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Who, What, Where and When 
•  Instructor: Charles Hughes;  

Harris Engineering 247C; 823-2762  
(phone is not a good way to get me);  
Office Hours: TR 9:45AM-11:15AM 
charles.e.hughes@knights.ucf.edu 
(e-mail is a good way to get me) 
Subject: COP3402  

•  GTA: Remo Pillat; rpillat@knights.ucf.edu  
Office Hours: M 2:30PM-4:30PM 

•  Web Page: 
http://www.cs.ucf.edu/courses/cop3402/spring2011 

•  Meetings: TR 12:00PM-1:15PM, HEC-118;  
28 periods, each 75 minutes long.  
Final Exam is separate from class meetings  

•  Labs: S11:R8:30-9:20; S12:R 9:30-10:20; HEC110 
•  Final exam: Thursday, April 28, 10:00AM – 12:50PM 
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Text Material 
•  Textbook: System Software Knights, University of 

Central Florida Custom Edition, Pearson Custom 
Publishing 2008, ISBN 978-0-555-04647-0. Taken from:  
–  System Software: An Introduction to Systems Programming, 

Third Edition by Leland Beck. 
–  Concepts of Programming Languages, Eighth Edition by Robert 

W. Sebesta. 
–  Compilers: Principles, Techniques, & Tools, Second Edition by 

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 
–  Operating Systems: Internals and Design Principles, Sixth 

Edition by William Stallings.  

•  Other material linked from web site and in these notes 
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Goals of Course 
•  Course Outline: This course is designed to provide a fundamental 

understanding of real and virtual machines as language processor. We will 
study the processor as an instruction interpreter. Compilers, assemblers, 
and virtual machines will be presented as systems software for program 
development. An introduction to operating system will be given. The course 
is a blend of theory and practice, with a heavy dose of both. 

•  Course Topics: introduction to compilers and interpreters, virtual 
machines, computer architecture and assembler, loaders and linkers, 
macro-preprocessors, run time environments and operating systems 

•  Prerequisites: COP 3502 – Computer Science I 
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Expected Outcomes 
•  You will gain a solid understanding of various types of 

systems software (purpose, challenges, theoretical 
framework, various options for implementation). 

•  You will have a strong sense of the computational 
bounds that drive various strategies and compromises.  

•  You will hone your skills as software designers and 
programmers. 

•  You will (hopefully) come away with stronger formal 
proof skills and a better appreciation of the importance of 
discrete mathematics to all aspects of CS.  

6 



4/21/11 © UCF EECS 7 

Keeping Up 
•  I expect you to visit the course web site regularly 

(preferably daily) to see if changes have been made or 
material has been added.  

•  Attendance is preferred, although I do not typically take 
role. Role may be taken if attendance and interaction 
drops off. This is also true of the labs. 

•  I do ask lots of questions in class and give lots of hints 
about the kinds of questions I will ask on exams. It would 
be a shame to miss the hints, or to fail to impress me 
with your insightful in-class answers. 

•  You are responsible for all material covered in class, 
whether in the text or not. 
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Rules to Abide By 
•  Do Your Own Work 

–  When you turn in an assignment, you are implicitly telling me 
that these are the fruits of your labor. Do not copy anyone else's 
homework or let anyone else copy yours. In contrast, working 
together to understand lecture material and solutions to 
problems not posed as assignments is encouraged. 

•  Late Assignments 
–  I will accept late assignments up to two days past the due date, 

except for the final project for which no leeway will be given. 
Lateness has its consequences as seen on the grading policy. 

•  Exams 
–  No communication during exams, except with me or a 

designated proctor, will be tolerated. A single offense will lead to 
termination of your participation in the class, and the assignment 
of a failing grade (F or possibly ZF, see http://z.ucf.edu/). 
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Make Ups and Extra Credits 
•  Exams can only be made up under extreme extenuating 

circumstances. Traffic and malfunctioning alarm clocks 
are not valid excuses. If you miss an exam, you are 
responsible for contacting the instructor immediately. If 
you have not contacted the instructor within one day of 
the exam, you cannot make it up even if you had a 
legitimate reason for missing the exam, unless the 
circumstances preventing you from taking the exam also 
caused you to be unable to contact the instructor.  

•  I don’t do extra credits unless I do them for the whole 
class and that is very, very rare. 
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Evaluation (tentative) 
•  Grading Policy: 

–  (20%) Programming and Other Assignments 
–  (20%) Mid-term Exam(s) 
–  (30%) Final Exam 
–  (25%) Final Programming Project 
–  (5%) Open as to where that will go 
•  The weights of exams will be adjusted to your personal benefits, 

as I reward good trends and downplay (but don’t totally 
disregard) bad anomalies. 

•  Each assignment will have a due date and 10% will be subtracted 
for each day late (up to  2 days late, 20% off; more than two days 
late results in no credit).  

•  Grading will be  A >= 90%, B+ >= 87%, B >= 80%, C+ >= 77%, C 
>= 70%, D >= 60%, F < 60% 
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Important Dates 

•  Drop/Swap – Thursday, Jan. 13 
•  Exam#1 – Tuesday, Feb. 22 (tentative) 
•  Withdraw Deadline – Friday, March 4 
•  Spring Break – March 7-12 
•  There may be a second midterm; I will 

decide right after Spring Break. 
•  Final – Thurs, April 28, 10:00AM–12:50PM  
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System Software 
•  Systems Software consists of programs that support the 

operation of a computer system, help simplify the 
programming process and create an environment to run 
application software efficiently.   

•  Examples of systems software include: 
–  Text Editors and Integrated Development Environments (IDEs) 
–  Language Processors (compilers, interpreters, analyzers, …) 
–  Linkers and Loaders 
–  Debuggers 
–  Assemblers and Just-In-Time Translators (JITs) 
–  Operating Systems 
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Categories of Sys Software 
•  Components for program development 

–  Text Editor 
–  Macro Preprocessor 
–  Compiler 
–  Assembler 
–  Linker 
–  IDE 

•  Components for run-time 
–  Loader 
–  Dynamic Linker 
–  Debugger 
–  Operating System 
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Program Development 
•  Text editor: Permits the creation and editing of text files (e.g. 

application programs). 
•  Macro Preprocessor: Expands macros and other directives either as 

part of immediate source analysis or as part of language translation. 
•  Compiler: Translates programs written in a high level language to 

object or machine code (sometimes for an abstract machine). 
•  Assembler: Translates programs written in assembly language to 

object or machine code.  
•  Static Linker: Combines and resolves references between object 

programs and creates the executable code.  

•  IDE: Integrates all of above in a language-aware context. 
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Run-time 
•  Loader: Loads and starts execution of machine code 
•  Dynamic Linker: Loads and links shared libraries at run-time.  
•  Debugger: Helps to debug executable programs using object code 

and (usually) symbolic information from source program. 
•  Operating System: An event driven program that makes an 

abstraction of the computer system. The operating system handles 
all resources efficiently, creates an environment in which application 
programs can run, and provides a friendly interface between the 
user and the underlying computer system.  
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A BRIEF INTRODUCTION TO 
MACHINE ORGANIZATION 

4/21/11 © UCF EECS 17 



Von Neumann Machine 
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Instruction Cycle 
•  The Instruction Cycle, or Machine Cycle, in the 

Von-Neumann Machine (VN) is composed of 2 
steps: 
1.  Fetch Cycle:  Instruction is retrieved from 

      memory. 
2. Execution Cycle:  Instruction is executed. 

•  A simple Hardware Description Language will be 
used in order to understand how instructions are 
executed in VN. 
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Simple Processor Model 
•  Program Counter (PC) is a register that holds the address of 

the next instruction to be executed. 
•  Instruction Register (IR) is a register that   stores the 

instruction to be executed by the processor. 
•  DECODER is a circuit that decides which instruction the 

processor  will execute. For example, it takes the instruction 
op-code from the IR as input and outputs a signal to the ALU 
to control the execution of the ADD instruction. 

•  Arithmetic Logic Unit (ALU) is used to execute 
mathematical instructions such as ADD or SUB. 

•  Accumulator (A) is used to store data to be used as input to 
the ALU. (usually there are many registers for this purpose) 
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Simple Memory Model 
•  Main Storage (MEM) is used to store programs and 

data. Random Access Memory (RAM) is an 
implementation of MEM. 

•  Memory Address Register (MAR) is a register used to 
store the address to a specific memory location in Main 
Storage so that data can be written to or read from that 
location. 

•  Memory Data Register (MDR) is a register used to store 
data that is being sent to or received from the MEM. The 
data that it stores can either be in the form of instructions 
or simple data such as an integer. 
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Fetch-Execute Cycle 
•  In the VN, the Instruction Cycle is defined 

by the following loop: 
     Fetch 
             

    Execute 

•  In order to fully explain the Fetch Cycle we 
need to study the details of the VN data 
flow. The data flow consists of 4 steps. 
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Data Movement 1 
•  Given registers PC 

and MAR, the transfer 
of the contents of PC 
into MAR is indicated 
as: 
  MARPC 
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Data Movement 2 
•  To transfer information 

from a memory location 
to the register MDR, we 
use: 

 MDRMEM[MAR] 

•  The address of the 
memory location has 
been stored previously 
into the MAR register 
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Data Movement 2 (Cont.) 

•  To transfer information from the MDR 
register to a memory location, we use:   
  MEM [MAR] MDR 
 *see previous slide for diagram 

•  The address of the memory location has 
been previously stored into the MAR 
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Data Movement 3 
•  Transferring the 

contents of MDR into 
IR is indicated as: 
    IRMDR 
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Instruction Register 

•  The Instruction Register (IR) has two 
fields: 

  Operator (OP) and ADDRESS. 

•  These fields can be accessed using the 
selector operator “.” 
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Data Movement 4 
•  The Operation portion of the field is 

accessed as IR.OP 
•  The operation field of the IR register is 

sent out to the DECODER using: 
   DECODERIR.OP 

•  DECODER: If the value of IR.OP==00, 
then the decoder can be set to execute the 
fetch cycle again. 
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Data Movement 4 (Cont.) 
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00 Fetch Cycle 
•  1.MAR PC 
•  2.MDR MEM[MAR] 
•  3.IR MDR 
•  4.PC PC+1 
•  5.DECODER IR.OP 

1. Copy contents of PC into 
MAR 

2. Load content of memory 
location into MDR 

3. Copy value stored in 
MDR to IR 

4.  Increment PC Register 
5. Copy the OP code into 

the DECODER 
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Execution: 01 LOAD 
1. MAR IR.ADDR 
2. MDR MEM[MAR] 
3. A MDR 
4. DECODER 00 

1. Copy the IR address 
value field into MAR 

2. Load the content of a 
memory location into 
MDR 

3. Copy content of MDR 
into A register 

4. Set Decoder to 
execute Fetch Cycle 
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Execution: 02 ADD 
1. MAR IR.ADDR  
2. MDR MEM[MAR] 
3. A A + MDR 
4. DECODER 00 

1. Copy the IR address 
value field into MAR 

2. Load content of 
memory location to 
MDR 

3. Add contents of MDR 
and A register and 
store result into A 

4. Set Decoder to 
execute Fetch cycle 
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Execution: 03 STORE 
1. MAR IR.ADDR 
2. MDR A 
3. MEM[MAR] MDR 
4. DECODER 00 

1. Copy the IR address 
value field into MAR 

2. Copy A register 
contents into MDR 

3. Copy content of MDR 
into a memory 
location 

4. Set Decoder to 
execute Fetch cycle 
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Execution: 07 HALT 
1.  STOP 1.  Program ends 

normally 
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Instruction Set Arch (ISA) 
00 Fetch (hidden instruction) 

 MAR PC 
 MDR MEM[MAR] 
 IR MDR 
 PC PC+1 
 DECODER IR.OP 

02 Add 
 MARIR.Address 
 MDR MEM[MAR] 
 A  A + MDR 
 DECODER 00 

01 Load 
 MARIR.Address 
 MDR MEM[MAR]  
 A  MDR 
 DECODER00 

03 Store 
 MARIR.Address 
 MDR A 
 MEM[MAR] MDR 
 DECODER 00 

07 Halt 
4/21/11 © UCF EECS 35 



One Address Format 
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OP ADDRESS 

LOAD 0000 0000 0010 



1-Address ISA 
01 - LOAD <X> 
Loads the contents of memory location “X” into the A (A stands 
for Accumulator). 

02 - ADD <X> 
The data value stored at address “X” is added to the A and the 
result is stored back in the A. 

03 - STORE <X> 
Store the contents of the A into memory location “X”. 

04 - SUB <X> 
Subtracts the value located at address “X” from the A and stored 
the result back in the A. 
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1-Address ISA (Cont.) 
05 - IN <Device #> 
A value from the input device is transferred into A.   
06 - OUT <Device #>    
Print out the contents of A in the output device. 

 Device #   Device   
      5    Keyboard 
      7    Printer 
      9    Screen 

07 - Halt 
The machine stops execution of the program. 
(Return to the OS) 
08 - JMP <X> 
Causes an  unconditional branch to address “X”.  
PC  X 
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1-Address ISA (Cont.) 
09 - SKIPZ 
If the contents of  Z 
flag  = 1, skip the next 
instruction. 
(If the output of the 
ALU equals zero, the 
Z flag is set to 1. In 
this machine, it means 
A = 0) 
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Condition Flags 
•  For this tiny assembly language, we are 

 using only one condition code (CC) Z = 0 . 

