;
 if sy = varsy then variabledeclaration;
 while sy in [proceduresy, functionsy] do procdeclaration;
 test([beginsy], blockbegsys+statbegsys, 56)
 until sy in statbegsys;
 insymbol; statement([semicolon, endsy]+fsys);
 while sy in [semicolon]+statbegsys do
 begin if sy = semicolon then insymbol else error(14);
 statement([semicolon, endsy]+fsys)
 end;
 if sy = endsy then insymbol else error(57);
 test(fsys+[period], [], 6)
end (* block *);

4/21/11 © UCF EECS 204

Statement#1
begin (* statement *)
 if sy in statbegsys+[ident] then
 case sy of
 ident: begin i:= loc(id); insymbol;
 if i <> 0 then
 case tab[i].obj of
 konstant, typel: error(45);
 variable:
 assignment(tab[i].lev, tab[i].adr);
 prozedure:
 if tab[i].lev <> 0 then call(fsys, i)
 else standproc(tab[i].adr);

4/21/11 © UCF EECS 205

Statement#2
 funktion:
 if tab[i].ref = display[level] then assignment(tab[i].lev+1, 0)
 else error(45)
 end
 end;
 beginsy: compoundstatement;
 ifsy: ifstatement;
 casesy: casestatement;
 whilesy: whilestatement;
 repeatsy: repeatstatement;
 forsy: forstatement;
 end;
 test(fsys, [], 14)
end (* statement *)
4/21/11 © UCF EECS 206

Assignment Statement
procedure assignment(lv, ad: integer);
 var x,y: item; f: integer;
begin x.typ := tab[i].typ; x.ref := tab[i].ref;
 if tab[i].normal then f := 0 else f := 1; emit2(f, lv, ad);
 if sy in [lbrack, lparent, period] then selector([becomes, egl]+fsys, x);
 if sy = becomes then insymbol else begin error(51); if sy = egl then insymbol end;
 expression(fsys, y);
 if x.typ = y.typ then
 if x.typ in stantyps then emit(38)
 else if x.ref <> y.ref then error(46)
 else if x.typ = arrays then emit1(23, atab[x.ref].size)
 else emit1(23, btab[x.ref].vsize)
 else if (x.typ=reals) and (y.typ=ints) then begin emit1(26, 0); emit(38) end
 else if (x.typ<>notyp) and (y.typ<>notyp) then error(46)
end (* assignment *);

4/21/11 © UCF EECS 207

Compound Statement
procedure compoundstatement;
begin insymbol;
 statement([semicolon, endsy]+fsys);
 while sy in [semicolon]+statbegsys do
 begin if sy = semicolon then insymbol else error(14);
 statement([semicolon, endsy]+fsys)
 end;
 if sy = endsy then insymbol else error(57)
end (* compoundstatement *);

4/21/11 © UCF EECS 208

IF Statement
procedure ifstatement;
 var x: item; lc1, lc2: integer;
begin insymbol;
 expression(fsys+[thensy, dosy], x);
 if not (x.typ in [bools, notyp]) then error(17);
 lc1 := lc; emit(11); (* jmpc *)
 if sy = thensy then insymbol else begin error(52); if sy = dosy then insymbol end;
 statement(fsys+[elsesy]);
 if sy = elsesy then
 begin insymbol; lc2 := lc; emit(10);
 code[lc1].y := lc; statement(fsys); code[lc2].y := lc
 end
 else code[lc1].y := lc
end (* if statment *);

4/21/11 © UCF EECS 209

While Statement
procedure whilestatement;
 var x: item; lc1, lc2: integer;
begin insymbol; lc1 := lc;
 expression(fsys+[dosy], x);
 if not (x.typ in [bools, notyp]) then error(17);
 lc2 := lc; emit(11);
 if sy = dosy then insymbol else error(54);
 statement(fsys); emit1(10, lc1); code[lc2].y := lc
end (* whilestatement *);

4/21/11 © UCF EECS 210

Repeat Statement
procedure repeatstatement;
 var x: item; lc1: integer;
begin lc1 := lc;
 insymbol; statement([semicolon, untilsy]+fsys);
 while sy in [semicolon]+statbegsys do
 begin if sy = semicolon then insymbol else error(14);
 statement([semicolon, untilsy]+fsys)
 end;
 if sy = untilsy then
 begin insymbol; expression(fsys, x);
 if not (x.typ in [bools, notyp]) then error(17);
 emit1(11, lc1)
 end
 else error(53)
end (* repeatstement *);

4/21/11 © UCF EECS 211

PREDICTIVE PARSING
FIRST AND FOLLOW SETS

(DAY #11)

4/21/11 © UCF EECS 212

First Set
A recursive descent (or predictive) parser chooses the
correct production looking ahead at the input string a
fixed number of symbols (typically one symbol or
token).

First set:

Let α be a string of terminals and non-terminals.

First(α) is the set of all terminals that can begin strings
derived from α. If α ⇒ ε then ε is in First(α).

4/21/11 © UCF EECS 213

Example 1 of First
Example: Given the following expression grammar:

 E  E + T | T
 T  T * F | F
 F  (E) | id

First(F) = { id, (}
First(T) = { id, (}
First(T * F) = { id, (}
First(T) = { id, (}
First(E + T) = { id, (}
Because: E + T  T + T  F + T  id + T
 E + T  T + T  F + T  (E) + T
First(E) = { id, (}
Because: E  T  F  id

 E  T  F  (E)
This creates a conflict on which to choose in a top down parser.

4/21/11 © UCF EECS 214

Nullables
Nullable symbols are the ones that produce the empty (ε) string
Example: Given the following grammar, find the nullable symbols and the First
set:

Z  d Y  ε X  Y

Z  X Y Z Y  c X  a

Note that if X can derive the empty string, nullable(X) is true.

X  Y  ε

Y  ε Nullable First

Z  d X Yes {a, c, ε}

Z  X Y Z Y Yes {c, ε}

 Z No {a, c, d}

4/21/11 © UCF EECS 215

Computing First
•  If X is a terminal, then First(X) = {X}
•  If X is a non-terminal and X → Y1Y2…Yk is a

production, for k>=1, then place a in First(X) if
for some i, a is in First(Yi) and each of Y1
through Yi-1 are nullable. If each of Y1 through Yk
is nullable, then place ε in First(X).

•  If X → ε is a production, add ε to First(X).

•  Note: Some approaches use a separate status
of nullable, rather than including ε in First.

4/21/11 © UCF EECS 216

Follow Set
Given a production A, Follow(A) is the set of terminal symbols that can immediately
follow A. Note: $ indicates end of input, so always in Follow of start symbol

Example: Given the following grammar:

Z  d Y  ε X  Y
Z  X Y Z Y  c X  a

Compute First, Follow, and nullable.

 Nullable First Follow
 X Yes { a, c, ε} { a, c, d }
 Y Yes {c, ε} { a, c, d }
 Z No {a, c, d } {$ EOF}

4/21/11 © UCF EECS 217

Computing Follow
•  Place $ in Follow(S), where S is start symbol.
•  If there is some production A → αBβ, then

everything in First(β) except ε is in Follow(B).
•  If there is some production A → αB or a

production A → αBβ, where ε is in First(β) then
everything in Follow(A) is in Follow(B).

4/21/11 © UCF EECS 218

Expression Grammar
Example: Given the grammar:
E  E + T T  T * F F  id
E  T T  F F  (E)

We can rewrite the grammar to avoid left recursion obtaining:
E  T E’ T  F T’ F  id
E’  + T E’ T’  * F T’ F  (E)
E’  ε T’  ε

Compute First, Follow, and nullable.

 Nullable First Follow
 E No { id , (} {), $ }
 E’ Yes { + , ε } {), $ }
 T No { id , (} {) , +, $ }
 T’ Yes { * , ε } {) , +, $ }

 F No { id , (} {) , * , +, $ }

4/21/11 © UCF EECS 219

Creating Parsing Table

•  Input: Grammar G
•  Output: Parsing table M
•  For each production A → α, do

– For each terminal a in First(α). Add A → α to
M[A,a].

–  If ε is in First(α), then for each terminal b in
Follow(A), add A → α to M[A,b]. Further if $ is
in Follow(A), add A → α to M[A,$] as well.

– All empty cells are errors.
4/21/11 © UCF EECS 220

Parse Table
Parsing table for the expression grammar:

 First Follow
 E { id , (} {), $ } E  T E’ T  F T’ F  id
 E’ { + , ε } {), $ } E’  + T E’ T’  * F T’ F  (E)
 T { id , (} {) , +, $ } E’  ε T’  ε
 T’ { * , ε } {) , +, $ }
 F { id , (} {) , * , +, $ }
 + * id () $

E E  T E’ E  T E’

E’ E’  + T E’ E’  ε E’  ε

T T  F T’ T  F T’

T’ T’  ε T’  * F T’ T’  ε
 T’  ε

F F  id F  (E) 4/21/11 © UCF EECS 221

Table Entry to Code
Using the predictive parsing table, it is easy to write a recursive-descent parser:

 + * id () $

T’ T’  ε T’  * F T’ T’  ε T’  ε

void Tprime (void)
{
 switch (token)

 { case PLUS: accept (PLUS) ; break ;
 case TIMES: accept (TIMES) ; F () ; Tprime (); break ;
 case RPAREN: accept (RPAREN) ; break ;
 case EOF: break ;
 default: error () ;
 }

}
4/21/11 © UCF EECS 222

Left Factoring (Again)
Avoid cases where two productions for same non-terminal start with same symbol.
Example: S  if E then S

 S  if E then S else S

Solution: Left-factor the grammar. Take allowable ending “else S” and ε, and make a new
production (new non-terminal) for them:

 S  if E then S X
 X  else S
 X  e

Grammars whose predictive parsing tables contain no multiples entries are called LL(1).
The first L stands for left-to-right parse of input string. (input scanned from left to right)
The second L stands for leftmost derivation of the grammar. (apply production to leftmost
non-terminal at each step of derivation)
The “1” stands for one symbol (token) lookahead

4/21/11 © UCF EECS 223

CKY (Cocke, Kasami, Younger)
O(N3) PARSING

(DAY #11)

4/21/11 © UCF EECS 224

Dynamic Programming
To solve a given problem, we solve small parts of the problem (subproblems),
then combine the solutions of the subproblems to reach an overall solution.