•  Condition codes indicate the result of the most 
 recent arithmetic/logical operation  

•  Two more flags (CC) can be incorporated to test 
negative and positives values: 
 G = 1  Positive value 
 Z = 1  Zero 
 L = 1  Negative value 
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Program Status Word 
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PC 

Interrupt Flags MASK 

Mode 
OV MP PI 

To be defined later 
I/O TI SVC 

In addition to the Z flag, there are two more flags: 
 1) G meaning “greater than zero” 
 2) L meaning  “less than zero”   

CC 

Z G L 

The PSW  is a register in the CPU that provides the OS  
with information on the status of the running program 



Instruction Semantics 
opcode  mnemonic   meaning 

0001   LOAD <x>   A  Mem[x]    
0010    ADD <x>   A  A + Mem[x]   
0011   STORE <x>   Mem[x]  A   
0100   SUB <x>   A  A – Mem[x]  
0101   IN <Device_#>   A  read from Device   
0110   OUT <Device_#>  A  output to Device  
0111   HALT    Stop 
1000   JMP <x>   PC  x   
1001   SKIPZ    If Z = 1 Skip next instruction 
1010   SKIPG    If G = 1 Skip next instruction 
1011   SKIPL    If L = 1 Skip next instruction 
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Sample Execution 
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Memory     
000  Load <004> 
001  Add   <005> 
002  Store <006> 
003  Halt   
004  1245 
005  1755 
006  0000 

Memory     
000  Load  <000> 
001  Add   <001> 
002  Store <002> 
003  Halt   
004  1245 
005  1755 
006  3000   

After execution 



1-Address Layout 
•  The instruction format of this one-address 

architecture consists of 16 bits: 4 bits to 
represent instructions and 12 bits for addresses : 

•  LOAD (opcode=0001)  ADDR (here it’s 17) 
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OP ADDRESS 

0001 0000 0001 0001 



Assembler Language Ex. 
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 Label  opcode   address 
 start .begin 
   in      x005 
   store      a 
   in      x005 
   store      b 
   load      a 
   sub      TWO 
   add      b 
   out      x009 
   halt 
 a   .data      0    
 b   .data      0 
 TWO .data      2 
   .end      start 

    

Data section 

Text section (code)  



Load/Store Instr. Format 
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A load/store architecture has a “register file” in the CPU and 
might use three instruction formats. Therefore, its assembly 
language is different from that of the accumulator machine. 

OP 

OP 

OP 

ADDRESS 

ADDRESS R1 

R 1 R 2 R 3 

JMP <address> 

Load R1, <address> 

Add R1, R2, R3 



Load/Store Architecture 
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Comparison of Code 
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 Label   opcode   address 
 start   .begin 
   in      x005 
   store      a 
   in      x005 
   store      b 
 here   load      result 
   add      a 
   store      result 
   load      b 
   sub      ONE 
   store      b 
   skipz 
   jmp      here 
   load      result 
   out      x009 
   halt 
 a   .data      0   
 b   .data      0 
 ONE   .data      1 
 result  .data      0 
   .end      start 

One address  Architecture 

    

 Label   opcode   address 
 start   .begin 
   in      x005 
   store       R0, a 
   in      x005 
   store      R0, b 
   load      R2, result 
   load      R3, a 
   load      R0, b 
   load      R1, ONE 
 here   add      R2, R2, R3 
   sub      R0, R0, R1 
   skipz 
   jmp      here 
   out      R2, x009 
   halt 
 a   .data      0   
 b   .data      0 
 ONE   .data      1 
 result  .data      0 
   .end      start 

Load/Store architecture 

    



VIRTUAL MACHINE 
P-CODE 

(DAYS #2,3) 
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P Code VM 
•  The Pseudo-code  machine is a software (virtual) machine 

that implements the instruction set architecture of a stack 
computer.  

•  P-code was implemented in the 70s as the target architecture 
for Pascal compilers. Execution was by interpretation. 

•  Another example of a virtual machine is the JVM (Java Virtual 
Machine) whose intermediate language is commonly referred 
to as Java bytecode. 

•  Another is Microsoft .NET Common Language Runtime 
(CLR). 

•  The up and comer, especially at Apple, is the Low-Level 
Virtual Machine (LLVM). We will look at LLVM later in course. 
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Pluses and Minuses 
•  Programs that have been translated to p-code are 

interpreted by a program that emulates the behavior of 
the hypothetical machine and/or compiled to machine 
code by a JIT (just-in-time translator).  

•  Why VM ? 
–  Portability (Architecture and language independence), Simple 

Implementation, Compact Size, Optimizations, Debugging 

•  Why not VM ? 
–  Overhead at run-time --> slower run-time (but LLVM is only 10% 

slower than GCC optimized code). 
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P-machine Architecture 
•  The p-machine is a stack machine: most 

instructions take their operands from the stack, 
and place results back on the stack.  

•  Example: the "add" instruction replaces the two 
topmost elements of the stack with their sum. 

•  Uses one stack which is used in computation 
and for procedure stack frames.  
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Pictorial Stack Operation 
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P-machine registers 
•  PC the program 

counter 
•  SP the stack pointer 
•  MP the mark stack 

pointer 
•  NP the new pointer 
•  EP the extreme stack 

pointer 
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Stack Frames for P4 
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Static link is back to stack frame of 
enclosing procedure. It is needed for 
access to local variables of parent. 

Dynamic link is back to stack frame of 
who called this routine. 



Stack Frame (low to high) 
MP ->  function return value space (if needed) 

 static link (MP of enclosing procedure) 
 dynamic link (previous MP)  
 previous EP  
 return address (previous PC)  
 parameters (variable size) 
 locals  

SP ->  somewhere past or at end of locals 
 expansion space for local stack 

EP ->  highest stack address this procedure might need 

* Note if EP>NP (heap bottom) then memory exceeded 
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Instruction Format 
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OP A P 

OP:  6 bit instruction code (max 64 codes) 
P:  4 bit modifier 

 often nesting level (max nesting is 16) 
  P=0 is self; P=1 is parent; etc. 
 often data type (e.g., used for base of constants) 

A:  20 bit address (limited to 1MB / space) 
 can be stack offset; can be code offset;  
 can be constant data offset 



Stack Frames for Pascal-S 
0: return value space 
1: return address (old PC value) 
2: display ptr (data structure for called routines) 
3: previous MP (dynamic link)  
4: Called proc id (index to get info on routine); 

 Used for static linking as well –  
 no need to follow chain back 

5… Zeroed-out for parameters and temps 
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Pascal Nesting 
program factor(input,output); 

 var f: integer;  
 function factorial(f:integer):integer;  
  function fact(n:integer):integer;  
  begin  
   if n=1 then fact := 1 else fact := n*fact(n-1) 
  end; (* end fact *)  
 begin  
  if f<=0 then factorial := 0 else factorial := fact(f) 
 end; (* end factorial *) 

begin  
 readln(f);  
 writeln(factorial(f)); 
 readln (* just to be able to read results on console *) 

end. 
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Pascal-S P-Code #1 
fact(n:integer):integer (level 3) 
0:  LDO  n (3,5)* 
1:  LDC  1 
2:  EQUAL // if n=1 
3:  FJP  8 
4:  LDA  fact (3,0)* 
5:  LDC  1 
6:  STO  // fact := 1 
7:  JMP  18  
8:  LDA  fact (3,0)* 
9:  LDO  n (3,5)* 
* static link, offset 

10:  MST  fact (32)** 
11:  LDO  n (3,5)* 
12:  LDC  1 
13:  SUB 
14:  CALL  5*** 
15:  UPD  2,3**** 
16:  MPI 
17:  STO  // fact:=n*fact(n-1) 
18:  Exit 
** space checked. SP=SP+5 
*** back to top of frame 
**** unwind display after recursion  
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Pascal-S P-Code #2 
factorial(f:integer):integer (level 2) 
19:  LDO  f  (2,5) 
20:  LDC  0 
21:  LE  // if f<=0 
22:  FJP  27 
23:  LDA  factorial (2,0) 
24:  LDC  0 
25:  STO  // factorial := 0 
26:  JUMP  32 

27:  LDA  factorial (2,0)  
28:  MST  fact (32); 
29:  LDO  f  (2,5) 
30:  CALL  5 
31:  STO  // factorial := fact(f) 
32:  EXIT; 
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Pascal-S P-Code #3 
factor(input,output) 
33:  LDA   f (1,5); 
34:  READINT  // readln(f) 
35:  READLN 
36:  MST   factorial (30) 
37:  LDO   f (1,5) 
38:  CALL   5 
39:  WRITEINT  // writeln(factorial(f)) 
40:  WRITELN 
41:  READLN  // readln 
42:  END 
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LANGUAGE PROCESSORS: 
COMPILER, INTERPRETERS & 

ANALYZERS 
(DAY #4) 
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Compilers 
•  A compiler is a program that takes high level languages 

(e.g. Pascal, C, C++, Ruby, Java, C#) as input, and 
translates it to a low-level representation which the 
computer can understand and execute. 
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Compiler Source 
Program 
(i.e. C++) 

ELF 
(binary) 

ELF: Executable Linkable File 



Language Translators 
•  Programming languages are notations for 

describing computations to people and to 
machines. 

•  Programming languages can be implemented by 
any of three general methods: 

1. Compilation 

2. Interpretation 

3. Hybrid Implementation (JIT) 
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Phases of a Compiler 
The process of compilation and program execution takes 
place in several phases: 

Front end: Scanner  Parser  Semantic Analyzer 

Back end: Code generator 
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Front End Back End 
Source 

Code 

Intermediate 

     Code 

Target 

 Code 



Details on Compiler Process 
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Lexical 
analyzer 

Syntax 
analyzer 

Intermediate 
     code  
  generator 
 (semantic 
  analyzer) 

Code 
generator 

      Code 
  Optimizer 
  (optional) 

Source 
program 

Lexical units 
   (Tokens) 

Parse trees 
Intermediate 
       code 

Computer 

Machine 
language 

Symbol table 



Lexical & Syntactic Analysis 
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| f | a | h | r | e | n | h | e | i | t | : | = | 3 | 2 | + | c | e | l | s |  I  | u | s | * | 1 | . | 8 | ; | 

Lexical analyzer (scanner) 
(converts from  character stream  into 

 a stream of tokens.) 

[ id, 1 ] [ : = ][ int, 32 ][ + ][id, 2 ][ * ][real, 1.8 ][; ] 
Symbol Table 

fahrenheit   real 

celsius        real 

1 

2 
Syntax analyzer (parser) 
(Construct syntactic structure of the program) 

 : = 

 id1     +  

  int32             *  

                id2       real 1.8  

   

Getchar() 

name         attribute 

index in symbol table  



Context Analysis 
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Symbol Table 

fahrenheit   real 

celsius        real 

1 

2 Context analyzer   

:= 

id1 +r 

inttoreal *r 

id2 real 1.8 int32 

Determines the type of  
the identifier  

 : = 

 id1     +  

  int32             *  

                id2       real 1.8  

   



Intermediate Code Gen 
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Symbol Table 

fahrenheit   real 

celsius        real 

1 

2 
Intermediate code generator   

Intermediate code  

Temp1 := inttoreal(32) 
Temp2 := id2 
Temp2 := Temp2 * 1.8 
Temp1 := Temp1 + Temp2 
id1 := Temp1 

:= 
id1 +r 

inttoreal *r 
id2 real 1.8 int32 



Code Improvement 
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Symbol Table 

fahrenheit   real 

celsius        real 

Code optimizer   

Intermediate code  

Temp1 := inttoreal(32) 
Temp2 := id2 
Temp2 := Temp2 * 1.8 
Temp1 := Temp1 + Temp2 
id1 := Temp1 

Temp1 := id2 
Temp1 := Temp1 * 1.8 
Temp1 := Temp1 + 32.0 
id1 := Temp1 

optimized code  



Code Generation 
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Symbol Table 

fahrenheit   real 

Celsius        real 

1 

2 

Code generator   

Temp1 := id2 
Temp1 := Temp1 * 1.8 
Temp1 := Temp1 + 32.0 
id1 := Temp1 

optimized code  

movf   id2, r1 
mulf   #1.8, r1 
addf   #32.0, r1 
movf   r1, id1 

assembly instructions  



Lexical and Syntactic 
Lexical analyzer:  
Gathers the characters of the source program into lexical units. 
Lexical units of a program are: 

 identifiers 
 special words (reserved words) 
 operators 
 special symbols 
 Comments are ignored! 

Syntax analyzer: 
Takes lexical units from the lexical analyzer and use them to construct 
a hierarchical structure called parse tree 

 Parse trees represent the syntactic structure of the program.  
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Interm. Code & Optimization 
Intermediate code:  
Produces a program in a different language representation: 

 Assembly language 
 Similar to assembly language 
 Something higher than assembly language 

Note: semantic analysis is integral part of intermediate code generator 

Optimization (really should be called improvement): 
 Makes programs smaller or faster or both. 
 Most optimization is done on the intermediate code.  
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Code Gen & Symtab 
Code generator:  
Translate the optimized intermediate code into machine language. 

The symbol table: 
Serve as a database for the compilation process. 
Maintain contents type and attribute information of each user-defined 
name in the program. 
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Symbol Table 

fahrenheit   real 

Celsius       real 

1 

2 

Index     name           type         attributes 



Flow of Interpreter 
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 Source 
program 

Interpreter Input data 

Result 



Interpreters 
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Programs are interpreted (executed) by another program called the interpreter. 
 Advantages: Easy implementation of many source-level  
 debugging operations, because all run-time errors operations 
 refer to  source-level units.  
 Disadvantages: 10 to 100 times slower because statements are 
 interpreted each time the statement is executed. 

Background: 
Early sixties  APL, SNOBOL, Lisp. 
By the 80s  Lisp, Prolog 
Recent years  Significant comeback 

 some Web scripting languages: JavaScript, php 



Preparation for Hybrid 
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  Java 
program 

Translator Byte code 

They translate high-level language programs to an 
intermediate language designed to allow easy 
Interpretation and fast just-in-time translation  

Byte code 
Interpreter 

Byte code 
interpreter Intermediate 

      code 

Machine A 

Machine B 



Just-in-Time (JIT) 
Programs are translated to an intermediate language. 

During execution, it compiles intermediate language 
methods into machine code when they are called (or based 
on profiling hot spots). 

The machine code version is kept for subsequent calls. 

.NET and Java  programs are implemented with JIT 
systems. 
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Pascal-S Language 
program multiply(input,output); 
const m = 7; const n = 85; 
var  x,y,z : integer; 
procedure mult;  
   var a, b : integer;   
begin  
  a := x;  b := y; z := 0;    
  while b > 0 do     
    begin        
       if odd(b) then z := z+a; 
       a := 2*a; b := b div 2; 
    end    
end; 
begin 
  x := m; y := n; 
  mult; 
  writeln(x,'*',y,'=',z); readln 
end. 
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As in any language, in Pascal-S  we need 
to identify what is the vocabulary and what 
are the names and special symbols that we 
accept as valid. 

Reserved words are shown in red. 

Operators and special symbols in green 

Numeric constants are shown in purple 

String constants are shown in gold 

Identifiers are shown in black 



LEXICAL ANALYSIS 
Hand carving the Scanner 

(DAY #5) 
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Tasks of Lexical Analysis 

1. Read input one character at a time  

2. Group characters into tokens 

3. Remove white spaces, comments and control 
characters  

4. Encode token types 

5. Detect errors and generate error messages 
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Scanner Example 
The stream of characters in the assignment statement 
         \tfahren               := 32 + celsius * 1.8;\n                           (*   F to C formula *)

control character      white space               control character     white space      comment 

is read in by the Scanner (Lexical Analyzer), which translates it into a stream of 
tokens in preparation for the Parser (Syntax Analyzer). 

[ id, fahren ] [ assign ][ int, 32 ][ plus ][id, celsius ][ times ][real, 1.8 ][ semicolon ] 

White space (blanks, tabs) are removed. Comments are also not passed along, but 
they are processed in Scanner if directives can be embedded in them. 
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1.  Lookahead plays an important role in lexical analysis. 

2.  It is not always possible to decide if a token has been found 
without looking ahead one character. 

3.  For instance, if only one character, say “i”,   is used it would 
be impossible to decide whether we are in the presence of 
identifier “i” or at the beginning of the reserved word “if”. 

4.  Lookahead is needed for an = in C, as it could be Assign or the 
start of Equal (==). 

5.  You must be careful to be consistent. That means always be at 
the character after the token you just transmitted. 
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Scanner Data Structures 
•  Define the token types (internal representation)  
•  Create tables with initial values: 

–  Reserved words:   
•  begin, const, do, end, if, procedure, then, else, while, etc. 
•  Maybe predefined functions and procedures in separate table 

–  Special symbols:  
•  ‘+’, ‘-‘, ‘*’, ‘/’, ‘(‘, ‘)’, ‘=’, ’,’ , ‘.’, ‘ <’, ‘>’,  ‘;’ 

–  Symbol table (maybe defer to syntax analysis) 
–  Constant tables (strings are sometimes done by scanner with all else 

deferred to parser. 
•  String constants are often stored in very compact fashion by recognizing 

substrings 
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Scanner and Ordinals 

•  Scanner must often mess with ordinals of 
characters. Ordinals are usually expressed 
in decimal, octal or hex.  

•  I will discuss the Pascal-S scanner and 
show you where knowing the ordinals 
really comes in handy. 
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ASCII #1 
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Dec Hex ASCII 
0 00 NUL (null) 
1 01 SOH (start of heading) 
2 02 STX (start of text) 
3 03 ETX (end of text) 
4 04 EOT (end of transmission) 
5 05 ENQ (enquiry) 
6 06 ACK (acknowledge) 
7 07 BEL (bell) 
8 08 BS (backspace) 
9 09 HT (horizontal tab) 
10 0A LF (line feed) 
11 0B VT (vertical tab) 
12 0C FF (form feed) 
13 0D CR (carriage return) 
14 0E SO (shift out) 
15 0F SI (shift in) 

Dec Hex ASCII 
16 10 DLE (data link escape) 
17 11 DC1 (device control 1) 
18 12 DC2 (device control 2) 
19 13 DC3 (device control 3) 
20 14 DC4 (device control 4) 
21 15 NAK (negative acknowledge) 
22 16 SYN (synchronous idle) 
23 17 ETB (end of transmission block) 
24 18 CAN (cancel) 
25 19 EM (end of medium) 
26 1A SUB (substitute) 
27 1B ESC (escape) 
28 1C FS (file separator) 
29 1D GS (group separator) 
30 1E RS (record separator) 
31 1F US (unit separator) 

Dec Hex ASCII 
32 20 SP (space) 
33 21 ! 
34 22 " 
35 23 # 
36 24 $ 
37 25 % 
38 26 & 
39 27 ' 
40 28 ( 
41 29 ) 
42 2A * 
43 2B + 
44 2C , 
45 2D - 
46 2E . 
47 2F / 



ASCII #2 
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Dec Hex ASCII 
 48   30     0 
 49   31    1 
 50   32    2 
 51   33    3 
 52   34    4 
 53   35    5 
 54   36    6 
 55   37    7 
 56   38    8 
 57   39    9 
 58   3A    : 
 59   3B    ; 
 60   3C    < 
 61   3D    = 
 62   3E    > 
 63   3F    ? 

Dec Hex ASCII 
  64    40      @ 
  65    41      A 
  66    42      B 
  67    43      C 
  68    44      D 
  69    45      E 
  70    46      F 
  71    47      G 
  72    48      H 
  73    49      I 
  74    4A      J 
  75    4B      K 
  76    4C      L 
  77    4D      M 
  78    4E      N 
  79    4F      O 

Dec Hex ASCII 
   80      50         P 
   81      51         Q 
   82      52         R 
   83      53         S 
   84      54         T 
   85      55        U 
   86      56         V 
   87      57        W 
   88      58         X 
   89      59         Y 
   90      5A         Z 
   91      5B          [ 
   92      5C          \ 
   93      5D          ] 
   94      5E         ^ 
   95      5F         _ 



ASCII #3 

4/21/11 © UCF EECS 89 

Dec Hex ASCII 
  96     60      ` 
  97     61      a 
  98     62      b 
  99     63      c 
100     64      d 
101     65      e 
102     66      f 
103     67      g 
104     68      h 
105     69      i 
106     6A      j 
107     6B      k 
108     6C      l 
109     6D      m 
110     6E      n 
111     6F      o 

Dec Hex ASCII 
  112     70        p 
  113     71        q 
  114     72        r 
  115     73        s 
  116     74        t 
  117     75        u 
  118     76        v 
  119     77        w 
  120     78        x 
  121     79        y 
  122     7A        z 
  123     7B       { 
  124     7C        | 
  125     7D        } 
  126     7E        ~ 
  127     7F       DEL 



Const Declarations 
program PascalSLex(input, output, srcfil); 
(*        N. Wirth, E.T.H CH-8092 Zurich      *) 
label 99;                (* escape when input consumed *) 

const nkw   =   27;      (* no. of key words *) 
      alng  =   10;      (* no. of significant chars in identifiers *) 
      blankID = '          '; (* blank string of length alng *) 
      llng  =   80;      (* input line length *) 
      emax  =  308;      (* max exponent of real numbers *) 
      emin  = -324;      (* min exponent *) 
      kmax  =   15;      (* max no. of significant digits *) 
      smax  =   78;      (* max size of string *) 
      ermax =   58;      (* max error no. *) 
      nmax  = maxint;    (* largest integer value on this machine *) 
      CRLF  = TRUE;      (* true, if palatform uses CR/LF *) 
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Type Declarations 
type  (* The token types recognized by lex analyzer*) 
      symbol = (intcon, realcon, charcon, stringt, 
                notsy, plus, minus, times, idiv, rdiv, imod, andsy, orsy, 
                egl, neg, gtr, geg, lss, leg, 
                lparent, rparent, lbrack, rbrack, comma, semicolon, period, 
                colon, becomes, constsy, typesy, varsy, functionsy, 
                proceduresy, arraysy, recordsy, programsy, ident, 
                beginsy, ifsy, casesy, repeatsy, whilesy, forsy, 
                endsy, elsesy, untilsy, ofsy, dosy, tosy, downtosy, thensy); 

       (* maximum string needed for identifier or keyword *) 
       alfa = packed array [1..alng] of char; 
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VAR Declarations 
var  sy: symbol;         (* last symbol read by insymbol *) 
       id: alfa;           (* identifier from insymbol *) 
       inum: integer;      (* integer from insymbol *) 
       rnum: real;         (* real number from insymbol *) 
       ch: char;           (* last character read from source program *) 
       line: array [1..llng] of char; 
       cc: integer;        (* character counter *) 
       lc: integer;        (* program location counter *) 
       ll: integer;        (* length of current line *) 
       errs: set of 0..ermax; (* retains list of errors encountered *) 
       errpos: integer;     (* error position for lexical error just found*) 
       progname: array[1..20] of char; (* input file name *) 
       key: array [1..nkw] of alfa; (* set of keywords *) 
       ksy: array [1..nkw] of symbol; (* symbols associated with keywords *) 
       sps: array [char] of symbol; (* special symbols *) 
       st: packed array [0..smax] of char; (* string from insymbol *) 
       srcfil: text; { source input file } 
       synames: array[symbol] of alfa; (* strings names for symbols *) 
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Next Character 
procedure nextch; (* read next character; process line end *) 
const TAB=9; charPerTab = 8;  
begin if cc = ll then 
      begin if eof(srcfil) then          
         begin writeln; writeln(' source completed'); goto 99 end; 
         if errpos <> 0 then begin writeln; errpos := 0  end; 
         write(lc:5, '  '); ll := 0; cc := 0; lc := lc+1; 
         while not eoln(srcfil) do 
            begin read(srcfil, ch); 
                  if ch >= ‘ ‘  then begin ll := ll+1; write(ch); line[ll] := ch end 
                  else if ord(ch)=TAB then  

       repeat ll:=ll+1; write(' '); line[ll]:=' ‘ until (ll mod charPerTab )=1  
            end; 
         writeln; ll := ll+1; read(srcfil, line[ll]); if CRLF then read(srcfil, line[ll]) 
       end; 
   cc := cc+1; ch := line[cc]; 
end (* nextch *); 
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Errors 
procedure error(n: integer);  (* position carat (^) under error *) 
begin 
   if errpos = 0 then write(' ****'); 
   if cc > errpos then begin 
      write(' ': cc-errpos, '^', n:2); 
      errpos := cc+3; errs := errs + [n] 
   end 
end (* error *); 
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Read scale 
procedure insymbol;   (* reads next symbol *) 
   label 1, 2, 3; (* EVIL!!!! *) 
   var i, j, k, e: integer; 