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was
unknown until the late 1960s. In the meantime, theoreticians developed notion
of simplified forms that were as powerful as arbitrary CFGs. The one most
relevant here is the Chomsky Normal Form – CNF. It states that the only rule
forms needed are:

A → BC where B and C are non-terminals
A → a where a is a terminal

This is provided the string of length zero is not part of the language.

4/21/11 © UCF EECS 225

CKY (Bottom-Up Technique)
Let the input string be a sequence of n letters a1 ... an.
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr,
Let R1 be the start symbol.
Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false.
For each i = 1 to n

 For each unit production Rj → ai, set P[i,1,j] = true.
 For each i = 2 to n
 For each j = 1 to n-i+1
 For each k = 1 to i-1
 For each production RA -> RB RC
 If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true

If P[1,n,1] is true then a1 ... an is member of language
else a1 ... an is not member of language

4/21/11 © UCF EECS 226

CKY Parser
 Present the CKY recognition matrix for the string abba assuming the Chomsky
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, S, P), specified by the rules P:

S → AB | BA
A → CD | a
B → CE | b
C → a | b
D → AC
E → BC

4/21/11 © UCF EECS 227

a b b a
1 A,C B,C B,C A,C
2 S,D E S,E
3 B B
4 S,E

Bottom Up vs Top Down
•  Bottom-Up: Two stack operations

–  Shift (move input symbol to stack)
–  Reduce (replace top of stack α with A, when A→α)

–  Challenge is when to do shift or reduce and what reduce to do.

•  Can have both kinds of conflict

•  Top-Down:
–  If top of stack is terminal

•  If same as input, read and pop
•  If not, we have an error

–  If top of stack is a non-terminal A
•  Replace A with some α, when A→α

•  Challenge is what A-rule to use

4/21/11 © UCF EECS 228

SIMPLE WHILE LANGUAGE
(DAY #13)

4/21/11 © UCF EECS 229

While.l #1
%{
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include <limits.h>

void setid(void);
void setnum(void);
%}
L [A-Za-z]
D [0-9]
ID {L}({L}|{D})*
NUM {D}+

4/21/11 © UCF EECS 230

While.l #2
%%
">=" {ECHO; yylval = (int) '+'; return(RELOP);}
"<=" {ECHO; yylval = (int) '-'; return(RELOP);}
"="|"#"|">"|"<" {ECHO; yylval = (int) yytext[0]; return(RELOP);}
"+" {ECHO; return(PLUS);}
"-" {ECHO; return(MINUS);}
"*" {ECHO; return(TIMES);}
"/" {ECHO; return(DIVIDE);}
"{" {ECHO; return(LBRACE);}
"}" {ECHO; return(RBRACE);}
"(" {ECHO; return(LPAREN);}
")" {ECHO; return(RPAREN);}
"[" {ECHO; return(LBRACK);}
"]" {ECHO; return(RBRACK);}

4/21/11 © UCF EECS 231

While.l #3
";" {ECHO; return(SEMICOLON);}
"," {ECHO; return(COMMA);}
":=" {ECHO; return(ASSIGN);}
"while" {ECHO; return(WHILE);}
"do" {ECHO; return(DO);}
"end" {ECHO; return(END);}
"if" {ECHO; return(IF);}
"then" {ECHO; return(THEN);}
"else" {ECHO; return(ELSE);}
{NUM} {ECHO; setnum(); return(NUMBER);}
{ID} {ECHO; setid(); return(IDENT);}
[\t]* {ECHO;}
[\n]+ {ECHO; dumpcode();}
. {ECHO; printf("\nunrecognizable character\n");

 return(BAD);}

4/21/11 © UCF EECS 232

While.l #4
%%
void setnum(void) {
 int i;
 yylval = 0; i = 0;
 while (yytext[i]) /* convert string to int */
 yylval = yylval*10 + ((int) yytext[i++] - (int) '0');
}
void setid(void) {
 char *p,*q,*r;
 p = idname; /* used to communicate string to syntax analyzer */
 q = yytext; /* string found in input */
 r = symtab[0].name; /* new symbol strats i zero-th slot */
 if (yyleng>=IDLENGTH)
 yytext[IDLENGTH-1] = '\0'; /* null termination of string makes copy safe */
 while (*r++ = (*p++ = *q++)); /* copy new symbol into table */
 yylval = symsize; /* search bottom up -- small table so linear okay */
 while (strcmp(symtab[--yylval].name, idname)); /* always succeeds */
}
int yywrap(void) {
 return(1);
}

4/21/11 © UCF EECS 233

While.y #1
%token SEMICOLON COMMA END LBRACE RBRACE LBRACK RBRACK
%token RPAREN LPAREN NUMBER IDENT WHILE DO ASSIGN BAD
%token IF THEN ELSE
%nonassoc RELOP
%left PLUS MINUS
%left TIMES DIVIDE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include <limits.h>

4/21/11 © UCF EECS 234

While.y #2
/* Constants */
#define IDLENGTH 9 /* one more (for \0) than max ident length */
#define SYMMAX 20 /* size of symbol table */
#define CODEMAX 100 /* size of code table */

/* Code table */
struct {

 char opcode[IDLENGTH]; /* mnemonic of operator */
 int first,second; /* first and second operand */

} code[CODEMAX]; /* code table */

/* Symbol table */
struct {

 char name[9]; /* identifier name */
 int size; /* zero for scalar; number of elements for vector */
 int countRead; /* count the read references. */
 int countWrite; /* count the write references */

} symtab[SYMMAX]; /* symbol table */

4/21/11 © UCF EECS 235

While.y #3
/* Other variables */
char idname[IDLENGTH]; /* Ident just found -- first eight characters are
meaningful */
int triple; /* Next available code slot */
int showStart; /* start of code area yet to be
displayed */
int symsize; /* next available symbol table slot */

int forwardTest; /* flag indicating cond jump forward or backward */
int errorNo; /* error number counter */
int warnNo; /* warning number counter */

4/21/11 © UCF EECS 236

While.y #4
/* Function declarations */
void basicinit(void);
void enter(char *name, int size);
void backpatch(int trip, int val);
void backpatch1(int trip, int val);
void emit(char *opcode, int first, int second);
void ok(int extra);
void fatal(char const *msg);
void dumpcode(void);
void countReport(void);
void error(char const *s);
void warning(char const *s);
void yyerror(char const *s);

%}

4/21/11 © UCF EECS 237

While.y #5
%%

program:
 startup decl body END
 { emit("EXIT",0,0); dumpcode();
 showStart = 1; dumpcode(); countReport();
 }
 ;

startup:
 /* empty */ { basicinit(); }
 ;

decl:
 var.list SEMICOLON |
 SEMICOLON
 error { error("declaration syntax"); ok(COMMA); yyerrok; }
 ;

4/21/11 © UCF EECS 238

While.y #6
var.list:

 var.list COMMA var.def |
 var.def |
 error { error("declaration syntax"); ok(COMMA);
 yyerrok; }
 ;

var.def:
 IDENT LBRACK NUMBER RBRACK
 { if ($1 > 0) warning("duplicate name");
 else enter(idname,$3); } |
 IDENT
 { if ($1 > 0) warning("duplicate name");
 else enter(idname,0);
 }
 ;

4/21/11 © UCF EECS 239

While.y #7
body:

 statement.list
 ;

statement.list:
 statement.list statement |
 /* empty */
 ;

statement:
 assign SEMICOLON |
 while |
 do |
 if |
 LBRACE statement.list RBRACE |
 SEMICOLON |
 error { error("declaration syntax"); ok(LBRACE); yyerrok; }

4/21/11 © UCF EECS 240

While.y #8
while:

 while.start test DO statement
 { emit("JUMP",-$1,0);
 backpatch($2,-triple);
 }
 ;

while.start:
 WHILE { $$ = triple; forwardTest = 1; }

 ;

4/21/11 © UCF EECS 241

While.y #9
test: exp RELOP exp { emit("-",$1,$3);

 $$ = triple;
 switch((char) $2) {
 case '=': if (forwardTest) emit("JNZ",-triple+1,0);
 else emit("JZ",-triple+1,0); break;
 case '#': if (forwardTest) emit("JZ",-triple+1,0);
 else emit("JNZ",-triple+1,0); break;
 case '>': if (forwardTest) emit("JNP",-triple+1,0);
 else emit("JP",-triple+1,0); break;
 case '<': if (forwardTest) emit("JNM",-triple+1,0);
 else emit("JM",-triple+1,0); break;

 case '+': if (forwardTest) emit("JM",-triple+1,0);
 else emit("JNM",-triple+1,0); break;
 case '-': if (forwardTest) emit("JP",-triple+1,0);
 else emit("JNP",-triple+1,0); break;

 }
 }
 ;

4/21/11 © UCF EECS 242

While.y #10
do:

 do.start LBRACE statement.list RBRACE WHILE test
 { backpatch($6, $1); }
 ;

do.start:
 DO { $$ = triple; forwardTest = 0; }
 ;

if:
 IF {forwardTest=1;} test THEN statement {$$=triple;} optionalElse
 { backpatch($3, -$6); }
 ;

optionalElse:
 ELSE {$$=triple; emit("JUMP",0,0);} statement {backpatch1($2,-triple);} |
 /* empty */
 ;

4/21/11 © UCF EECS 243

While.y #11
assign:

 IDENT sub ASSIGN exp { if ($1==0) {
 error("undefined"); emit("ERROR",0,0);
 }
 else if ($2==0) {
 if (symtab[$1].size>0) {
 error("need subscript"); emit("ERROR",0,0);
 }
 else emit(":=",$1,$4);
 }
 else if (symtab[$1].size==0) {
 error("cannot subscript"); emit("ERROR",0,0);
 }
 else {
 emit("[]=",$1,$2); emit("_",$4,0);
 }
 }
 ;