   procedure readscale; 
      var s, sign: integer; 
   begin  
      nextch; sign := 1; s := 0; 
      if ch = '+' then nextch 
      else if ch = '-' then begin nextch; sign := -1 end; 
      while ch in ['0'..'9'] do begin s := 10*s + ord(ch) - ord('0'); nextch end; 
      e := s*sign + e 
   end (* readscale *); 
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Adjust scale 
procedure adjustscale; 
  var s: integer; d, t: real; 
begin  
  if k+e > emax then error(21) 
  else if k+e < emin then rnum := 0 
  else begin  
    s := abs(e); t := 1.0; d := 10.0; 
    repeat 
       while not odd(s) do begin s := s div 2; d := sqr(d) end; 
       s := s-1; t := d*t 
    until s = 0; 
    if e >= 0 then rnum := rnum*t  else  rnum := rnum/t 
  end 
end (* adjustscale *); 
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Handle names (ID, Keyword) 
begin (* insymbol *) 
1: while ch <= ' ' do nextch; 
   if ch in ['a'..'z'] then begin (* word *)  
      k := 0; id := '          '; (* Ugly because requires alng knowledge *) 
      repeat  
         if k < alng then 
            begin k := k+1; if ch in ['A'..'Z'] then ch := chr(ord(ch)+32); id[k] := ch end;  
         nextch 
      until not (ch in ['A'..'Z', 'a'..'z', '0'..'9']); 
      i := 1; j := nkw; (* binary search *) 
      repeat  
         k := (i+j) div 2; if id <= key[k] then j := k-1; if id >= key[k] then i := k+1 
      until i > j; 
      if i-1 > j then sy := ksy[k] else sy := ident 
   end 
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Handle numbers 
 else if ch in ['0'..'9'] then begin (* number *)  
      k := 0; inum := 0; sy := intcon; 
      repeat inum := inum*10 + ord(ch) - ord('0'); k := k+1; nextch until not (ch in ['0'..'9']); 
      if (k > kmax) or (inum > nmax) then begin error(21); inum := 0; k := 0 end; 
      if ch = '.' then begin  
         nextch; 
         if ch = '.' then ch := ':' 
         else begin  
             sy := realcon; rnum := inum; e := 0; 
             while ch in ['0'..'9'] do  
                begin e := e-1; rnum := 10.0*rnum + (ord(ch)-ord('0')); nextch end; 
             if ch = 'e' then readscale; if e <> 0 then adjustscale 
          end 
      end 
      else if ch = 'e' then begin 
           sy := realcon; rnum := inum; e := 0; readscale; if e <> 0 then adjustscale  
      end 
   end 
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Colon (:), <, >, period (.) 
 else case ch of 
':': begin nextch; 
         if ch = '=' then 
           begin sy := becomes; nextch end  (* := *) 
           else sy := colon 
     end; 
'<': begin nextch; 
        if ch = '=' then begin sy := leg; nextch end 
        else if ch = '>' then begin sy := neg; nextch end else sy := lss 
     end; 
'>': begin nextch; 
         if ch = '=' then begin sy := geg; nextch end else sy := gtr 
     end; 
'.': begin nextch; 
        if ch = '.' then 
           begin sy := colon; nextch end (* ellipsis *) 
           else sy := period 
     end; 
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Quote (‘) – char or string 
'''': begin k := 0; 
    2: nextch; 
       if ch = '''' then begin nextch; if ch <> '''' then goto 3 end; 
       if k <= smax then begin 
          k := k+1; st[k] := ch 
       end; 
       goto 2; 
   3: if k = 1 then  
          begin sy := charcon; inum := ord(stab[sx]) end 
       else if k = 0 then  
          begin error(38); sy := charcon; inum := 0 end 
       else  
          begin sy := stringt; inum := sx; sleng := k; sx := sx+k end 
      end; 
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Left paren or other special 
'(': begin nextch; 
        if ch <> '*' then sy := lparent 
        else begin (* comment *)  
           nextch; 
           repeat 
              while ch <> '*' do nextch; 
              nextch 
           until ch = ')'; 
           nextch; goto 1 
        end 
     end; 
'+', '-',  '*', '/', ')', '=', ',', '[', ']', '#', '&', ';': 
     begin sy := sps[ch]; nextch end; 
'$', '%', '@', '\', '~', '{', '}', '^': 
     begin error(24); nextch; goto 1 end (* More ugliness *) 
  end; (* case ch *) 
  write(synames[sy],' ')  (* Tracing output *) 
end (* insymbol *); 
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Init – Keywords 
procedure init; 
begin 
  key[ 1] := 'and       '; key[ 2] := 'array     '; 
  key[ 3] := 'begin     '; key[ 4] := 'case      '; 
  key[ 5] := 'const     '; key[ 6] := 'div       '; 
  key[ 7] := 'do        '; key[ 8] := 'downto    '; 
  key[ 9] := 'else      '; key[10] := 'end       '; 
  key[11] := 'for       '; key[12] := 'function  '; 
  key[13] := 'if        '; key[14] := 'mod       '; 
  key[15] := 'not       '; key[16] := 'of        '; 
  key[17] := 'or        '; key[18] := 'procedure '; 
  key[19] := 'program   '; key[20] := 'record    '; 
  key[21] := 'repeat    '; key[22] := 'then      '; 
  key[23] := 'to        '; key[24] := 'type      '; 
  key[25] := 'until     '; key[26] := 'var       ';  key[27] := 'while     '; 
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Init – Keywords to Tokens 
(* Just used in tracing output *) 
  ksy[ 1] := andsy;        ksy[ 2] := arraysy; 
  ksy[ 3] := beginsy;      ksy[ 4] := casesy; 
  ksy[ 5] := constsy;      ksy[ 6] := idiv; 
  ksy[ 7] := dosy;         ksy[ 8] := downtosy; 
  ksy[ 9] := elsesy;       ksy[10] := endsy; 
  ksy[11] := forsy;        ksy[12] := functionsy; 
  ksy[13] := ifsy;         ksy[14] := imod; 
  ksy[15] := notsy;        ksy[16] := ofsy; 
  ksy[17] := orsy;         ksy[18] := proceduresy; 
  ksy[19] := programsy;    ksy[20] := recordsy; 
  ksy[21] := repeatsy;     ksy[22] := thensy; 
  ksy[23] := tosy;         ksy[24] := typesy; 
  ksy[25] := untilsy;      ksy[26] := varsy; 
  ksy[27] := whilesy; 
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Init – Special Characters 
(* Special characters *) 
  sps['+'] := plus;        sps['-'] := minus; 
  sps['*'] := times;       sps['/'] := rdiv; 
  sps['('] := lparent;     sps[')'] := rparent; 
  sps['='] := egl;         sps[','] := comma; 
  sps['['] := lbrack;      sps[']'] := rbrack; 
  sps['#'] := neg;         sps['&'] := andsy; 
  sps[';'] := semicolon; 
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Init – Token Names 
  synames[andsy] := 'andsy';         synames[arraysy] := 'arraysy'; 
  synames[beginsy] := 'beginsy';     synames[casesy] := 'casesy'; 
  synames[constsy] := 'constsy';     synames[idiv] := 'idiv'; 
  synames[dosy] := 'dosy';           synames[downtosy] := 'downtosy'; 
  synames[elsesy] := 'elsesy';       synames[endsy] := 'downtosy'; 
  synames[forsy] := 'forsy';         synames[functionsy] := 'functionsy'; 
  synames[ifsy] := 'ifsy';           synames[imod] := 'imod'; 
  synames[notsy] := 'notsy';         synames[ofsy] := 'ofsy'; 
  synames[orsy] := 'orsy';           synames[proceduresy] := 'procedursy'; 
  synames[programsy] := 'programsy'; synames[recordsy] := 'recordsy'; 
  synames[repeatsy] := 'repeatsy';   synames[thensy] := 'thensy'; 
  synames[tosy] := 'tosy';           synames[typesy] := 'typesy'; 
  synames[untilsy] := 'untilsy';     synames[varsy] := 'varsy'; 
  synames[whilesy] := 'whilesy'; 
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Init – Simple Counters 

  lc := 0;  (* line count *) 
  ll := 0; (* number of characters in current line *) 
  cc := 0; (* character position in current line *) 
  ch := ' '; (next character *) 
  errpos := 0; (position of most recent error *) 
  errs := []; (* empty set of errors encountered so far *) 
end; (* init *) 
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Main PascalSLex routine 
begin  (* PascalSLex main program *) 
  writeln; 
  writeln('Pascal-S compiler/interpreter'); 

  write('Enter name of file to be compiled: '); 
  readln(progname); 
  assign(srcfil,progname); 
  reset(srcfil); 

  init; (* tables and more done here *) 
  while true do insymbol; 
99: 
  readln; 
end. (* PascalSLex *)  
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C Version of nextch() 
void nextch() {     /* read next character; process line end */ 

 const integer tab = 9; integer charPerTab = 8; 
  if (cc == ll) {   

  if (eof(srcfil)) {  
   output << NL << " program incomplete" << NL; errormsg(); goto L99; } 
  if (errpos != 0) { output << NL; errpos = 0; } 
  output << format(lc++,5) << "  "; ll = 0; cc = 0; 
  while (! eoln(srcfil)) {  
   srcfil >> ch; 
   if (ch >= ‘ ‘)  {output << ch; line[++ll] = ch; } 
   else if (ord(ch)==tab)  
    do { ll = ll+1; output << ' '; line[ll] = ' '; } while (!((ll % charPerTab ) == 1)); } 
  output << NL; srcfil >> line[++ll]; if (CRLF) srcfil >> line[ll]; } 
 ch = line[++cc]; 

}   /* nextch */ 
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Keyword Lookup 

•  Wirth’s Pascal-S compiler used binary 
search across 27 elements. Cost to search 
is log2(27) or 5 iterations. Could have done 
hash, but there would be no real gain. 

•  However, symbol table (not built here) is 
often large and amenable to hash table. 
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LEXICAL ANALYSIS 
Using Regular Expressions 

(DAY #5) 
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Alphabets 
An alphabet  is a finite set of symbols and the Greek letter sigma ( Σ ) is 
often used to denote it. 

 For example: Σ = {0,1}      the binary alphabet   
A string (string = sentence = word) over an alphabet is a finite sequence of symbols 
drawn from that alphabet. 

 Alphabet  Strings   
 Σ = {0,1}   15, 201, 3 
 Alphabet  Strings   
 Σ = {a, b, c, …, z}  while, for, const 

The length of a string s, usually written  | s |, is the number of occurrences of symbols in 
s.  
For example:  If  B = while    the value of  | s | = 5     
Note: the empty string, denoted ε (epsilon), is the string of length zero. 

 | ε | = 0 
Note: the empty string is sometimes denoted λ (lambda). 
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Languages 
A language is any countable set of strings over some fixed alphabet. 

For example: 
Let L be the alphabet of letters and D be the alphabet of digits: 

 L = { A, B, …, Z, a, b, …, z}  and  D = {0, 1, 2, 3, …, 8, 9} 

   Note:  L and D are languages all of whose strings  
 happen  to be of length one. Therefore, an 
 equivalent definition is: 

 L is the language of uppercase and lowercase letters. 
 D is the language of digits. 
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Regular Expressions 
•  Let Σ be a finite alphabet, then 
•  Φ is an regular expression (re) denoting the set (language) {a}. We say L(Φ) 

= {} to denote this.  
•  ε (or λ) is an re denoting the language L(ε) = {ε} 
•  If a ∈ Σ, then a is a re denoting the set (language) {a}.  
•  If r and s are regular expressions then  

r | s is an re denoting the set L(r|s) = L(r) ∪ L(s) 
r ⋅ s is an re denoting the set L(r⋅s) = L(r) ⋅ L(s) 
   Here, ⋅  denotes pairwise concatenation, i.e., 
      A ⋅ B = { x y | x ∈ A, y ∈ B } 
r* is an re denoting the set L(r*) = L(r)*  
   Here, * is called the Kleene star operator, where 
      ε ∈ A* ; if x ∈ A* and y ∈ A, then xy ∈ A* 

•  Precedence is *, ⋅, | Parentheses can override this. 
•  Nothing else is a regular expression over Σ 

4/21/11 © UCF EECS 113 



More on the Kleene Star 

•  Let R be an arbitrary regular expression,  
– R0 = ε   Note that x ⋅ ε = ε ⋅ x = x 
– R1 = R 
– R2 = R ⋅ R, L(R2) = { xy | x ∈ R, y ∈ R } 
– … 
– Rn = Rn-1 ⋅ R = R ⋅ Rn-1, when n>0 

– R* = R0 | R1 | R2 | … | Rn | … 
– R+ = R1 | R2 | … | Rn | … 
– R? = R | ε   ? Denotes 0 or 1 occurrence 
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Extensions 
•  We can specify a sequence of letters that are consecutive in ASCII 

by showing [x-y] where x is the lowest lexically and y the highest 
lexically in the desired range. 

•  Thus, our identifiers can be specified as [a-zA-Z]([a-zA-Z0-9])+ 
•  Note that the | is omitted in this notation when multiple expressions 

are chosen from. This can only be done inside the square brackets. 
•  [^letters] means anything not matching any one of these letters. 

Thus [^0-9] is any non-digit character. 
•  Slash, as in \c, can be used to indicate the character c when c is 

one of the special characters, e.g., z\+ is the string z+, whereas z+ 
is one or more z’s. 

•  Period stands for any character as in .*HUGHES.* is any string with 
the word HUGHES embedded in it. If you want a “.”, quote it or use 
the escape character “\” in front of it, as in \. 
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More reg exp Notation 

•  The concatenation symbol ⋅ is often 
omitted in regular expressions 

•  Examples 
–  (C|c)(H|h)21 = {CH21,Ch21, cH21, ch21} 
–  (+ | -)? [0-9]+ = [0-9]+ | + [0-9]+ | - [0-9]+  

•  Above is a signed or unsigned integer constant 
•  This use of a sign is rarely used in our lexical 

analyzers as the meaning of a sign versus a binary 
operator is more of a syntax issue 
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Identifiers as re’s 
•  The identifiers in our simple language are 

alphanumeric and must start with an alphabetic 
symbol. Can describe as 
–  letter(letter | digit)* 

where letter is [A-Za-z] 
and digit is [0-9] 

•  We can also use a grammar to describe as 
–  letter → A | B | … | Z | a | b | … |z 
–  digit → 0 | 1 | … | 9 
–  id → letter rest 
–  rest → letter rest | digit rest | ε  
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Lexemes, Patterns,Tokens 
A Lexeme is the sequence of input characters in the source program that  
matches the pattern for a token (the sequence of input characters that the  
token represents). 

A Pattern is a description of the form that  the lexemes of a token may take.  

A Token is the internal representation of a lexeme. Some tokens  may  
consist only of a  name (internal representation) while others may also have  
some associated values (attributes) to give information about a particular  
instance of a token.  
Examples: 
Lexeme   Pattern    Token      Attribute 
Any identifier  letter(letter | digit)*   idsym      pointer to symbol table 
If   if    ifsym      --  
>=   < | <= | > | >= | = | <>  relopsym     GE 
57   digit+    intcon      57   
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LEXICAL ANALYSIS 
Using Lex 
(DAY #6) 
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Lex (Flex) 
•  Lex is a program that generates lexical analyzers from 

regular expressions. Flex is a descendant of Lex. 
•  Input sections 

%{ 
copied to generated code 
%} 
{definitions} 
%% 
{rules} 
%% 
{user routines – copied to generated code} 
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Definitions (Calc) 
%{ 
#include <stdio.h> 

int top = 0, intval; 
int stack[20], reg[26]; 

int ord(letter) { 
 if (islower(letter)) return (letter - 'a'); 
 else return (letter - 'A'); 

} 

%} 
%% 
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Rules (Calc) 
\n   { top = 0; } 
=[ \t]*[a-zA-Z]  { if (top>0) { reg[ord(yytext[yyleng-1])] = stack[top-1]; 

   printf("%d\n", stack[top-1]); } } 
[0-9]+   { sscanf(yytext,"%d",&intval); stack[top++] = intval; } 
[a-zA-Z]   { stack[top++] = reg[ord(yytext[0])]; }  
"+"   { if (top>0) { stack[top-2] += stack[top-1]; top--; } } 
"-"   { if (top>0) { stack[top-2] -= stack[top-1]; top--; } } 
"*"   { if (top>0) { stack[top-2] *= stack[top-1]; top--; } } 
"/"   { if (top>0) { stack[top-2] /= stack[top-1]; top--; } } 
[ \t]   ; 
.   { printf("error\n"); } 
%% 
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User Routines (Calc) 
int yywrap () { 
 return(1); 
} 

int main( argc, argv ) 
int argc; 
char **argv; 
{ 
  ++argv, --argc; /* skip over program name */ 
  if ( argc > 0 ) yyin = fopen( argv[0], "r" ); 
  else yyin = stdin; 
  yylex(); 
  return(0); 
} 
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Pascal-S Scanner in Lex 
%{  

#include <stdio.h> // standard i/o 
#include “y.tab.h“ // includes tokens typically defined in parser 
int line_no = 1; // use for line count 

%} 
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Definitions Section 
A [aA] 
B [bB] 
C [cC] 
D [dD] 
E [eE] 
F [fF] 
G [gG] 
… 
U [uU] 
V [vV] 
W [wW] 
X [xX] 
Y [yY] 
Z [zZ] 
NQUOTE [^'] 

%% 
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Rules Section #1 
{A}{N}{D}   return(ANDSY); 
{A}{R}{R}{A}{Y}   return(ARRAYSY); 
{B}{E}{G}{I}{N}   return(BEGINSY); 
{C}{A}{S}{E}   return(CASESY); 
{C}{O}{N}{S}{T}   return(CONSTSY); 
{D}{I}{V}   return(IDIV); 
{D}{O}    return(DOSY); 
{D}{O}{W}{N}{T}{O}  return(DOWNTOSY); 
{E}{L}{S}{E}   return(ELSESY); 
{E}{N}{D}   return(ENDSY); 
{F}{O}{R}   return(FORSY); 
{F}{U}{N}{C}{T}{I}{O}{N} return(FUNCTIONSY); 
{I}{F}    return(IFSY); 
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Rules Section #2 
{M}{O}{D}   return(IMOD); 
{N}{O}{T}   return(NOTSY); 
{O}{F}    return(OFSY); 
{O}{R}    return(ORSY); 
{P}{R}{O}{C}{E}{D}{U}{R}{E} return(PROCEDURESY); 
{P}{R}{O}{G}{R}{A}{M}  return(PROGRAMSY); 
{R}{E}{C}{O}{R}{D}  return(RECORDSY); 
{R}{E}{P}{E}{A}{T}  return(REPEATSY); 
{T}{H}{E}{N}   return(THENSY); 
{T}{O}    return(TOSY); 
{T}{Y}{P}{E}   return(TYPESY); 
{U}{N}{T}{I}{L}   return(UNTILSY); 
{V}{A}{R}   return(VARSY); 
{W}{H}{I}{L}{E}   return(WHILESY); 

[a-zA-Z]([a-zA-Z0-9])*  return(IDENT); 
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Rules Section #3 
"="    return(EGL); 
">="    return(GEG); 
">"    return(GTR); 
"<="    return(LEG); 
"<"    return(LSS); 
"<>"    return(NEG); 
“#”    return(NEG); 
"+"    return(PLUS); 
"-"    return(MINUS); 
"/"    return(RDIV); 
"*"    return(TIMES); 
"["    return(LBRACK); 
"]"    return(RBRACK);  
"("    return(LPAREN); 
")"    return(RPAREN); 
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Rules Section #4 
":="    return(BECOMES); 
".."    return(COLON); 
":"    return(COLON); // extension over what Wirth handles in Pascal-S 
","    return(COMMA); 
"."    return(DOT); 
";"    return(SEMICOLON); 

'({NQUOTE}|'')+'  return(STRINGT); 
([0-9])+    return(INTCON); 
/* How would you handle exponents? Can even occur with no decimal point!! */ 
([0-9])+".“([0-9])*   return(REALCON); 

[ \t\f]    ; 
\n  line_no++; 
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Rules Section #5 
“{" { register int c; 
       while ((c = input())) { 
          if (c == '}') break; 
          else if (c == '\n') line_no++; 
          else if (c == 0) commenteof(); 
         } 
     } 
"(*" { register int c; 
       while ((c = input())) { 
          if (c == '*') { 
           if ((c = input()) == ')') break; else unput (c); 
          } 
          else if (c == '\n') line_no++; 
          else if (c == 0) commenteof(); 
         } 
     } 
.    fprintf (stderr, "'%c' (0%o): illegal character at line %d\n", yytext[0], yytext[0], line_no); 
%% 
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User Section 
void commenteof() { 
 fprintf (stderr, "unexpected EOF inside comment at line %d\n", line_no); 
 exit (1); 
} 
int yywrap () { 
 return (1); 
} 
int main( argc, argv ) 
int argc; char **argv; 
{ ++argv, --argc; /* skip over program name */ 
  if ( argc > 0 ) yyin = fopen( argv[0], "r" ); else yyin = stdin; 
  yylex(); 
  return(0); 
} 
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Altered for Test (pascal.lex) 
%% 

{A}{N}{D}   printf("ANDSY "); 
{A}{R}{R}{A}{Y}   printf("ARRAYSY "); 
{C}{A}{S}{E}   printf("CASESY "); 
… 
[a-zA-Z]([a-zA-Z0-9])*  printf("IDENT %s ", yytext); 
… 
\'({NQUOTE})*\'  printf("STRINGT %s ", yytext); 
([0-9])+\.([0-9])*   printf("REALCON %s ", yytext); 
([0-9])+    printf("INTCON %s ", yytext); 
[ \t\f]    ; 
\n         line_no++; printf("\n%5d ", line_no); 
… 
  if ( argc > 0 ) yyin = fopen( argv[0], "r" ); 
  else yyin = stdin; 
  printf("\n%5d ", line_no); 
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LEXICAL ANALYSIS 
Finite State Automata 

(DAY #6) 
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Transition Diagrams 
Transition diagrams or transition graphs are used to match a lexeme to a pattern. 

Each Transition diagram has:  

 States   represented by circles. 
 Actions   represented by arrows between the states. 

          Start state   represented by an arrowhead (beginning of a pattern) 
          Final state   represented by two concentric circles (end of pattern). 

All transition diagrams are deterministic, which means that there is no need to  
choose between two different actions for a given input.  

Example: 
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letter other 

letter or digit 

1 2 3 



ID and Number Diagram 
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The following state diagrams recognize identifiers and numbers (integers) 

letter other 

letter or digit 

1 2 3 

digit other 

digit 

4 5 6 

not  
letter 

 not  
 digit 

7 

accept token “id” and 
retract (unget char) 

accept token “number” and 
retract (unget char) 



Diagram to Code 
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Translating transition diagrams to code: 

{state 1}  ch = getchar(); 
  If isletter (ch) { 

{state 2}    name = (string)ch; 
    while (isletter(ch) or isdigit(ch)) do{ 
       name = concat(name, string(ch)); 
       ch = getchar(); 
    } 

{state 3}    retract(ch); // we have scanned  
                      //  one character too far 
    token = (id, name); 
    return(token); 
  } 

{state 4}  else if isdigit(ch) { 
   value := ord(ch)-ord(‘0’); 

{state 5}    ch = getchar(); 
   while (isdigit (ch)) do{ 
      value := 10 * value + ord(ch)-ord(‘0’) 
      ch := getchar 
   } 

{state 6}    retract(ch); 
   token:= (int, value); 
   return (token); 
 } 

{state 7}  else { 
  … 
 } 



Finite State Automata (FSA) 

•  Formal Model for diagrams 
– Finite number of states 
– Transitions based on next character read 
– One (or more) start states 
– Usually many final states 
– Every re has an associated FSA 
– Every FSA has an associated re 
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Deterministic FSA 

•  If every state/character combination is 
associated with precisely one transition 
then the FSA is deterministic. 

•  If there are transitions on ε or there is at 
least one state/character combination for 
which there is not precisely one transition 
then the FSA is non-deterministic. 
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Pattern Matching   
•  GREP – pattern matching from Unix 
•  Covering an re to an FSA naturally leads to a non-

deterministic one (NFA) 
•  Converting to a det. FSA (DFA) leads to state explosion 

(can be exponential) 
•  DFA runs in linear time; NFA requires backtrack 
•  Convert if can amortize cost of conversion 
•  Can amortize in a lexical analyzer because it’s run over 

and over again; can amortize if looking for patterns in a 
large corpus of text; cannot amortize on trivial scan 
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CONTEXT FREE GRAMMARS 
(DAY #7) 
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Parsing 
Regular language nested structures cannot be expressed. 

Nested structures can be expressed with the aid of 
recursion. 

For example, a FSA cannot suffice for the recognition of 
sentences in the set 

  { an bn | n is in   { 0, 1, 2, 3, …}}   

  where a  represents “(“ or “{“ 

  and b represents “)” or “}”  
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Regular + Recursion 
So far we have been working with three rules to define regular 
sets (regular languages): 

  Concatenation  (s r) 

  Alternation (choice)  (s | r) 

  Kleene closure (repetition)  ( s )* 

Regular sets are generated by regular expressions and recognized 
by scanners (FSA). 

By adding recursion as an additional rule we can define context 
free languages. 
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Context Free 
Any set of strings that can be defined using concatenation, 
alternation, Kleene closure and recursion is called a 
Context Free Language (CFL). 

CFLs are generated by Context Free Grammars (CFG) and 
can be recognized by Pushdown Automatas. 

“Every language has a structure called its grammar” 

Parsing is the task of determining the structure or syntax of 
a program. 
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Simple Example of Grammar 
Let us observe the following three rules (grammar): 

1) <sentence>  <subject> <predicate> 

 where “” means “is defined as” or “derives” 

2) <subject>    John | Mary 

3) <predicate>  eats | talks 

 where “ | ”   is called alternation and means “or” 

With these rules we define four possible sentences: 

John eats  John talks  Mary eats  Mary talks 
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Another Simple Grammar 
We will refer to the formulae or  rules used in the former example as  

Syntax rules, productions, syntactic equations, or rewriting rules. 

<subject> and <predicate> are syntactic classes or categories, also 
called non-terminals. 

Using a shorthand notation we can write the following syntax rules 

S  A B 

A  a | b 

B  c | d 
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S is the start symbol 

L = { ac, ad, bc, bd} = set of sentences 

L is called the language that can be generated  
From the syntax rules by repeated substitution 



History of Formal Language 
•  In 1940s, Emil Post (mathematician) devised rewriting systems as a 

way to describe how mathematicians do proofs. Purpose was to 
mechanize them. 

•  Early 1950s, Noam Chomsky (linguist) developed a hierarchy of 
rewriting systems (grammars) to describe natural languages. 

•  Late 1950s, Backus-Naur (computer scientists) devised BNF (a 
variant of Chomsky’s context-free grammars) to describe the 
programming language Algol. 

•  1960s was the time of many advances in parsing. In particular, 
parsing of context free was shown to be no worse than O(n3). More 
importantly, useful subsets were found that could be parsed in O(n). 

•  Will discuss the issues faced in 1960s in much more detail as we go 
along. 
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Formalism for Grammars 
Definition : A language is a set of strings of characters from some alphabet. 

The strings of the language are called sentences or statements. 

A string over some alphabet is a finite sequence of symbols drawn  from that 
alphabet. 

A meta-language is a language that is used to describe another language. 

A very well known meta-language is BNF (Backus Naur Form) 

It was developed by John Backus and Peter Naur, in the late 50s, to describe 
programming languages. 

Noam Chomsky in the early 50s developed context free grammars which can 
be expressed using BNF. 
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Languages – The Big Picture 
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Context Free Grammars 
G = (V, Σ, S, P) where 
V is a finite set of symbols called the non-terminals or variables. They 
are not part of the language generated by the grammar. 
Σ is a finite set of symbols, disjoint from V, called the terminals. Strings 
in the language are made up entirely of terminal symbols. 
S is a member of V and is called the start symbol. 
P is a finite set of rules or productions. Each member of P is one the 
form 
A → α where α is a strings (V∪Σ)* 

 Note that the left hand side of a rule is a letter in V; 
 The right hand side is a string from the combined alphabets 
 The right hand side can even be empty (ε)  
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Interesting Sample CFG 
Example of a grammar for a small language:  

G = ({<program>, <stmt-list>, <stmt>, <expression>},  
        {begin, end, ident, ;, =, +, -}, <program>, P) where P is 

 <program>   begin <stmt-list> end 

 <stmt-list>   <stmt> | <stmt> ; <stmt-list> 

 <stmt>    ident = <expression> 

 <expression>   ident + ident | ident - ident | ident  

Here “ident” is a token return from a scanner, as are  “begin”, “end”, “;”, “=”, 
“+”, “-” 

Note that “;” is a separator (Pascal style) not a terminator (C style). 
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Derivation 
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A sentence generation is called a derivation. 

Grammar for a simple  
assignment statement: 

R1  <assgn>  <id> := <expr> 
R2  <id>          a | b | c 
R3  <expr>     <id> + <expr> 
R4           |   <id> * <expr> 
R5           |   ( <expr> ) 
R6                   | <id> 

The statement a := b * ( a + c )  
Is generated by the left most derivation: 

<assgn> ⇒ <id> := <expr>        R1 
   ⇒ a := <expr>         R2 
   ⇒ a := <id> * <expr>        R4 

  ⇒ a := b * <expr>        R2 
  ⇒ a := b * ( <expr> )               R5 
  ⇒ a := b * ( <id> + <expr> )   R3 
  ⇒ a := b * ( a + <expr> )        R2 
  ⇒ a := b * ( a + <id> )        R6 
  ⇒ a := b * ( a + c )        R2 In a left most derivation only the 

left most non-terminal is replaced 



Parse Trees 
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A parse tree is a graphical representation of a derivation 
For instance the parse tree for the statement  a := b * ( a + c )  is: 

   <assign> 

        <id>              :=   <expr> 

           a         <id>         *   <expr> 

           b          (  <expr>            ) 

            
          <id>        +          <expr> 

             a      <id> 

              c 

Every internal node of a 
parse tree is labeled with 
a non-terminal symbol. 

Every leaf is labeled with a  
terminal symbol. 