4/21/11 © UCF EECS 244

While.y #12
sub:

 LBRACK exp RBRACK
 { $$ = $2; } |
 /* empty */
 { $$ = 0; }
 ;

4/21/11 © UCF EECS 245

While.y #13
exp: exp PLUS exp

 { $$ = -triple;
 emit("+",$1,$3);
 } |
 exp MINUS exp
 { $$ = -triple;
 emit("-",$1,$3);
 } |
 exp TIMES exp
 { $$ = -triple;
 emit("*",$1,$3);
 } |
 exp DIVIDE exp
 { $$ = -triple;
 emit("/",$1,$3);
 } |
 LPAREN exp RPAREN
 { $$ = $1; } |

4/21/11 © UCF EECS 246

While.y #14
 NUMBER { $$ = -triple; emit("con",$1,0); } |
 IDENT sub { $$ = -triple;
 if ($1==0) {
 error("undefined variable"); emit("ERROR",0,0);
 }
 else if ($2==0) {
 if (symtab[$1].size>0) {
 error("need subscript"); emit("ERROR",0,0);
 }
 else $$ = $1;
 }
 else if (symtab[$1].size==0) {
 error("cannot subscript"); emit("ERROR",0,0);
 }
 else emit("=[]",$1,$2);
 }
 ;

4/21/11 © UCF EECS 247

While.y #15
%%
void basicinit(void) {
 code[0].opcode[0] = '\0';
 showStart = 1; /* Index of next code slot that has yet to be dumped */
 triple = 1; /* Index of first available code slot */
 symsize = 1; /* Index of next available symbol table slot (zero-th reserved) */
 errorNo = 0; /* Number of errors detected */
 warnNo = 0; /* Number of warnings given */
}

void enter(char *name, int size) {
 char *p;
 if (symsize<SYMMAX) { symtab[symsize].size = size;
 symtab[symsize].countRead = 0; symtab[symsize].countWrite = 0;
 p = symtab[symsize++].name; while (*p++ = *name++);
 }
 else fatal("symbol table too large");
}

4/21/11 © UCF EECS 248

While.y #16
void backpatch(int trip, int val) {
 code[trip].second = val;
}

void backpatch1(int trip, int val) { /* for backpatch the first field */
 code[trip].first = val;
}

4/21/11 © UCF EECS 249

While.y #17
void emit(char *opcode, int first, int second) { /* generates code and handles var count */
 char *p;
 if (triple<CODEMAX) {
 if (strcmp(opcode, "con")) { /* not a constant, so need to do further checks */

 if (second>0) /* 2nd var only used for read */
 symtab[second].countRead++; /* rvalue; note: a[a1]:=b; a1 is read */

 if (!strcmp(opcode, ":=") || !strcmp(opcode, "[]="))
 symtab[first].countWrite++; /* lvalue */

 else if (first>0)
 symtab[first].countRead++; /* rvalue; first operand */

 }
 code[triple].first = first; code[triple].second = second;
 p = code[triple++].opcode; while (*p++ = *opcode++);
 }
 else fatal("code table is too large\n");
}
4/21/11 © UCF EECS 250

While.y #18
void emit(char *opcode, int first, int second) { /* generates code and handles var count */
 char *p;
 if (triple<CODEMAX) {
 if (strcmp(opcode, "con")) { /* not a constant, so need to do further checks */

 if (second>0) /* 2nd var only used for read */
 symtab[second].countRead++; /* rvalue; note: a[a1]:=b; a1 is read */

 if (!strcmp(opcode, ":=") || !strcmp(opcode, "[]="))
 symtab[first].countWrite++; /* lvalue */

 else if (first>0)
 symtab[first].countRead++; /* rvalue; first operand */

 }
 code[triple].first = first; code[triple].second = second;
 p = code[triple++].opcode; while (*p++ = *opcode++);
 }
 else fatal("code table is too large\n");
}
4/21/11 © UCF EECS 251

While.y #19
void ok(int extra) {
 while ((yychar!=WHILE) && (yychar!=SEMICOLON) && (yychar!=extra) &&

 (yychar>0)) yychar = yylex();
}
void fatal(char const *msg) {
 printf("%s\n",msg);
 dumpcode();
}
void dumpcode(void) {
 int i;
 printf("\n");
 for (i=showStart;i<triple;i++)
 printf("%4d : %8s %4d %4d\n",i,code[i].opcode,code[i].first,code[i].second);
 showStart = triple;
}

4/21/11 © UCF EECS 252

While.y #20
void countReport(void) {
 int i;
 printf("\n*** NUMBER OF ERRORS FOUND: %d *** \n", errorNo);
 printf("*** NUMBER OF WARNINGS: %d *** \n", warnNo);
 /* dump out symbol table with reference counts */
 for (i=1; i<symsize; i++)

 if (symtab[i].size>0)
 printf("%s[%d], # of read ref = %d, # of write ref = %d\n",
 symtab[i].name, symtab[i].size, symtab[i].countRead,
 symtab[i].countWrite);
 else
 printf("%s, # of read ref = %d, # of write ref = %d\n",
 symtab[i].name, symtab[i].countRead, symtab[i].countWrite);

}

4/21/11 © UCF EECS 253

While.y #21
void error(char const *s) {
 printf("\nError: %s\n", s);
 errorNo++;
}

void warning(char const *s) {
 printf("\nWarning: %s\n", s);
 warnNo++;
}

void yyerror(char const *s) {
 printf("%s\n", s);
}

4/21/11 © UCF EECS 254

While.y #22
#include "while.lex.c"

int main(int argc, char **argv) {
 int result;
 ++argv, --argc; /* skip over program name */
 if (argc > 0) yyin = fopen(argv[0], "r");
 else yyin = stdin;
 result = yyparse();
 system("pause()");
 return(result);
}

4/21/11 © UCF EECS 255

While.y #23
var1,var2,a[5],b[7];
var1 := var2+10; var1 := 9;
 1 : con 10 0
 2 : + 2 -1
 3 : := 1 -2
 4 : con 9 0
 5 : := 1 -4
var1 := 1;
 6 : con 1 0
 7 : := 1 -6
while var1<5 do
 8 : con 5 0
 9 : - 1 -8
 10 : JNM -9 0
{ a[var1] := var1*var1 + 1;
 11 : * 1 1
 12 : con 1 0

 13 : + -11 -12
 14 : []= 3 1
 15 : _ -13 0
 b[var1] := a[var1] + var2;
 16 : =[] 3 1
 17 : + -16 2
 18 : []= 4 1
 19 : _ -17 0
 var1 := var1+1;
 20 : con 1 0
 21 : + 1 -20
 22 : := 1 -21
}
 23 : JUMP -8 0
end
 24 : EXIT 0 0

4/21/11 © UCF EECS 256

While.y #23
*** NUMBER OF ERRORS FOUND: 0 ***
*** NUMBER OF WARNINGS: 0 ***
var1, # of read ref = 7, # of write ref = 4
var2, # of read ref = 2, # of write ref = 0
a[5], # of read ref = 1, # of write ref = 1
b[7], # of read ref = 0, # of write ref = 1

4/21/11 © UCF EECS 257

Bottom-Up Parsing

Days#16, 17

Reductions

•  Top-down focuses on producing an input
string from the start symbol

•  Bottom-up focuses on reducing the string
to the start symbol

•  By definition, reduction is the reverse of
production

4/21/11 © UCF EECS 259

Handle Pruning
•  Bottom-up reverses a rightmost derivation since rightmost rewrites

the leftmost non-terminal last
•  Bottom-up must identify a handle of a sentential form (a string of

terminals and non-terminals derived from the start symbol), where
the handle is the substring that was replaced at the last step in a
rightmost derivation leading to this sentential form.

•  A handle must match the body (rhs) of some production
•  Formally, if S ⇒rm* αAω ⇒rmαβω where A → β then β, in the position

following α, is a handle of αβω

•  We would like handles to be unique, and they are so in

unambiguous grammars
•  Handle pruning is the process of reducing a sentential form to a

deriving sentential form by reversing the last production

4/21/11 © UCF EECS 260

shift/reduce Parsing
•  This involves a stack that holds the left part of a

sentential for with the input holding the right part
•  Initially the stack has a bottom of stack marker

and the input is the entire string to be parsed,
plus an end marker
Stack = $ Input = w$

•  Our goal is to consume the string and end up
with the start symbol on stack
Stack = $S Input = $

4/21/11 © UCF EECS 261

shift/reduce Process

•  The process is one where we can either
– Shift the next input symbol onto stack
– Reduce “handle” on top of stack
– Accept if successfully get to start symbol with

all input consumed
– Error is a syntax error is discovered

4/21/11 © UCF EECS 262

Conflicts in shift/reduce

•  Handle pruning can encounter two types
of conflicts
– reduce/reduce is when there are two

possible reductions and we cannot decide
which to use

– shift/reduce conflict is when we cannot
decided whether to shift or reduce

4/21/11 © UCF EECS 263

Classic shift/reduce
stmt → if expr then stmt

 | if expr then stmt else stmt
 | other

Stack = $… if expr then stmt
Input = else … $
Should we shift else into stack or reduce??
Can prefer shift over reduce, but that may not work

as a general policy
4/21/11 © UCF EECS 264

Classic reduce/reduce
If have two types of expression lists preceded by an id. One is an array
reference and the other is a function call. Both can appear by themselves in C.
Relevant rules are:
stmt → id (p_list)

 | expr
p_list → p_list parm | parm
e_list → e_list parm | expr
expr → id (e_list) | id
parm → id
Stack = $...id(id Input = , id)…$
Is this first expr or a parm?
One solution is that we differentiate procid from id in symbol table and hence
via lexical analysis. Then the third symbol in stack, not part of handle,
determines the reduction. The key is context.

4/21/11 © UCF EECS 265

Our Goal
Find a useful subset of context free grammars that
1. Covers all or at least most unambiguous CF
languages
2. Is easy to recognize
3. Avoids conflicts without severely limiting
expressiveness
4. Is amenable to a fast parsing algorithm

4/21/11 © UCF EECS 266

LR Parsing

Days#18,19

LR Parsing

4/21/11 © UCF EECS 268

 LR(k) parsing.

 left to right right-most k lookahead
 scanning derivation

•  LR is associated with bottom-up; LL with top-down
•  LL(k), k>1, languages ⊃ LL(k-1) languages
•  LR(1) languages ⊃ LL(k) languages, k ≥ 0
•  LR(k), k>1, languages = LR(1) languages
•  However, LR(k), k>1, grammars ⊃ LR(k-1) grammars
•  LR grammars can find errors quickly, but they do not

always have good context to recover

LR Parser Types
•  SLR – simple LR parser
•  LALR –look-head LR parser
•  LR – most general LR parser
•  SLR, LALR and LR are closely related

–  The parsing algorithm is the same
–  Their parsing tables are different

4/21/11 © UCF EECS 269

LR Parsing Algorithm

4/21/11 © UCF EECS 270

Sm
Xm
Sm-1

Xm-1
 .
 .
S1

X1
S0

a1 ... ai ... an $

Action Table
 terminals and $
s
t four different
a actions
t
e
s

Goto Table
 non-terminal
s
t each item is
a a state number
t
e
s

LR Parsing Algorithm

stack
input

output

Configuration of LR Algorithm
•  A configuration of a LR parsing is:

 (So X1 S1 ... Xm Sm, ai ai+1 ... an $)

 Stack Rest of Input

•  Sm and ai decide the parser action by consulting the parsing action
table. (Initial Stack contains just So)

•  A configuration of a LR parsing represents the right sentential form:

 X1 ... Xm ai ai+1 ... an $

4/21/11 © UCF EECS 271

Actions of LR-Parser
1.  shift s -- shifts the next input symbol onto the stack. Shift is performed

only if action[sm,ai] = sk, where k is the new state. In this case
 (So X1 S1 ... Xm Sm, ai ai+1 ... an $)  (So X1 S1 ... Xm Sm ai k, ai+1 ... an $)

2.  reduce A→β (if action[sm,ai] = rn where n is a production number)
–  pop 2|β| items from the stack;
–  then push A and k where k=goto[sm-|β|,A]

(So X1 S1 ... Xm Sm, ai ai+1 ... an $)  (So X1 S1 ... Xm-|β| Sm-|β| A k, ai ... an $)

–  Output is the reducing production reduce A→β or the associated semantic
action or both

3.  Accept – Parsing successfully completed
4.  Error -- Parser detected an error (empty entry in action table)

4/21/11 © UCF EECS 272

Reduce Action
•  pop 2|β| (=j) items from the stack; let us assume that
β=Y1Y2...Yj

•  then push A and s where s=goto[sm-j,A]

 (So X1 S1 ... Xm-j Sm-j Y1 Sm-j+1 ...Yj Sm, ai ai+1 ... an $)
  (So X1 S1 ... Xm-j Sm-j A s, ai ... an $)

•  In fact, Y1Y2...Yj is a handle.

 X1 ... Xm-j A ai ... an $ ⇒ X1 ... Xm-j Y1...Yj ai ai+1 ... an $

4/21/11 © UCF EECS 273

Expression Grammar
Example: Given the grammar:
E  E + T T  T * F F  id
E  T T  F F  (E)

Compute Follow.

 Follow
 E {), +, $ }
 T {) , *, +, $ }
 F {) , * , +, $ }

4/21/11 © UCF EECS 274

SLR Parsing Tables
•  An LR(0) item of a grammar G is a production of G with a dot at

some position of the right side.
•  Ex: A → aBb LR(0) Items: A → .aBb

 A → a.Bb
 A → aB.b
 A → aBb.

•  Sets of LR(0) items will be the states of action and goto tables of the
SLR parser.

•  A collection of sets of LR(0) items (the canonical LR(0) collection)
is the basis for constructing SLR parsers.

•  Augmented Grammar:
 G’ is G with a new production rule S’→S where S’ is the new starting
symbol.

4/21/11 © UCF EECS 275

The Closure Operation
•  If I is a set of LR(0) items for a grammar G, then closure(I) is the

set of LR(0) items constructed from I by the two rules:

1.  Initially, every LR(0) item in I is added to closure(I).
2.  If A → α.Bβ is in closure(I) and B→γ is a production rule

of G; then B→.γ will be in the closure(I). We will apply this
rule until no more new LR(0) items can be added to closure(I).

4/21/11 © UCF EECS 276

Closure Example
E’ → E closure({E’ → .E}) =
E → E+T { E’ → .E kernel item
E → T E → .E+T
T → T*F E → .T
T → F T → .T*F
F → (E) T → .F
F → id F → .(E)

 F → .id }

4/21/11 © UCF EECS 277

Closure Algorithm
function closure (I)
begin

 J := I;
 repeat
 for each item A → α.Bβ in J and each production
 B→γ of G such that B→.γ is not in J do
 add B→.γ to J;
 until no more items can be added to J;
 return J;

end

4/21/11 © UCF EECS 278

Goto Function
If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then
goto(I,X) is defined as follows:

If A → α.Xβ in I then every item in closure({A → αX.β}) will be in goto(I,X).

If I is the set of items that are valid for some viable prefix γ, then goto(I,X) is the set

of items that are valid for the viable prefix γX.

Example:
 I ={ E’ → .E, E → .E+T, E → .T,
 T → .T*F, T → .F, F → .(E), F → .id }
 goto(I,E) = { E’ → E., E → E.+T }
 goto(I,T) = { E → T., T → T.*F }
 goto(I,F) = {T → F. }
 goto(I,() = { F → (.E), E → .E+T, E → .T, T → .T*F, T → .F,
 F → .(E), F → .id }
 goto(I,id) = { F → id. }

4/21/11 © UCF EECS 279

Canonical LR(0) Collection
•  To create the SLR parsing tables for a grammar G, we

will create the canonical LR(0) collection of the grammar
G’.

•  Algorithm:
C is { closure({S’→.S}) }

repeat the followings until no more set of LR(0) items can be added to C.

for each I in C and each grammar symbol X

if goto(I,X) is not empty and not in C

add goto(I,X) to C

•  The goto function is a deterministic FSA (finite state
automaton), DFA, on the sets in C.

4/21/11 © UCF EECS 280

Canonical LR(0) Example
I0: E’ → .E I1: E’ → E. I6: E → E+.T I9: E → E+T.
 E → .E+T E → E.+T T → .T*F T → T.*F
 E → .T T → .F
 T → .T*F I2: E → T. F → .(E) I10: T → T*F.
 T → .F T → T.*F F → .id
 F → .(E)
 F → .id I3: T → F. I7: T → T*.F I11: F → (E).

 F → .(E)
 I4: F → (.E) F → .id
 E → .E+T
 E → .T I8: F → (E.)

 T → .T*F E → E.+T
 T → .F
 F → .(E)
 F → .id

 I5: F → id.
4/21/11 © UCF EECS 281

DFA of Goto Function

4/21/11 © UCF EECS 282

I0 I1

I2

I3

I4

I5

I6

I7

I8
to I2
to I3
to I4

I9
to I3
to I4
to I5

I10
to I4
to I5

I11
to I6

to I7

id

(
F

*

E

E

+
T

T

T

)

F

F
F

(

id id

(

*

(
id

+

Compute SLR Parsing Table
1.  Construct the canonical collection of sets of LR(0) items for G’.

 C←{I0,...,In}
2.  Create the parsing action table as follows

•  If a is a terminal, A→α.aβ in Ii and goto(Ii,a)=Ij then action[i,a] is shift
j.

•  If A→α. is in Ii , then action[i,a] is reduce A→α for all a in
FOLLOW(A) where A≠S’.

•  If S’→S. is in Ii , then action[i,$] is accept.
•  If any conflicting actions generated by these rules, the grammar is not

SLR(1).
3.  Create the parsing goto table

•  for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j
4.  All entries not defined by (2) and (3) are errors.
5.  Initial state of the parser contains S’→.S

4/21/11 © UCF EECS 283

(SLR) Parsing Tables

4/21/11 © UCF EECS 284

state id + * () $ E T F
0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Action Table Goto Table
0) E’ → E
1) E → E+T
2) E → T
3) T → T*F
4) T → F
5) F → (E)
6) F → id

Actions of SLR-Parser
stack input action output
0 id*id+id$ shift 5
0id5 *id+id$ reduce by F→id F→id

0F3 *id+id$ reduce by T→F T→F

0T2 *id+id$ shift 7
0T2*7 id+id$ shift 5
0T2*7id5 +id$ reduce by F→id F→id
0T2*7F10 +id$ reduce by T→T*F T→T*F
0T2 +id$ reduce by E→T E→T
0E1 +id$ shift 6
0E1+6 id$ shift 5
0E1+6id5 $ reduce by F→id F→id
0E1+6F3 $ reduce by T→F T→F
0E1+6T9 $ reduce by E→E+T E→E+T
0E1 $ accept
4/21/11 © UCF EECS 285

SLR(1) Grammar
•  An LR parser using SLR(1) parsing tables for a

grammar G is called the SLR(1) parser for G.

•  If a grammar G has an SLR(1) parsing table, it is
called an SLR(1) grammar.

•  Every SLR grammar is unambiguous, but every
unambiguous grammar is not an SLR grammar.

4/21/11 © UCF EECS 286

Conflicts
•  If a state does not know whether it will make a shift

operation or reduction for a terminal, we say that there is
a shift/reduce conflict.

•  If a state does not know whether it will make a reduction
operation using the production rule i or j for a terminal,
we say that there is a reduce/reduce conflict.

•  If the SLR parsing table of a grammar G has a conflict,
we say that that grammar is not SLR grammar.