The generated string is read  
left to right 



Ambiguity 
A grammar that generates a sentence for which there are two or more  
distinct parse trees is said to be “ambiguous” 

For instance, the following grammar is ambiguous because it generates  
distinct  parse trees for the expression a := b + c * a 

  <assgn>  <id> := <expr> 
  <id>      a | b | c 
  <expr>     <expr> + <expr> 

      |   <expr> * <expr> 
      |   ( <expr> ) 

                   | <id> 
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Ambiguous Parse 
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This grammar generates two parse trees  for the same expression. 

If a language structure has more than one parse tree,  
the meaning of the structure cannot be determined uniquely.   

            <assign> 

     <id>    :=            <expr> 

        A               <expr>      +           <expr> 

        <id>      <expr>     *      <expr> 

          B        <id>         <id> 

          C           A 

            <assign> 

     <id>    :=             <expr> 

        A               <expr>        *            <expr> 

           <expr>       +      <expr>             <id> 

              <id>                  <id>  A 

                 B                       C 



Precedence 
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Operator precedence: 
If an operator is generated lower in the parse tree, it indicates that the  
operator has precedence over the operator generated higher up in the tree. 

An unambiguous grammar for expressions: 

 <assign>  <id> := <expr> 
  <id>      a | b | c 
  <expr>     <expr> + <term> 

      |  <term>  
  <term>     <term> * <factor> 

      |   <factor> 
  <factor>    ( <expr> ) 
                    | <id> 

This grammar indicates the usual  
precedence order of multiplication and  
addition operators. 

This grammar generates unique parse 
trees independently of doing a  
rightmost or leftmost derivation  



Left (right)most Derivations 
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Rightmost derivation: 
 <assgn>  ⇒ <id> := <expr>          
   ⇒ <id> := <expr> + <term>    
   ⇒ <id> := <expr> + <term> *<factor>  

  ⇒ <id> := <expr> + <term> *<id>          
  ⇒ <id> := <expr> + <term> *  a    
  ⇒ <id> := <expr> + <factor> *  a 
  ⇒ <id> := <expr> + <id> *  a 
  ⇒ <id> := <expr> + c  *  a  
  ⇒ <id> := <term> + c  *  a  
  ⇒ <id> := <factor> + c  *  a  
  ⇒ <id> := <id> + c  *  a  

   ⇒ <id> :=  b + c  * a 
  ⇒ a := b +   c  *  a 

Leftmost derivation: 
 <assgn>  <id> := <expr>          
    a := <expr>           
    a := <expr> + <term>          

   a := <term> + <term>          
   a := <factor> + <term> 
   a := <id> + <term> 
   a := b + <term>     
   a := b + <term> *<factor>        
   a := b + <factor> * <factor> 
   a := b + <id> * <factor> 

    a := b +   c  * <factor> 
   a := b +   c  * <id> 
   a := b +   c  *   a       



Avoiding Ambiguity 
Dealing with ambiguity: 

Rule 1:  * (times) and / (divide) have higher precedence  
than + (plus) and – (minus). 

Example:  
  a + c * 3  a + ( c * 3) 

Rule 2: Operators of equal precedence associate to the left. 

Example:  
  a + c + 3     (a + c) + 3  
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Unambiguous Grammar 
Rewrite the grammar to avoid ambiguity. 

The grammar: 

<expr>  <expr> <op> <expr> | id | int | (<expr>) 
<op>     + | - | * | / 

Can be rewritten it as: 

<expr>  <term> | <expr> + <term> | <expr> - <term> 
<term>  <factor> | <term> * <factor> | <term> / <factor>. 
<factor>  id | int | (<expr>) 
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RECURSIVE DESCENT PARSING 
(DAY #8,9) 
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Parsing Problem 
The parsing Problem: Take a string of symbols in a language (tokens) 
and a grammar for that language to construct the parse tree or report 
that the sentence is syntactically incorrect. 

 For correct strings: 

 Sentence + grammar  parse tree 

 For a compiler,  a sentence is a program: 

 Program + grammar  parse tree 

 Types of parsers: 

 Top-down aka predictive (recursive descent parsing) 

 Bottom-up parsing. 

 “We will focus on top-down parsing at present”. 
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Top Down Parsing 
Recursive Descent parsing uses recursive procedures to model the 
parse tree to be constructed. The parse tree is built from the top down, 
trying to construct a left-most derivation. 

Beginning with  start symbol, for each non-terminal (syntactic class) in 
the grammar a procedure which parses that syntactic class is 
constructed. 

 Consider the expression grammar: 
 E   T E’ 

    E’  + T E’ | e   
 T   F T’ 
 T’  * F T’ | e    
 F   ( E ) | id  

 The following procedures have to be written: 
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Recursive Descent 
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Procedure E 
   begin { E } 
      call T 
      call E’ 
      print (“ E found ”) 
   end { E } 

Procedure E’ 
   begin { E’ } 
      If token = “+” then 
        begin { IF } 
          print (“ + found “) 
          Get next token 
          call T 
          call E’ 
        end { IF } 
        print (“ E’ found “) 
   end { E’ } 

Procedure T 
   begin { T } 
      call F 
      call T’ 
      print (“ T found ”) 
   end { T } 

Procedure T’ 
   begin { T’ } 
      If token = “ * ” then 
        begin { IF } 
          print (“ * found “) 
          Get next token 
          call F 
          call T’ 
        end { IF } 
        print (“ T’ found “) 
   end { T’ } 

Procedure F 
   begin { F } 
      case token is 
      “(“:  
           print (“ (  found ”) 
           Get next token 
           call E 
           if token = “)” then 
             begin { IF } 
                print (“ ) found”) 
                Get next token 
                 print (“ F found “) 
             end { IF } 
           else  
           call ERROR 
      “id“:  
           print (“ id found ”) 
           Get next token 
           print (“ F found “) 
     otherwise: 
           call ERROR  
   end { F } 



Left Recursion & Top-Down 
Ambiguity is not the only problem associated with recursive descent parsing.   
Other problems to be aware of are left recursion and left factoring: 

Left recursion: A grammar is left recursive if it has a non-terminal A such that  
there is a derivation A  A α  for some non-empty string α.  

A is left-recursive if the left-most symbol in any of its alternatives either immediately 
(direct left-recursive) or through other non-terminal definitions (indirect/hidden 
left-recursive) rewrites to a string with A  on the left.  

Top-down parsing methods cannot handle left-recursive grammars,  
so a transformation is needed to eliminate  left recursion. 
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Prediction and Left Recursion 
Immediate left-recursion: A  A α 
 
  
 
E.g.,  Expr  Expr + Term 
Top-down parser implementation:  
function expr() { 
     expr(); match(‘+’); term(); 
} 

Do you see the problem ? 

Indirect left-recursion:      A  Ba  |  C  
              B  Ab  |  D 

A ⇒ Ba ⇒ Aba  
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Removing Left Recursion 
Given left recursive and non left recursive rules 
A → Aα1 | … | Aαn | β1 | … | βm    
Can view as  
A → (β1 | … | βm) (α1 | … | αn )* 
Star notation is an extension to normal notation with 
obvious meaning 
Now, it should be clear this can be done right recursive as 
A → β1 | … | βm B 
B → α1B| … | αnB | ε 
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Right Recursive Expressions 
Grammar: Expr  Expr + Term | Term 

     Term  Term * Factor | Factor 
     Factor  (Expr) | Int 

Fix:           Expr  Term ExprRest 
     ExprRest  + Term ExprRest | ε  
     Term  Factor TermRest 
     TermRest  * Factor TermRest | ε  
     Factor  (Expr) | Int 

This is syntactically fine, but semantically it can cause trouble.  
We will address that issue next. 
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Syntax Directed Left Rec 
Syntax directed translation adds semantic rules to be 
carried out when syntactic rules are applied. Let’s do 
conversion of infix to postfix. 
Expr  Expr + Term   {out(“ + “);} 
          |  Term  
Term  Term * Factor   {out(“ * “);} 
          |   Factor 
Factor  (Expr)  
           |    int     {out(“ “, int.val, “ “);} 
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How It Works 

Examples of applying previous syntax 
directed translation 

Input: 15 + 20 + 7 * 3 + 2 
Output:  15 20 + 7 3 * + 2 + 

Input: 15 + 20 + 7 + 3 * 2 
Output:  15 20 + 7 + 3 2 * + 
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Direct Placement of Actions 
Expr  Term ExprRest 
ExprRest  + Term ExprRest  {out (“ + “ );} 
                 |   ε  
Term  Factor TermRest 
TermRest  * Factor TermRest  {out(“ * “);} 
                  |  ε  
Factor  (Expr)  
            |   int     {out(“ “,int.val,” “);} 
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Problems Galore 

Examples of applying previous syntax 
directed translation 

Input: 15 + 20 + 7 * 3 + 2 
Output:  15 20 7 3 * 2 + + + 

Input: 15 + 20 + 7 + 3 * 2 
Output:  15 20 7 3 2 * + + + 
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Treat Actions as Terminals 
Expr  Term ExprRest 
ExprRest  + Term {out (“ + “ );} ExprRest  
                 |   ε  
Term  Factor TermRest 
TermRest  * Factor {out(“ * “);} TermRest   
                  |  ε  
Factor  (Expr)  
            |   int {out(“ “,int.val,” “);}     
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Top Down Parsing 
Recursive Descent parsing uses recursive procedures to model the 
parse tree to be constructed. The parse tree is built from the top down, 
trying to construct a left-most derivation. 

Beginning with  start symbol, for each non-terminal (syntactic class) in 
the grammar a procedure which parses that syntactic class is 
constructed. 

 Consider the expression grammar (: 
 E   T E’ 

    E’  + T E’ | ε   
 T   F T’ 
 T’  * F T’ | ε    
 F   ( E ) | id  

 The following procedures have to be written: 
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Recursive Descent 
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Procedure E 
   begin { E } 
      call T 
      call E’ 
end { E } 

Procedure E’ 
   begin { E’ } 
      If token = “+” then 
        begin { addition } 
          nextsy 
          call T 
          out(“ + “) 
          call E’ 
        end { addition } 
    end { E’ } 

Procedure T 
   begin { T } 
      call F 
      call T’ 
   end { T } 

Procedure T’ 
   begin { T’ } 
      If token = “ * ” then 
        begin { multiply } 
          nextsy() 
          call F 
          out(“ * “) 
          call T’ 
        end { multiply } 
     end { T’ } 

Procedure F 
   begin { F } 
      case token is 
      “(“:  
           nextsy() 
           call E 
           if token = “)” then 
             nextsy() 
           else  
             ERROR() 
      “id“:  
           out( id.val ) 
           Get next token 
      otherwise: 
           ERROR()  
   end { F } 



Process 

•  Write left recursive grammar with semantic 
actions. 

•  Rewrite a right recursive with actions 
treated as terminals in original rules. 

•  Develop recursive descent parser. 
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Left Factoring 

When have rules like  
 A → αβ | αγ 

which rule to choose is a problem 
Factor as 

 A → α X 
 X → β | γ 
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EBNF 
(DAY #9,10) 
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EBNF 

Extended Backus Naur Form (EBNF) 
non-terminal ::= rhs 
Where the rhs can include quoted terminals, 
non-terminal, designated keywords, and the 
special symbols  
 s1|…| sk  choose one of k strings 
 { s }  repeat string s 0 or more times 
 [ s ]  optionally include string s   
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Pascal-S EBNF#1 
RED indicates a reserved word or a special symbol 
BLUE is an Identifier 

Program ::= program_heading   
                    block '.'  
program_heading  ::= PROGRAM NAME '(' identifier_list ')' ';'  
identifier_list  ::= NAME { ',' NAME }  

block  ::= declaration_part statement_part  
declaration_part  ::= [ constant_definition_part ] 
              [ type_definition_part ]  
                                 [ variable_declaration_part ] 
                                 procedure_and_function_declaration_part  
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Pascal-S EBNF#2 
constant_definition_part ::= CONST constant_definition ';‘ { constant_definition ';' } 
constant_definition ::= NAME '=' constant 

constant ::= [ '+' | '-' ] ( CONSTANT_NAME | NUMBER ) | STRING  

type_definition_part ::= TYPE type_definition ';' { type_definition ';' } 
type_definition ::= NAME '=' type 

variable_declaration_part ::= VAR variable_declaration ';' { variable_declaration ';' } 
variable_declaration ::= identifier_list ':' type 

procedure_and_function_declaration_part ::= 
          { ( procedure_declaration | function_declaration ) ';' } 

procedure_declaration ::= procedure_heading ';' block 
function_declaration ::= function_heading ';'  block 
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Pascal-S EBNF#3 
type ::= simple_type | structured_type | TYPE_NAME  

simple_type ::= constant '..' constant 

structured_type ::= array_type | record_type  

array_type ::= ARRAY '[' index_type { ',' index_type } ']' OF element_type  
index_type ::= simple_type  
element_type ::= type  

record_type ::= RECORD field_list END  
field_list ::= record_section { ';' record_section }  
record_section ::= identifier_list ':' type  
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Pascal-S EBNF#4 
procedure_heading ::= PROCEDURE NAME [ formal_parameter_list ] 

function_heading ::= FUNCTION NAME [ formal_parameter_list ] ':' result_type 

result_type ::= TYPE_NAME 

formal_parameter_list ::= '(' formal_parameter_section { ';' formal_parameter_section } ')' 
formal_parameter_section ::= [ VAR ]identifier_list ':' parameter_type 
parameter_type ::= TYPE_NAME  
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Pascal-S EBNF#5 
statement_part ::= BEGIN statement_sequence END 
statement_sequence ::= statement { ';' statement } 
statement ::= ( simple_statement | structured_statement ) 
simple_statement ::= [ assignment_statement | procedure_statement ] 

procedure_statement ::= PROCEDURE_NAME [ actual_parameter_list ] 
actual_parameter_list ::= '(' expression { ',' expression } ')'  

assignment_statement ::= ( variable_access | FUNCTION_NAME ) ':=' expression 

variable_access ::= ACCESS_NAME { end_access } 
end_access ::= { array_access | record_access | function_parameters }  
array_access ::= '[' expression_list ']'  
record_access ::= '.' variable_access  
function_parameters ::= '(' [ expression_list ] ')'  

expression_list ::= expression { ',' expression } 
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Pascal-S EBNF#6 
expression ::= simple_expression [ relational_operator simple_expression ]  
relational_operator ::= '=' | '<>' | '<' | '<=' | '>' | '>='  

simple_expression ::= [ '+' | '-' ] term { addition_operator term }  
addition_operator ::= '+' | '-' | OR  

term ::= factor { multiplication_operator factor }  
multiplication_operator ::= '*' | '/' | DIV | MOD | AND  

factor ::= NUMBER | STRING | CONSTANT_NAME 
                  | variable_access | function_designator 
                  | '(' expression ')' | NOT factor  

function_designator ::= FUNCTION_NAME [ actual_parameter_list ]  
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Pascal-S EBNF#7 
structured_statement ::= compound_statement | repetitive_statement |  

          conditional_statement 

compound_statement ::= BEGIN statement_sequence END 

repetitive_statement ::= while_statement | repeat_statement | for_statement  
while_statement ::= WHILE expression DO statement 
repeat_statement ::= REPEAT statement_sequence UNTIL expression 
for_statement ::= FOR VARIABLE_NAME ':=' expression ( TO | DOWNTO ) expression  