4/21/11 © UCF EECS 287

Conflict Example 1

4/21/11 © UCF EECS 288

S → L=R I0: S’ → .S I1: S’ → S. I6: S → L=.R I9: S → L=R.
S → R S → .L=R R → .L
L→ *R S → .R I2: S → L.=R L→ .*R
L → id L → .*R R → L. L → .id
R → L L → .id

 R → .L I3: S → R.
 I4: L → *.R I7: L → *R.
 Problem R → .L
 FOLLOW(R)={=,$} L → .*R I8: R → L.
 = shift 6 L → .id
 reduce by
 shift/reduce conflict I5: L → id.

Action[2,=] = shift 6
Action[2,=] = reduce by R → L
[S ⇒L=R ⇒*R=R] so follow(R) contains =

Conflict Example2

4/21/11 © UCF EECS 289

S → AaAb I0: S’ → .S
S → BbBa S → .AaAb
A → ε S → .BbBa
B → ε A → .

 B → .

 Problem
 FOLLOW(A)={a,b}
 FOLLOW(B)={a,b}
 a reduce by A → ε b reduce by A → ε
 reduce by B → ε reduce by B → ε
 reduce/reduce conflict reduce/reduce conflict

SLR Weakness
•  In SLR method, state i makes a reduction by

A→α when the current token is a:
–  if A→α. is in Ii and a is in FOLLOW(A)

•  In some situations, βA cannot be followed
by the terminal a in a right-sentential form
when βα and the state i are on the stack top.
This means that making reduction in this
case is not correct.

LR(1) Item
•  To avoid some invalid reductions, the states need to carry more

information.
•  Extra information is put into a state by including a terminal symbol

as a second component in an item.

•  A LR(1) item is:

 A → α.β,a where a is the look-head of the LR(1) item
 (a is a terminal or end-marker.)

•  Such an object is called an LR(1) item.
–  1 refers to the length of the second component
–  The lookahead has no effect on an item of the form [A → α.β,a], where β is not

∈.
–  But an item of the form [A → α.,a] calls for a reduction by A → α only if the next

input symbol is a.
–  The set of such a’s will be a subset of FOLLOW(A), and could be proper.

LR(1) Item (cont.)
•  When β (in the LR(1) item A → α.β,a) is not empty, the look-head does

not have any affect.

•  When β is empty (A → α.,a), we do the reduction by A→α only if the next
input symbol is a (not for any terminal in FOLLOW(A) as with SLR).

•  A state will contain A → α.,a1 where {a1,...,an} ⊆ FOLLOW(A)

 ...

 A → α.,an

Canonical Collection
•  The construction of the canonical collection of the sets

of LR(1) items are similar to the construction of the
canonical collection of the sets of LR(0) items, except
that closure and goto operations work a little bit
different.

closure(I) is: (where I is a set of LR(1) items)
–  every LR(1) item in I is in closure(I)

–  if A→α.Bβ,a in closure(I) and B→γ is a rule of G; then B→.γ,b will be
in the closure(I) for each terminal b in FIRST(βa) .

goto operation
•  If I is a set of LR(1) items and X is a grammar

symbol (terminal or non-terminal), then goto(I,X)
is defined as follows:
–  If A → α.Xβ,a in I

then every item in closure({A → αX.β,a}) will
be in goto(I,X).

Canonical LR(1) Collection

•  Algorithm:
C is { closure({S’→.S,$}) }
repeat the followings until no more set of LR(1) items can be

added to C.
for each I in C and each grammar symbol X

if goto(I,X) is not empty and not in C
add goto(I,X) to C

•  goto function is a DFA on the sets in C.

Short Notation
•  A set of LR(1) items containing the

following items
 A → α.β,a1
 ...
 A → α.β,an

can be written as

 A → α.β,a1/a2/.../an

Canonical LR(1) Collection
S → AaAb I0: S’ → .S ,$ I1: S’ → S. ,$
S → BbBa S → .AaAb ,$
A → ε S → .BbBa ,$ I2: S → A.aAb ,$
B → ε A → . ,a

 B → . ,b I3: S → B.bBa ,$

I4: S → Aa.Ab ,$ I6: S → AaA.b ,$ I8: S → AaAb. ,$
 A → . ,b

I5: S → Bb.Ba ,$ I7: S → BbB.a ,$ I9: S → BbBa. ,$
 B → . ,a

S
A

B
a

b

A

B

b

a

to I4

to I5

An Example

I0: closure({(S’ → • S, $)}) =
 (S’ → • S, $)
 (S → • C C, $)
 (C → • c C, c/d)
 (C → • d, c/d)

I1: goto(I0, S) = (S’ → S • , $)

I2: goto(I0, C) =
 (S → C • C, $)
 (C → • c C, $)
 (C → • d, $)

I3: goto(I0, c) =
 (C → c • C, c/d)
 (C → • c C, c/d)
 (C → • d, c/d)

I4: goto(I0, d) =
 (C → d •, c/d)

I5: goto(I2, C) =
 (S → C C •, $)

1. S’ → S
2. S → C C
3. C → c C
4. C → d

An Example
I6: goto(I3, c) =
 (C → c • C, $)
 (C → • c C, $)
 (C → • d, $)

I7: goto(I3, d) =
 (C → d •, $)

I8: goto(I4, C) =
 (C → c C •, c/d)

: goto(I4, c) = I4

: goto(I4, d) = I5

I9: goto(I7, c) =
 (C → c C •, $)

: goto(I7, c) = I7

: goto(I7, d) = I8

C → d •, c/d

C

(S’ → S • , $

S → C • C, $
C → • c C, $
C → • d, $

C → c • C, c/d
C → • c C, c/d
C → • d, c/d

S → C C •, $

C → c • C, $
C → • c C, $
C → • d, $

C → d •, $

C → c C •, c/d

S’ → • S, $
S → • C C, $

C → • c C, c/d
C → • d, c/d

C → cC •, $

S

C

c

d

C

c

d
c

c

C

I0

I2

I3

I4

I5

I1

I6

I7

I8

I9

d

d

An Example
I0 I1

 I2

 I6 I9

 I7

S

C
C

C

C
c

c

c

d

d

d d

I8

I4

I3

I5

An Example

 c d $ S C
 0 s3 s4 1 2
 1 a
 2 s6 s7 5
 3 s3 s4 8
 4 r3 r3
 5 r1
 6 s6 s7 9
 7 r3
 8 r2 r2
 9 r2

The Core of LR(1) Items
•  The core of a set of LR(1) Items is the set

of their first components (i.e., LR(0)
items)

•  The core of the set of LR(1) items
 { (C → c • C, c/d),

 (C → • c C, c/d),
 (C → • d, c/d) }

 is { C → c • C,
 C → • c C,

 C → • d }

Construction of LR(1) Parsing
Tables

1.  Construct the canonical collection of sets of LR(1) items
for G’. C←{I0,...,In}

2.  Create the parsing action table as follows
•  If a is a terminal, A→α.aβ,b in Ii and goto(Ii,a)=Ij then action[i,a] is

shift j.
•  If A→α.,a is in Ii , then action[i,a] is reduce A→α where A≠S’.
•  If S’→S.,$ is in Ii , then action[i,$] is accept.
•  If any conflicting actions are generated by these rules, the grammar is not LR(1).

3.  Create the parsing goto table
•  for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j

4.  All entries not defined by (2) and (3) are errors.

5.  Initial state of the parser contains S’→.S,$

LALR Parsing Tables
1.  LALR stands for Lookahead LR.

2.  LALR parsers are often used in practice because LALR parsing
tables are smaller than LR(1) parsing tables.

3.  The number of states in SLR and LALR parsing tables for a
grammar G are equal.

4.  But LALR parsers recognize more grammars than SLR parsers.

5.  Bison creates a LALR parser for the given grammar.

6.  A state of an LALR parser will again be a set of LR(1) items.

Creating LALR Parsing Tables

Canonical LR(1) Parser  LALR Parser
 shrink # of states

•  This shrink process may introduce a reduce/reduce
conflict in the resulting LALR parser (so the grammar is
NOT LALR)

•  But, this shrink process does not produce a shift/reduce
conflict.

The Core of Set of LR(1) Items
•  The core of a set of LR(1) items is the set of its first component.

Ex: S → L.=R,$  S → L.=R Core
 R → L.,$ R → L.

•  We will find the states (sets of LR(1) items) in a canonical LR(1) parser with
same cores. Then we will merge them as a single state.

 I1:L → id.,= A new state: I12: L → id.,=

  L → id.,$

 I2:L → id.,$ have same core, merge them

•  We will do this for all states of a canonical LR(1) parser to get the states of
the LALR parser.

•  In fact, the number of the states of the LALR parser for a grammar will be
equal to the number of states of the SLR parser for that grammar.

Creation of LALR Parsing
Tables

1.  Create the canonical LR(1) collection of the sets of LR(1) items for
the given grammar.

2.  For each core present; find all sets having that same core; replace
those sets having same cores with a single set which is their union.

 C={I0,...,In}  C’={J1,...,Jm} where m ≤ n
3.  Create the parsing tables (action and goto tables) same as the

construction of the parsing tables of LR(1) parser.
1.  Note that: If J=I1 ∪ ... ∪ Ik since I1,...,Ik have same cores

  cores of goto(I1,X),...,goto(I2,X) must be same.
1.  So, goto(J,X)=K where K is the union of all sets of items having same

cores as goto(I1,X).

4.  If no conflict is introduced, the grammar is LALR(1) grammar.
(We may only introduce reduce/reduce conflicts; we cannot
introduce a shift/reduce conflict)

C → d •, c/d

C

(S’ → S • , $

S → C • C, $
C → • c C, $
C → • d, $

C → c • C, c/d
C → • c C, c/d
C → • d, c/d

S → C C •, $

C → c • C, $
C → • c C, $
C → • d, $

C → d •, $

C → c C •, c/d

S’ → • S, $
S → • C C, $

C → • c C, c/d
C → • d, c/d

C → cC •, $

S

C

c

d

C

c

d

c

c

C

I0

I2

I3

I4

I5

I1

I6

I7

I8

I9

d

d

C → d •, c/d

C

(S’ → S • , $

S → C • C, $
C → • c C, $
C → • d, $

C → c • C, c/d
C → • c C, c/d
C → • d, c/d

S → C C •, $

C → c • C, $
C → • c C, $
C → • d, $

C → d •, $

C → c C •, c/d/$

S’ → • S, $
S → • C C, $

C → • c C, c/d
C → • d, c/d

S

C

c

d

C

c

d

c

c

C

I0

I2

I3

I4

I5

I1

I6

I7

I89

d

d

C

(S’ → S • , $

S → C • C, $
C → • c C, $
C → • d, $

C → c • C, c/d
C → • c C, c/d
C → • d, c/d

S → C C •, $

C → c • C, $
C → • c C, $
C → • d, $

C → d •, c/d/$

C → c C •, c/d/$

S’ → • S, $
S → • C C, $

C → • c C, c/d
C → • d, c/d

S

C

c

C

c

d

c

c

C

I0

I2

I3

I5

I1

I6

I47

I89

d

d

d

C

(S’ → S • , $

S → C • C, $
C → • c C, $
C → • d, $

S → C C •, $

C → c • C, c/d/$
C → • c C,c/d/$
C → • d,c/d/$

C → d •, c/d/$

C → c C •, c/d/$

S’ → • S, $
S → • C C, $

C → • c C, c/d
C → • d, c/d

S

C

d

C

c

d

c

I0

I2

I5

I1

I36

I47

I89

d
c

LALR Parse Table

 c d $ S C
 0 s36 s47 1 2
 1 acc
 2 s36 s47 5
 36 s36 s47 89
 47 r3 r3 r3
 5 r1
 89 r2 r2 r2

Shift/Reduce Conflict
•  We say that we cannot introduce a shift/reduce conflict during the

shrink process for the creation of the states of a LALR parser.
•  Assume that we can introduce a shift/reduce conflict. In this case, a

state of LALR parser must have:

 A → α.,a and B → β.aγ,b
•  This means that a state of the canonical LR(1) parser must have:

 A → α.,a and B → β.aγ,c
 But, this state has also a shift/reduce conflict. i.e. The original
canonical LR(1) parser has a conflict.
 (Reason for this, the shift operation does not depend on
lookaheads)

Reduce/Reduce Conflict
•  But, we may introduce a reduce/reduce conflict during the shrink

process for the creation of the states of a LALR parser.

 I1 : A → α.,a I2: A → α.,b

 B → β.,b B → β.,c

 ⇓

 I12: A → α.,a/b  reduce/reduce conflict

 B → β.,b/c

Canonical LALR(1)– Ex2
S’ → S
1) S → L=R
2) S → R
3) L→ *R
4) L → id
5) R → L

I0:S’ → .S,$
 S → .L=R,$
 S → .R,$
 L → .*R,$/=
 L → .id,$/=
 R → .L,$

I1:S’ → S.,$

I2:S → L.=R,$
 R → L.,$

I3:S → R.,$

I411:L → *.R,$/=
 R → .L,$/=
 L→ .*R,$/=
 L → .id,$/=

I512:L → id.,$/=

I6:S → L=.R,$
 R → .L,$
 L → .*R,$
 L → .id,$

I713:L → *R.,$/=

I810: R → L.,$/=

I9:S → L=R.,$

to I6

to I713

to I810

to I411

to I512

to I810

to I411

to I512

to I9

S

L

L
L

R

R

id

id
id

R

*

*

*

Same Cores
 I4 and I11

 I5 and I12

 I7 and I13

 I8 and I10

LALR(1) Parsing– (for Ex2)

id * = $ S L R
0 s5 s4 1 2 3
1 acc
2 s6 r5
3 r2
4 s5 s4 8 7
5 r4 r4
6 s12 s11 10 9
7 r3 r3
8 r5 r5
9 r1

no shift/reduce or
no reduce/reduce conflict

 ⇓
so, it is a LALR(1) grammar

Using Ambiguous Grammars
•  All grammars used in the construction of LR-parsing tables must be un-

ambiguous.
•  Can we create LR-parsing tables for ambiguous grammars ?

–  Yes, but they will have conflicts.
–  We can resolve these conflicts in favor of one of them to disambiguate the

grammar.
–  At the end, we will have again an unambiguous grammar.

•  Why use an ambiguous grammar?
–  Some of the ambiguous grammars are more natural, and a corresponding

unambiguous grammar can be very complex.
–  Usage of an ambiguous grammar may eliminate unnecessary reductions.

•  Ex.
 E → E+T | T

E → E+E | E*E | (E) | id  T → T*F | F
 F → (E) | id

Sets for Ambiguous Grammar
I0: E’ → .E
 E → .E

+E
 E → .E*E
 E → .(E)
 E → .id

I1: E’ → E.
 E → E .+E
 E → E .*E

I2: E → (.E)
 E → .E+E
 E → .E*E
 E → .(E)
 E → .id

I3: E →
id.

I4: E → E +.E
 E → .E+E
 E → .E*E
 E → .(E)
 E → .id

I5: E → E *.E
 E → .E+E
 E → .E*E
 E → .(E)
 E → .id

I6: E → (E.)
 E → E.+E
 E → E.*E

I7: E → E+E.
 E → E.+E
 E → E.*E

I8: E → E*E.
 E → E.+E
 E → E.*E

I9: E →
(E).

I5

)

E

E

E

E

*

+

+

+

+

*

*

*

(

(

(
(

id

id

id
id

I4

I2

I2

I3

I3

I4

I4

I5

I5

SLR Tables for Amb Grammar
FOLLOW(E) = { $,+,*,) }
State I7 has shift/reduce conflicts for symbols + and *.

I0 I1 I7 I4
E + E

when current token is +
 shift  + is right-associative
 reduce  + is left-associative

when current token is *
 shift  * has higher precedence than +
 reduce  + has higher precedence than *

SLR Tables for Amb Grammar
FOLLOW(E) = { $,+,*,) }

State I8 has shift/reduce conflicts for symbols + and *.

I0 I1 I8 I5
E * E

when current token is *
 shift  * is right-associative
 reduce  * is left-associative

when current token is +
 shift  + has higher precedence than *
 reduce  * has higher precedence than +

id + * () $ E
0 s3 s2 1
1 s4 s5 acc
2 s3 s2 6
3 r4 r4 r4 r4
4 s3 s2 7
5 s3 s2 8
6 s4 s5 s9
7 r1 s5 r1 r1
8 r2 r2 r2 r2
9 r3 r3 r3 r3

Action Goto
SLR Tables for Amb Grammar

Error Recovery in LR Parsing
•  An LR parser will detect an error when it consults the parsing action

table and finds an error entry. All empty entries in the action table
are error entries.

•  Errors are never detected by consulting the goto table.
•  An LR parser will announce error as soon as there is no valid

continuation for the scanned portion of the input.
•  A canonical LR parser (LR(1) parser) will never make even a single

reduction before announcing an error.
•  The SLR and LALR parsers may make several reductions before

announcing an error.
•  But, all LR parsers (LR(1), LALR and SLR parsers) will never shift

an erroneous input symbol onto the stack.

Panic Mode Error Recovery
•  Scan down the stack until a state s with a goto on a

particular nonterminal A is found. (Get rid of everything
from the stack before this state s).

•  Discard zero or more input symbols until a symbol a is
found that can legitimately follow A.
–  The symbol a is simply in FOLLOW(A), but this may not work for

all situations.

•  The parser stacks the nonterminal A and the state
goto[s,A], and it resumes normal parsing.

•  This nonterminal A is normally a basic programming
block (there can be more than one choice for A).
–  stmt, expr, block, …

Phrase-Level Error Recovery
•  Each empty entry in the action table is marked

with a specific error routine.
•  An error routine reflects the error that the user

most likely will make in that case.
•  An error routine inserts the symbols into the

stack or the input (or it deletes the symbols from
the stack and the input, or it can do both
insertion and deletion).
–  missing operand
–  unbalanced right parenthesis

Assign#4 Help

Days#20

A Little Assign#4 Help

4/21/11 © UCF EECS 327

T +

T
E

- T

E → E + T | E – T | T

E with No Error Recovery
int E() {

 int op1, op2; symbol op;
 op1 := T();
 while sy in [plus, minus] do {
 op := sy;
 op2 := T();
 op1 := emit(op, op1, op2);
 }
 return op1;

}

4/21/11 © UCF EECS 328

Syntax Directed Translation

Days#21,22

Syntax Directed Defn. (SDD)

•  A CFG with attributes and rules
•  Example:

– Production Semantic Rule
– E → E1 + T E.code = E1.code || T.code || ‘+’

•  In above || is concatenation of strings
•  The example shows synthesized attributes

– ones that flow up the parse tree

4/21/11 © UCF EECS 330

SDD in Bison

•  Bison/Yacc has built-in notion of attributes
referred to as $$, $1, etc.

•  In Bison, you can declare type YYSTYPE
to override default of int used for yylval

•  Often one uses a union and the type can
be referenced by union type tag $<tag>$
or $<tag>1 etc.

•  If you do not set $$ then default is $$ = $1

4/21/11 © UCF EECS 331

Attributes

•  Attributes are synthesized when they are
defined at a node labeled A using
attributes of the node and its children.

•  Attributes are inherited when they are
defined at node labeled A using attributes
of the node, its parent and its children.

•  Terminals are only allowed to have
synthesized attributes.

4/21/11 © UCF EECS 332

S- and L-sttributed
•  An SDD with only synthesized attributes is called S-

attributed. S-attributed are often used for bottom-up
where they can be evaluated on the fly.

•  An SDD with mixed synthesized and inherited attributes
is called L-attributed if it can be evaluated left-to-right
and depth first. L-attributed are often used for top-down.

•  Under certain circumstances (the right kind of
dependencies) both types can be evaluated in one pass.