             DO statement 

conditional_statement ::= if_statement | case_statement 
if_statement ::= IF expression THEN statement [ ELSE statement ] . 
case_statement ::= CASE expression OF case_element { ';' case_element } [ ';' ] END  
case_element ::= case_label_list ':' statement  
case_label_list ::= constant { ',' constant }         
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SYNTAX GRAPHS (CHARTS) 
RAILROAD CHARTS 

(DAY #9,10) 
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Syntax Graphs #1 
Transforming a grammar expressed in EBNF to syntax graph (also called syntax chart or 
railroad chart) is advantageous to visualize the parsing process of a sentence because 
the syntax graph reflects the flow of control of the parser. 

Rules to construct  a syntax graph: 

R1.- Each non-terminal symbol  A  which can be expressed as a set of productions 

A ::= P1 | P2 | . . . | Pn can be mapped into the following syntax graph:  
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Pn 

P2 

P1 



Syntax Graphs #2 
Transforming a grammar expressed in EBNF to syntax graph is advantageous to visualize the parsing 
process of a sentence because the syntax graph reflects the flow of control of the parser. 
Rules to construct  a syntax graph: 
R2.- Every occurrence  of a terminal symbol T  in a  Pi  means that a token has been recognized 
and a new symbol (token) must be read. This is represented by a label T enclosed in a circle. 

R3.- Every occurrence of a non-terminal symbol B in a Pi  corresponds to an activation of the  
recognizer B. 

R4.- A production P having the form  P = a1 a2 . . . am can be represented by the graph: 

      where every   ai   is obtained by applying construction rules R1 through R6  

4/21/11 © UCF EECS 187 

 T 

 B 

a2  am a1 



Syntax Graphs #3 
Transforming a grammar expressed in EBNF to syntax graph is advantageous to visualize the parsing 
process of a sentence because the syntax graph reflects the flow of control of the parser. 
Rules to construct  a syntax graph: 

R5.- A production P having the form  P = {a} can be represented by the graph: 

       where   a    is obtained by applying constructing rules R1 through R6 

R6.- A production P having the form  P = [a] can be represented by the graph: 

 where   a    is obtained by applying constructing rules R1 through R6 
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Syntax Graphs from EBNF 
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Example from N. Wirth: 

A ::= “x” | “(“ B “)” 
B ::= A C 
C ::= { “+” A } 

B ( ) 

x 

A 

B 
A C 

A + 

C 



Strings from Syntax Graph 

4/21/11 © UCF EECS 190 

A + 

A ) ( 

x 

x 
(x) 
(x + x) 



Parser from Syntax Graph#1 
Transforming a grammar expressed in EBNF to syntax graph is advantageous to 
visualize the parsing process of a sentence because the syntax graph reflects the flow of 
control of the parser. 

Rules to construct  a parser from a syntax graph (N. Wirth): 
B1.- Reduce the system of graphs to as few individual graphs as possible  
        by appropriate substitution. 
B2.- Translate each graph into a procedure declaration according to the  
        subsequent rules B3 through B7. 
B3.- A sequence of elements 

Is translated into the compound statement 
  { T(S1) T(S2) … T(Sn) } 

T(S) denotes the translation of graph S 
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Parser from Syntax Graph#2 

4/21/11 © UCF EECS 192 

Rules to construct  a parser from a syntax graph: 

B4.- A choice of elements 

Sn 

S2 

S1 

Conditional 

if sy in x1  { insymbol(); T(S1) } else  
if sy in x2  { insymbol(); T(S2) } else  
. . . 

if sy in xn  { insymbol(); T(Sn) } else 
error(); 

 x1 

 xn 

 x2 



Parser from Syntax Graph#3 
Rules to construct  a parser from a syntax graph: 

B5.- A loop of the form  

is translated into the  statement 

  while sy in x do { insymbol(): T(S) } 

where T(S) is the translation of S according to rules B3 through B7. 
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Parser from Syntax Graph#4 
Rules to construct  a parser from a syntax graph: 

B6.- A loop of the form  

is translated into the  statement 

  if x in L { insymbol(); T(S) } 

where T(S) is the translation of S according to rules B3 through B8. 
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Parser from Syntax Graph#5 
Rules to construct  a parser from a syntax graph: 

B7.- An element of the graph denoting another graph A 

is translated into the procedure call statement A. 

B8.- An element of the graph denoting a terminal symbol x 

Is translated into the statement 

  if (sy in x) insymbol(); else error(); 

Where error is a routine called when an ill-formed construct is encountered.
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Parser from Syntax Graph#6 
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Useful variants of rules B4 and  B5: 

B4a.- A choice of elements 

Sn 

S2 

S1 

Conditional 

if sy in x1  { insymbol(); T(S1) } else  
if sy in x2  { insymbol(); T(S2) } else  
. . . 

if sy in xn  { insymbol(); T(Sn) } else 
error(); 

 x1 

 xn 

 x2 



Example Graphs 
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Applying the above mentioning rules to create one graph to this example: 

A ::= “x” | “(“ B “)” 
B ::= A C 
C ::= { “+” A } 

B ( ) 

x 

A 

B 
A C 

A + 

C 



Combining Graphs 
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A + 

A ) ( 

x 

We will obtain this graph: 

Using this graph and choosing from  rules B1 to B8 a parser program  
can be generated.  

A 



Pseudo-code Parser 
void function A() { 
   if (sy == ‘x’) insymbol();  // ‘x’ is replaced by its token 
   else if (sy == ‘(‘) { 
      insymbol(); 
      A(); 
      while sy == ‘+’ { 
         insymbol(); 
         A(); 
      } 
      if (sy == ‘)’) insymbol(); else error(err_number); 
   else error(err_number); 
} 
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PASCAL-S RECURSIVE DESCENT 
(DAY #9,10) 
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Main for Pascal-S #1 
(* First for some constructs *) 
constbegsys := [plus, minus, intcon, realcon, charcon, ident];  
typebegsys := [ident, arraysy, recordsy]; 
blockbegsys := [constsy, typesy, varsy, proceduresy, functionsy, beginsy]; 
facbegsys := [intcon, realcon, charcon, ident, lparent, notsy]; 
statbegsys := [beginsy, ifsy, whilesy, repeatsy, forsy, casesy]; 
stantyps := [notyp, ints, reals, bools, chars]; 
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Main for Pascal-S #2 
insymbol; 
if sy <> programsy then error(3) else 
  begin insymbol; 
    if sy <> ident then error(2) else 
    begin progname := id; insymbol; 
      if sy <> lparent then error(9) else 
      repeat insymbol; 
        if sy <> ident then error(2) else insymbol 
      until sy <> comma; 
      if sy = rparent then insymbol else error(4); 
    end 
  end; 
block(blockbegsys+statbegsys, false, 1);  
if sy <> period then error(22);  
emit(31); (* halt *) 
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Useful Tests 
procedure skip(fsys: symset; n: integer); 
begin error(n); 
   while not (sy in fsys) do insymbol 
end (* skip *); 
procedure test(s1, s2: symset; n: integer); 
begin  
   if not (sy in s1) then skip(s1+s2, n) 
end (* test *); 
procedure testsemicolon; 
begin 
   if sy = semicolon then insymbol else 
   begin error(14); 
      if sy in [comma, colon] then insymbol 
   end; 
   test([ident]+blockbegsys, fsys, 6) 
end (* testsemicolon *); 
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Part of Block 
procedure block(fsys: symset; isfun: boolean; level: integer); 
….. 
 repeat 
    if sy = constsy then constantdeclaration; 
    if sy = typesy then typedeclaration; 
    if sy = varsy then variabledeclaration; 
    while sy in [proceduresy, functionsy] do procdeclaration; 
    test([beginsy], blockbegsys+statbegsys, 56) 
  until sy in statbegsys; 
  insymbol; statement([semicolon, endsy]+fsys); 
  while sy in [semicolon]+statbegsys do 
    begin if sy = semicolon then insymbol else error(14); 
      statement([semicolon, endsy]+fsys) 
    end; 
  if sy = endsy then insymbol else error(57); 
  test(fsys+[period], [], 6) 
end (* block *); 
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Statement#1 
begin (* statement *) 
  if sy in statbegsys+[ident] then 
      case sy of 
        ident:  begin i:= loc(id); insymbol; 
                     if i <> 0 then 
                     case tab[i].obj of 
                       konstant, typel: error(45); 
                       variable: 
                           assignment(tab[i].lev, tab[i].adr); 
                       prozedure: 
                         if tab[i].lev <> 0 then call(fsys, i) 
                                 else standproc(tab[i].adr); 
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Statement#2 
                       funktion: 
                         if tab[i].ref = display[level] then assignment(tab[i].lev+1, 0) 
                         else error(45) 
                     end 
                   end; 
        beginsy:   compoundstatement; 
        ifsy:          ifstatement; 
        casesy:    casestatement; 
        whilesy:    whilestatement; 
        repeatsy:  repeatstatement; 
        forsy:        forstatement; 
      end; 
    test(fsys, [], 14) 
end (* statement *) 
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Assignment Statement 
procedure assignment(lv, ad: integer); 
  var x,y: item; f: integer; 
begin x.typ := tab[i].typ; x.ref := tab[i].ref; 
  if tab[i].normal then f := 0 else f := 1;  emit2(f, lv, ad); 
  if sy in [lbrack, lparent, period] then selector([becomes, egl]+fsys, x); 
  if sy = becomes then insymbol else begin error(51); if sy = egl then insymbol end; 
  expression(fsys, y); 
  if x.typ = y.typ then 
    if x.typ in stantyps then emit(38) 
    else if x.ref <> y.ref then error(46) 
    else if x.typ = arrays then emit1(23, atab[x.ref].size) 
    else emit1(23, btab[x.ref].vsize) 
  else if (x.typ=reals) and (y.typ=ints) then begin emit1(26, 0); emit(38) end 
  else if (x.typ<>notyp) and (y.typ<>notyp) then error(46) 
end (* assignment *); 
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Compound Statement 
procedure compoundstatement; 
begin insymbol; 
  statement([semicolon, endsy]+fsys); 
  while sy in [semicolon]+statbegsys do 
  begin if sy = semicolon then insymbol else error(14); 
    statement([semicolon, endsy]+fsys) 
  end; 
  if sy = endsy then insymbol else error(57) 
end (* compoundstatement *); 
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IF Statement 
procedure ifstatement; 
  var x: item; lc1, lc2: integer; 
begin insymbol; 
  expression(fsys+[thensy, dosy], x); 
  if not (x.typ in [bools, notyp]) then error(17); 
  lc1 := lc; emit(11); (* jmpc *) 
  if sy = thensy then insymbol else begin error(52); if sy = dosy then insymbol end; 
  statement(fsys+[elsesy]); 
  if sy = elsesy then 
    begin insymbol; lc2 := lc; emit(10); 
      code[lc1].y := lc; statement(fsys); code[lc2].y := lc 
    end 
  else code[lc1].y := lc 
end (* if statment *); 
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While Statement 
procedure whilestatement; 
  var x: item; lc1, lc2: integer; 
begin insymbol; lc1 := lc; 
  expression(fsys+[dosy], x); 
  if not (x.typ in [bools, notyp]) then error(17); 
  lc2 := lc; emit(11); 
  if sy = dosy then insymbol else error(54); 
  statement(fsys); emit1(10, lc1); code[lc2].y := lc 
end (* whilestatement *); 
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Repeat Statement 
procedure repeatstatement; 
  var x: item; lc1: integer; 
begin lc1 := lc; 
  insymbol; statement([semicolon, untilsy]+fsys); 
  while sy in [semicolon]+statbegsys do 
  begin if sy = semicolon then insymbol else error(14); 
    statement([semicolon, untilsy]+fsys) 
  end; 
  if sy = untilsy then 
    begin insymbol; expression(fsys, x); 
      if not (x.typ in [bools, notyp]) then error(17); 
      emit1(11, lc1) 
    end 
  else error(53) 
end (* repeatstement *); 

4/21/11 © UCF EECS 211 



PREDICTIVE PARSING 
FIRST AND FOLLOW SETS 

(DAY #11) 
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First Set 
A recursive descent (or predictive) parser chooses the 
correct production looking ahead at the input string a 
fixed number of symbols (typically one symbol or 
token). 