4/21/11 © UCF EECS 333

S-attributed

<E> → <E1> + <T>
<E> → <E1> – <T>
<E> → <T>
<T> → <T1> * <F>
<T> → <T1> / <F>
<T> → <F>
<F> → – <F1>
<F> → (<E>)
<F> → id
<F> → unsigned_integer

E.val := E1.val + T.val
E.val := E1.val – T.val
E.val := T.val
T.val := T1.val * F.val
T.val := T1.val / F.val
T.val := F.val
F.val := – F1.val
F.val := E.val
F.val := id.entry
F.val := unsigned_integer.val

4/21/11 © UCF EECS 334

Annotated Parse Tree
•  Adds attributes to nodes
•  Also called attributed or decorated
•  S-attributed evaluates up the tree (typically post-

order traversal but any bottom-up works)
•  L-attributed evaluates pre-order and left to right.

The pre-order allows attributes to flow from
parent; left-to-right allows younger children to
pass values along.

4/21/11 © UCF EECS 335

S-attributed Evaluation

•  (1+3)*2

4/21/11 © UCF EECS 336

L-attributed

4/21/11 © UCF EECS 337

<E> → <T> <TT>
<TT> → + <T> <TT1>
<TT> → – <T> <TT1>
<TT> → ε

<T> → <F> <FT>
<FT> → * <F> <FT1>
<FT> → / <F> <FT1>
<FT> → ε

<F> → – <F1>
<F> → (<E>)
<F> → id
<F> → unsigned_integer

TT.inh := T.val; E.val := TT.syn
TT1.inh := TT.inh + T.val; TT.syn := TT1.syn
TT1.inh := TT.inh – T.val; TT.syn := TT1.syn
TT.syn := TT.inh
FT.inh := T.val; E.val := FT.syn
FT1.inh := FT.inh × F.val; FT.syn := FT1.syn
FT1.inh := FT.inh / F.val; FT.syn := FT1.syn
FT.syn := FT.inh
F.val := – F1.val
F.val := E.val
F.val := id.entry
F.val := unsigned_integer.val

Note: inherited attribute of a node can be assigned to
synthesized attribute but not vice versa.

L-attributed Evaluation

•  (1+3)*2 (yellow is syn or val; blue is inh)

4/21/11 © UCF EECS 338

Declaration Statements

4/21/11 © UCF EECS 339

<D> → <T> <L>
<T> → int
<T> → float
<L> → <L1> ‘,’ id
<L> → id

L.inh := T.type
T.type := integer
T.type := float
L1.inh := L.inh; addType(id.entry,L.inh)
addType(id.entry,L.inh)

Evaluation Order

•  Any order that maintains dependencies is
acceptable in attribute evaluation

•  Typical approach is topological sort of
dependency graph

•  Problem: If actions have side effects then
one must be careful to not change
semantics with varying orders of
evaluation

4/21/11 © UCF EECS 340

S-synthesizing a Syntax Tree

4/21/11 © UCF EECS 341

<E> → <E1> + <T>
<E> → <E1> – <T>
<E> → <T>
<T> → <T1> * <F>
<T> → <T1> / <F>
<T> → <F>
<F> → – <F1>
<F> → (<E>)
<F> → id
<F> → num

E.node := new Node(‘+’, E1.node, E.node)
E.node := new Node(‘–’, E1.node, E.node)
E.node := T.node
T.node := new Node(‘*’, T1.node, F.node)
T.node := new Node(‘/’, T1.node, F.node)
T.node := F.node
F.node := new UnaryNode(minus, F1.node)
F.Node := E.node
F.node := new LeafNode(ident, id.entry)
F.node := new LeafNode(number, num.val)

L-synthesizing a Syntax tree

4/21/11 © UCF EECS 342

<E> → <T> <TT>
<TT> → + <T> <TT1>
<TT> → – <T> <TT1>
<TT> → ε

<T> → <F> <FT>
<FT> → * <F> <FT1>
<FT> → / <F> <FT1>
<FT> → ε

<F> → – <F1>
<F> → (<E>)
<F> → id
<F> → num

E.node := TT.syn; TT.inh := T.node
TT1.inh := new Node(‘+’,TT.inh,T.node; TT.syn := TT1.syn
TT1.inh := new Node(‘–’,TT.inh,T.node; TT.syn := TT1.syn
TT.syn := TT.inh
T.node := FT.syn; FT.inh := F.node
FT1.inh := new Node(‘×’,FT.inh,F.node; FT.syn := FT1.syn
TT1.inh := new Node(‘/’,TT.inh,F.node; FT.syn := FT1.syn
FT.syn := FT.inh
F.val := – F1.val
F.node := E.node
F.node := new LeafNode(ident, id.entry)
F.node := new LeafNode(number, num.val)

Flattening of the Syntax Tree

•  Triples and quads as we defined them
area form of flattening

•  Triples are compact but hard to move
•  Quads are wasteful in many cases, but

easy to move, e.g., from inside a loop to
precede it when semantics are still correct

4/21/11 © UCF EECS 343

Indirect Triples

•  Compromise between triples and quads
•  Generate triples but have a separate list

that specifies which triples actually are at a
particular node position

4/21/11 © UCF EECS 344

Dataflow Analysis

Days#25,26,27

Dataflow Analysis
•  Use of data flow within program to determine

producer/consumer relationship between points
in program.

•  Information sought at each point in program
–  Where were values produced that might be consumed

here?
–  Where are values consumed that are produced here?
–  What are constraints on values available here?

Scalar Analysis

•  Basic type is Scalar Analysis
– Concentrates on simple variable names
–  Indexed array ref. A[I] is treated as a

reference to all of object A
– This basic coverage ignores aliasing (multiple

names for same object)

4/21/11 © UCF EECS 347

Focus of Analysis

•  Basic Block
– One in, one out sequence of code

•  Local Analysis – done on single basic
blocks

•  Intraprocedural Analysis – done within
procedures

•  Interprocedural Analysis – done across
procedures

4/21/11 © UCF EECS 348

Control vs Data Flow
•  Control Flow

–  intra creates flow graph with procedure entry as initial node
–  inter creates a call graph with main body as initial node

•  Data Flow
–  determines accessibility of definitions and uses to each other
–  UD chaining

•  given a variable use, what definitions reach this use

–  DU chaining
•  given a variable definition, what uses are made of it

4/21/11 © UCF EECS 349

Program representation
•  Control Flow Graph

– Nodes N – statements of program (maybe of
intermediate code; maybe of source code)

– Edges E – flow of control
•  pred(n) = set of all predecessors of n
•  succ(n) = set of all successors of n

– Start node n0

– Set of final nodes Nfinal

Control Flow Graph
•  Program P consists of procedures, one of which

is denoted p.
•  We assume one entry / one exit procedures.
•  A control flow graph G = (N, E, s) refers to a

directed graph (N, E) and an initial node s in N,
where there is a path from s to every node of G.

•  Nodes can be statements or basic blocks.
Commonly, they are the latter.

4/21/11 © UCF EECS 351

Basic Blocks Example
Program SquareRoot;
var L, N, K, M : integer; C : boolean;
begin

 (* start of block B1 *)
 read(L);
 N ← 0;
 K ← 0;
 M ← 1;
 (* end of block B1 *)
 loop
 (* start of block B2 *)
 K ← K + M;
 C ← K > L;
 if C then break;
 (* end of block B2 *)
 (* start of block B3 *)
 N ← N + 1;
 M ← M + 2
 (* end of block B3 *)
 end loop;
 (* start of block B4 *)
 write(N)
 (* end of block B4 *)

end. (* SquareRoot *)

4/21/11 © UCF EECS 352

Program Points

•  One program point before each node
•  One program point after each node
•  Join point – point with multiple

predecessors
•  Split point – point with multiple successors

Basic Idea

•  Information about program represented
using values from algebraic structure
called lattice

•  Analysis produces lattice value for each
program point

•  Two flavors of analysis
– Forward dataflow analysis
– Backward dataflow analysis

Forward Dataflow Analysis
•  Analysis propagates values forward through control flow

graph with flow of control
–  Each node has a transfer function f

•  Input – value at program point before node
•  Output – new value at program point after node

–  Values flow from program points after predecessor
nodes to program points before successor nodes

–  At join points, values are combined using a merge
function

•  Canonical Example: Reaching Definitions

•  Analysis propagates values backward through control flow
graph against flow of control
–  Each node has a transfer function f

•  Input – value at program point after node
•  Output – new value at program point before node

–  Values flow from program points before successor
nodes to program points after predecessor nodes

–  At split points, values are combined using a merge
function

–  Canonical Example: Live Variables

Backward Dataflow Analysis

Partial Orders

•  Set P
•  Partial order ≤ such that ∀x,y,z∈P

– x ≤ x (reflexive)
– x ≤ y and y ≤ x implies x = y (asymmetric)
– x ≤ y and y ≤ z implies x ≤ z (transitive)

Upper Bounds

•  If S ⊆ P then
– x∈P is an upper bound of S if ∀y∈S. y ≤ x
– x∈P is the least upper bound of S if

•  x is an upper bound of S, and
•  x ≤ y for all upper bounds y of S

– ∨ - join, least upper bound
•  ∨ S is the least upper bound of S
•  x ∨ y is the least upper bound of {x,y}

•  If S ⊆ P then
– x∈P is a lower bound of S if ∀y∈S. x ≤ y
– x∈P is the greatest lower bound of S if

•  x is a lower bound of S, and
•  y ≤ x for all lower bounds y of S

– ∧ - meet, greatest lower bound
•  ∧ S is the greatest lower bound of S
•  x ∧ y is the greatest lower bound of {x,y}

Lower Bounds

Covering

•  x< y if x ≤ y and x≠y
•  x is covered by y (y covers x) if

– x < y, and
– x ≤ z < y implies x = z

•  Conceptually, y covers x if x< y and there
are no elements between x and y

Example
•  P = { 000, 001, 010, 011, 100, 101, 110, 111}

(standard boolean lattice, also called hypercube)
•  x ≤ y if (x bitwise and y) = x

111

011
101

110

010
001

000

100

Hasse Diagram
•  If y covers x

•  Line from y to x
•  y above x in

diagram

Lattices
•  If x ∧ y and x ∨ y exist for all x,y∈P,

 then P is a lattice.
•  If ∧S and ∨S exist for all S ⊆ P,

 then P is a complete lattice.
•  All finite lattices are complete
•  Example of a lattice that is not complete

–  Integers I
–  For any x, y∈I, x ∨ y = max(x,y), x ∧ y = min(x,y)
–  But ∨ I and ∧ I do not exist
–  I ∪ {+∞,-∞ } is a complete lattice

Top and Bottom

•  Greatest element of P (if it exists) is top
•  Least element of P (if it exists) is bottom

(⊥)

Extracting Loops
•  Let G = (N,E,s)

–  A node s’ ∈ N is the entry point for loop in G iff there is an s” ∈ N such
that (s”, s’) ∈ E and s’ dominates s”. (s’ dominates s” if s’ is on every
path from s (start node) to s”)

–  Let s’ be an entry point of a loop. The max loop with entry s’ is G’ =
(N’,E’,s’), where
N’ = {s” | ∃ a path from s” to s’ containing only nodes “dominated” by s’}.
E’=E ∩ (N’×N’)

•  To do data flow analysis we often wish to obey
dominances, doing loop entries before their bodies, if
conditions before their choices, etc.

4/21/11 © UCF EECS 364

Numbering Nodes

•  A depth first traversal can be used to
number nodes so that

•  s’ < s” (s’ dominates s”) implies #(s’) <
#(s”).

•  Note that it is not true that #(s’) < #(s”)
implies s’ < s”.

4/21/11 © UCF EECS 365

DFT Algorithm
DFT(G : flowgraph) (* G = (N,E,s) *)

 E’ ← { };
 i ← | N |;
 for every t in N do t.mark ← false;
 search(s)

Search(t : node)
 t.mark ← true;
 while t.unmarked_successors ≠ { } do begin
 t’ ← select(t.unmarked_successor);
 E’ ← E’ + { (t,t’) };
 Search(t’)
 end; (* while *)
 rPostOrder[t] ← i;
 i ← i – 1

4/21/11 © UCF EECS 366

Properties of DFT

•  This produces one of the natural orders.
Visiting nodes based on these numbers
speeds up data flow analysis.

•  Arcs are forward (unvisited node); back
(visited but not numbered); cross
(numbered).

•  Back arcs denote loops.

4/21/11 © UCF EECS 367

Categorizing Arcs in DFT

4/21/11 © UCF EECS 368

An Aside: Managing Heap

•  DFT can be used in managed language
•  Start with handles known to be accessible

(use some root that gets all of these)
•  Follow handles (pointers) to see what is

accessible

4/21/11 © UCF EECS 369

Putting Pieces Together

•  Forward Dataflow Analysis Framework
•  Simulates execution of program forward

with flow of control

Forward Dataflow Analysis
•  Simulates execution of program forward with flow of

control
•  For each node n, have

–  inn – value at program point before n
–  outn – value at program point after n
–  fn – transfer function for n (given inn, computes outn)

•  Require that solution satisfy
–  ∀n. outn = fn(inn)
–  ∀n ≠ n0. inn = ∨ { outm | m in pred(n) }
–  inn0 = I
–  Where I summarizes information at start of program

Dataflow Equations

•  Compiler processes program to obtain a
set of dataflow equations
 outn := fn(inn)

 inn := ∨ { outm | m in pred(n) }
•  Conceptually separates analysis problem

from program

May versus Must Analysis
•  We now have a recurrence relation and hence seek a fixed point.
•  We want the best but correct fixed point.

•  MAY – determine if a property may be possible. This is attacked by
assuming no elements satisfy, then union in all those that might
have the property. By starting with the empty set, we get the Least
Upper Bound (LUB). This is conservative.

•  MUST – determine if a property must be true. This is attacked by
assuming all elements satisfy, then intersecting all those that must
have the property. By starting with everything, we get the Greatest
Lower Bound (GLB). This is conservative.

4/21/11 © UCF EECS 373

Direction of Flow

•  FORWARD FLOW – information flows
from the root towards leaves of the control
flow graph.

•  BACKWARD FLOW – information goes
from the leaves towards the root of the
control flow graph.

4/21/11 © UCF EECS 374

Alg for Forward Dataflow

for each n do outn := fn({ }) = fn(⊥)
inn0 := { }; // or available at start
outn0 := fn0(inn0)
worklist := N - { n0 }
while worklist ≠ ∅ do

 remove a node n from worklist
 inn := ∨ { outm | m in pred(n) }
 outn := fn(inn)
 if outn changed then
 worklist := worklist ∪ succ(n)

Correctness Argument
•  Why result satisfies dataflow equations
•  Whenever process a node n, set outn := fn(inn)

Algorithm ensures that outn = fn(inn)
•  Whenever outm changes, put succ(m) on worklist.

Consider any node n ∈ succ(m). It will eventually
come off worklist and algorithm will set
 inn := ∨ { outm . m in pred(n) }
to ensure that inn = ∨ { outm . m in pred(n) }

•  So final solution will satisfy dataflow equations

Reaching Definitions
•  Useful in optimizations such as constant

propagation and copy propagation
•  For each basic block we determine the set of

definitions that reach the beginning of that basic
block called in[] and the set of definitions that
reach the end of that block called out[]

•  A definition d reaches a point p if there is a path
from d to p such that d is not “killed” along that
path

4/21/11 © UCF EECS 377

RD Abstraction

4/21/11 © UCF EECS 378

Form of data flow equations for reaching
definitions is
out[S] = gen[S] ∪ (in[S] - kill[S])

Alternately can intersect in with preserve[S]
gen[] -- the set of definitions that reach the end of
S independent of whether they reach the beginning
of S

kill[] -- the set of definitions that never reach
the end of S even if they reach the beginning

Reaching Definitions
•  P = powerset of set of all definitions in program

(all subsets of set of definitions in program)
•  ∨ = ∪ (order is ⊆)
•  ⊥ = ∅
•  I = inn0 = ⊥
•  F = all functions f of the form f(x) = a ∪ (x-b)

–  b is set of definitions that node kills
–  a is set of definitions that node generates

•  General pattern for many transfer functions
–  f(x) = GEN ∪ (x-KILL)

Reaching Definitions

•  Notation: For any node n, pred[n] is the set
of all immediate predecessors of n and
succ[n] is the set of all immediate
successors.

•  RD[n] = ReachIn[n] = { s | p ∈ pred[n] and
s ∈ ReachOut[p] }

•  ReachOut[n] = (ReachIn[n] ∩ S_PRE[n])
∪ S_DEF[n]

4/21/11 © UCF EECS 380

Implementing RD
for i = 1 to NBlocks do begin

 ReachOut[i] ← S_DEF[i];
 ReachIn[i] ← { }

end;
change ← true;
while change do begin

 change ← false;
 for i = 1 to NBlocks do begin
 newIn ← { s | p ∈ pred[n] & s ∈ ReachOut[p] };
 if ReachIn[i] ≠ newIn then begin
 ReachIn[i] ← newIn;
 oldOut ← ReachOut[i];
 ReachOut[i] ← (ReachIn[i] ∩ PRE[i]) ∪ GEN[i];
 /* or (ReachIn[i] - KILL[i]) ∪ GEN[i];
 if oldOut ≠ ReachOut[i] then change := true
 end
 end

end

4/21/11 © UCF EECS 381

•  Simulates execution of program backward against
the flow of control

•  For each node n, have
–  inn – value at program point before n
–  outn – value at program point after n
–  fn – transfer function for n (given outn, computes inn)

•  Require that solution satisfies
–  ∀n. inn = fn(outn)
–  ∀n ∉ Nfinal. outn = ∨ { inm . m in succ(n) }
–  ∀n ∈ Nfinal = outn = O
–  Where O summarizes information at end of program

Backwards dataflow

for each n do inn := fn(⊥)
for each n ∈ Nfinal do outn := O; inn := fn(O)
worklist := N - Nfinal
while worklist ≠ ∅ do

 remove a node n from worklist
 outn := ∨ { inm . m in succ(n) }
 inn := fn(outn)
 if inn changed then
 worklist := worklist ∪ pred(n)

Alg for Backward Dataflow

Liveness
•  Calculates liveness information
•  A variable is said to be live at a point if there are

further uses of that variable. Otherwise it is said
to be dead

•  Backward analysis – ie we move in the
backward direction

•  Still a may problem

Liveness Abstraction

4/21/11 © UCF EECS 385

Data Flow equations for live variable
analysis

out[B] = ∪ Succ[B] in[S]

in[B] = use[B] ∪ (out[B] - def[B])

use[B] = the set of variables that are
used prior to any definition
def[B] = the set of variables that are
definitely assigned prior to any use

Scalar dependence
S1: A ← 1.0;
S2: B ← A + 3.1415;
S3: A ← .333 * (C – D);
… …
S4: A ← (B * 3.8) / 2.718;

S2 is true dependent on S1
S3 is anti-dependent on S2
S4 is output dependent on S3
4/21/11 © UCF EECS 386

Example of dependence

4/21/11 © UCF EECS 387

Final Exam Promises
•  An expression grammar that incorporates precedence and associativity.
•  Distinction between languages and grammars in a particular class.
•  Ambiguity
•  FLEX type answer to a regular expression problem.
•  EBNF / Railroad chart question
•  Creation of a recursive descent parser for some simple construct.
•  Creation of FIRST, FOLLOW and an LL(1) parse table.
•  Removal of left recursion and common prefixes.
•  CKY
•  Bottom-Up and Top-Down stack manipulation
•  Adding actions to Bison grammar, e.g., code generation, semantic error checks
•  Completion of the states, actions and gotos for an SLR(1) parser.
•  Completion of canonical LR(1) parser.
•  LALR(1) parser by doing merges on a canonical LR(1) parser's states.
•  Evaluation of attributes (inherited and synthesized) for some attributed translation grammar.
•  Data flow algorithm based on one of the four discussed in class.

4/21/11 © UCF EECS 388