First set:  

Let α be a string of terminals and non-terminals. 

First(α) is the set of all terminals that can begin strings 
derived from α. If α ⇒ ε then ε is in First(α). 
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Example 1 of First 
Example: Given the following expression grammar: 

   E   E + T  | T   
   T   T  * F | F    
   F   ( E ) | id  

First(F) = { id, ( } 
First(T) = { id, ( } 
First(T * F) = { id, ( } 
First(T) = { id, ( } 
First(E + T) = { id, ( }      
Because:  E + T  T + T  F + T  id + T    
     E + T  T + T  F + T  ( E ) + T     
First(E ) = { id, ( } 
Because:  E  T   F  id 

 E  T   F  ( E ) 
This creates a conflict on which to choose in a top down parser. 
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Nullables 
Nullable symbols are the ones that produce the empty ( ε ) string  
Example: Given the following grammar, find the nullable symbols and the First 
set: 

Z  d   Y  ε   X  Y 

Z  X Y Z  Y  c   X  a 

Note that if X can derive the empty string, nullable( X ) is true. 

X  Y  ε       

Y  ε     Nullable   First 

Z  d    X  Yes   {a, c, ε} 

Z  X Y Z   Y  Yes   {c, ε} 

   Z  No   {a, c, d} 
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Computing First 
•  If X is a terminal, then First(X) = {X} 
•  If X is a non-terminal and X → Y1Y2…Yk is a 

production, for k>=1, then place a in First(X) if 
for some i, a is in First(Yi) and each of Y1 
through Yi-1 are nullable. If each of Y1 through Yk 
is nullable, then place ε in First(X). 

•  If X → ε is a production, add ε to First(X). 

•  Note: Some approaches use a separate status 
of nullable, rather than including ε in First. 
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Follow Set 
Given a production A, Follow( A ) is the set of terminal symbols that can immediately 
follow A. Note: $ indicates end of input, so always in Follow of start symbol 

Example: Given the following grammar: 

Z  d   Y  ε   X  Y 
Z  X Y Z  Y  c   X  a 

Compute First, Follow, and nullable. 

 Nullable   First   Follow 
  X  Yes   { a, c, ε}   { a, c, d } 
  Y  Yes   {c, ε}   { a, c, d } 
  Z  No   {a, c, d }   {$ EOF} 
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Computing Follow 
•  Place $ in Follow(S), where S is start symbol. 
•  If there is some production A → αBβ, then 

everything in First(β) except ε is in Follow(B). 
•  If there is some production A → αB or a 

production A → αBβ, where ε is in First(β) then 
everything in Follow(A) is in Follow(B). 
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Expression Grammar 
Example: Given the grammar: 
E   E + T   T   T  * F  F   id    
E   T   T   F    F   ( E )   

We can rewrite the grammar to avoid left recursion obtaining: 
E   T E’    T   F T’    F   id  
E’  + T E’   T’  * F T’   F   ( E )   
E’  ε    T’  ε  

   
Compute First, Follow, and nullable. 

 Nullable   First   Follow 
  E  No   { id , ( }   { ), $ } 
  E’  Yes   { + , ε }   { ), $ } 
  T  No   { id , ( }   { ) , +, $ }   
  T’  Yes   { * , ε }   { ) , +, $ }   

  F  No   { id , ( }   { ) , * ,  +, $ }   
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Creating Parsing Table 

•  Input: Grammar G 
•  Output: Parsing table M 
•  For each production A → α, do 

– For each terminal a in First(α). Add A → α to 
M[A,a]. 

–  If ε is in First(α), then for each terminal b in 
Follow(A), add A → α to M[A,b]. Further if $ is 
in Follow(A), add A → α to M[A,$] as well. 

– All empty cells are errors. 
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Parse Table 
Parsing table for the expression grammar: 

 First  Follow 
 E   { id , ( }  { ), $ }   E   T E’   T   F T’   F   id  
  E’   { + , ε }  { ), $ }   E’  + T E’   T’  * F T’   F   ( E ) 
  T   { id , ( }  { ) , +, $ }   E’  ε   T’  ε 
  T’   { * , ε }  { ) , +, $ }   
  F   { id , ( }  { ) , * ,  +, $ } 
            +            *               id       (      )    $ 

E               E  T E’  E  T E’   
      

E’     E’  + T E’        E’  ε  E’  ε  

T                  T  F T’  T  F T’      
          

T’     T’  ε  T’  * F T’      T’  ε
 T’  ε 

F                  F  id  F  ( E ) 4/21/11 © UCF EECS 221 



Table Entry to Code 
Using the predictive parsing table, it is easy to write a recursive-descent parser: 

     +        *        id       (      )      $ 

T’  T’  ε  T’  * F T’   T’  ε  T’  ε  

void Tprime (void)  
{  
                  switch  (token)   

 {  case PLUS:  accept (PLUS) ; break ; 
    case TIMES:  accept (TIMES) ; F ( )  ; Tprime ( );  break ; 
    case RPAREN:  accept (RPAREN) ; break ;  
    case EOF:  break ; 
    default:   error ( ) ; 
 } 

} 
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Left Factoring (Again) 
Avoid cases where two productions for same non-terminal start with same symbol. 
Example: S  if E then S 

 S  if E then S else S 

Solution: Left-factor the grammar. Take allowable ending “else S” and ε, and make a new 
production (new non-terminal) for them: 

 S  if E then S X 
 X  else S 
 X  e 

Grammars whose predictive parsing tables contain no multiples entries are called LL(1). 
The first L stands for  left-to-right parse of input string. (input scanned from left to right) 
The second L stands for leftmost derivation of the grammar. (apply production to leftmost 
non-terminal at each step of derivation) 
The “1” stands for one symbol (token) lookahead 
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CKY (Cocke, Kasami, Younger) 
O(N3) PARSING 

(DAY #11) 
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Dynamic Programming 
To solve a given problem, we solve small parts of the problem (subproblems), 
then combine the solutions of the subproblems to reach an overall solution. 

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was 
unknown until the late 1960s. In the meantime, theoreticians developed notion 
of simplified forms that were as powerful as arbitrary CFGs. The one most 
relevant here is the Chomsky Normal Form – CNF. It states that the only rule 
forms needed are: 

A  →  BC   where B and C are non-terminals 
A →  a   where a is a terminal 

This is provided the string of length zero is not part of the language. 
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CKY (Bottom-Up Technique) 
Let the input string be a sequence of n letters a1 ... an.  
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr,  
Let R1 be the start symbol.  
Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false.  
For each i = 1 to n  

 For each unit production Rj → ai, set P[i,1,j] = true.  
 For each i = 2 to n 
  For each j = 1 to n-i+1  
   For each k = 1 to i-1  
    For each production RA -> RB RC  
     If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true  

If P[1,n,1] is true then a1 ... an is member of language  
else a1 ... an is not member of language  
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CKY Parser 
 Present the CKY recognition matrix for the string  abba  assuming the Chomsky 
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, S, P), specified by the rules P: 

S  →  AB  |  BA 
A  →  CD  |  a 
B  →  CE  |  b  
C  →  a      |  b 
D  →  AC 
E  →  BC  
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a b b a 
1 A,C B,C B,C A,C 
2 S,D E S,E 
3 B B 
4 S,E 



Bottom Up vs Top Down 
•  Bottom-Up: Two stack operations 

–  Shift (move input symbol to stack) 
–  Reduce (replace top of stack α with A, when A→α)

–  Challenge is when to do shift or reduce and what reduce to do. 

•  Can have both kinds of conflict 

•  Top-Down:   
–  If top of stack is terminal 

•  If same as input, read and pop 
•  If not, we have an error 

–  If top of stack is a non-terminal A 
•  Replace A with some α, when A→α


•  Challenge is what A-rule to use 
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SIMPLE WHILE LANGUAGE 
(DAY #13) 
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While.l #1 
%{ 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <ctype.h> 
#include <limits.h> 

void setid(void); 
void setnum(void); 
%} 
L   [A-Za-z] 
D   [0-9] 
ID   {L}({L}|{D})* 
NUM   {D}+ 
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While.l #2 
%% 
">="   {ECHO; yylval = (int) '+'; return(RELOP);} 
"<="   {ECHO; yylval = (int) '-'; return(RELOP);} 
"="|"#"|">"|"<"  {ECHO; yylval = (int) yytext[0]; return(RELOP);} 
"+"   {ECHO; return(PLUS);} 
"-"   {ECHO; return(MINUS);} 
"*"   {ECHO; return(TIMES);} 
"/"   {ECHO; return(DIVIDE);} 
"{"   {ECHO; return(LBRACE);} 
"}"   {ECHO; return(RBRACE);} 
"("   {ECHO; return(LPAREN);} 
")"   {ECHO; return(RPAREN);} 
"["   {ECHO; return(LBRACK);} 
"]"   {ECHO; return(RBRACK);} 
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While.l #3 
";"   {ECHO; return(SEMICOLON);} 
","   {ECHO; return(COMMA);} 
":="   {ECHO; return(ASSIGN);} 
"while"   {ECHO; return(WHILE);} 
"do"   {ECHO; return(DO);} 
"end"   {ECHO; return(END);} 
"if"   {ECHO; return(IF);} 
"then"   {ECHO; return(THEN);} 
"else"   {ECHO; return(ELSE);} 
{NUM}   {ECHO; setnum(); return(NUMBER);} 
{ID}   {ECHO; setid(); return(IDENT);} 
[ \t]*   {ECHO;} 
[\n]+   {ECHO; dumpcode();} 
.   {ECHO; printf("\nunrecognizable character\n");  

   return(BAD);} 
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While.l #4 
%% 
void setnum(void) { 
  int i;   
  yylval = 0; i = 0; 
  while (yytext[i]) /* convert string to int */ 
    yylval = yylval*10 + ( (int) yytext[i++] - (int) '0' ); 
}  
void setid(void) { 
  char *p,*q,*r; 
  p = idname; /* used to communicate string to syntax analyzer */ 
  q = yytext;  /* string found in input */ 
  r = symtab[0].name;  /* new symbol strats i zero-th slot */ 
  if (yyleng>=IDLENGTH) 
    yytext[IDLENGTH-1] = '\0';  /* null termination of string makes copy safe */ 
  while (*r++ = ( *p++ = *q++ ));  /* copy new symbol into table */   
  yylval = symsize;   /* search bottom up -- small table so linear okay */ 
  while ( strcmp(symtab[--yylval].name, idname) ); /* always succeeds */ 
} 
int yywrap(void) { 
 return(1); 
} 
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While.y #1 
%token   SEMICOLON COMMA END LBRACE RBRACE LBRACK RBRACK 
%token   RPAREN LPAREN NUMBER IDENT WHILE DO ASSIGN BAD  
%token   IF THEN ELSE  
%nonassoc  RELOP  
%left   PLUS MINUS 
%left   TIMES DIVIDE 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <ctype.h> 
#include <limits.h> 
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While.y #2 
/* Constants */ 
#define IDLENGTH 9    /* one more (for \0) than max ident length */ 
#define SYMMAX 20    /* size of symbol table */ 
#define CODEMAX 100   /* size of code table */ 

/* Code table */ 
struct { 

 char opcode[IDLENGTH];  /* mnemonic of operator */ 
 int  first,second;   /* first and second operand */ 

} code[CODEMAX];    /* code table */ 

/* Symbol table */ 
struct { 

 char name[9];   /* identifier name */ 
 int  size;    /* zero for scalar; number of elements for vector */ 
 int  countRead;       /* count the read references. */ 
 int  countWrite;     /* count the write references */ 

} symtab[SYMMAX];    /* symbol table */ 
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While.y #3 
/* Other variables */ 
char  idname[IDLENGTH];  /* Ident just found -- first eight characters are 
meaningful */ 
int  triple;    /* Next available code slot */ 
int  showStart;    /* start of code area yet to be 
displayed */ 
int  symsize;    /* next available symbol table slot */ 

int  forwardTest;        /* flag indicating cond jump forward or backward */ 
int  errorNo;      /* error number counter */ 
int  warnNo;       /* warning number counter */ 
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While.y #4 
/* Function declarations */ 
void basicinit(void); 
void enter(char *name, int size); 
void backpatch(int trip, int val); 
void backpatch1(int trip, int val); 
void emit(char *opcode, int first, int second); 
void ok(int extra); 
void fatal(char const *msg); 
void dumpcode(void); 
void countReport(void); 
void error(char const *s); 
void warning(char const *s); 
void yyerror(char const *s); 

%} 
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While.y #5 
%% 

program: 
 startup decl body END   
    { emit("EXIT",0,0); dumpcode(); 
      showStart = 1; dumpcode(); countReport();  
    } 
 ; 

startup: 
 /* empty */   { basicinit(); } 
 ; 

decl: 
 var.list SEMICOLON | 
 SEMICOLON  
 error   { error("declaration syntax"); ok(COMMA); yyerrok; } 
 ; 
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While.y #6 
var.list: 

 var.list COMMA var.def | 
 var.def | 
 error    { error("declaration syntax"); ok(COMMA);  
      yyerrok; } 
 ; 

var.def: 
 IDENT LBRACK NUMBER RBRACK 
    { if ($1 > 0) warning("duplicate name"); 
      else enter(idname,$3); } | 
 IDENT    
    { if ($1 > 0) warning("duplicate name"); 
      else enter(idname,0);  
    }  
 ; 

4/21/11 © UCF EECS 239 



While.y #7 
body: 

 statement.list 
 ; 

statement.list: 
 statement.list statement | 
 /* empty */ 
 ; 

statement: 
 assign SEMICOLON | 
 while | 
 do | 
 if | 
 LBRACE statement.list RBRACE | 
 SEMICOLON | 
 error   { error("declaration syntax"); ok(LBRACE); yyerrok; } 
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While.y #8 
while: 

 while.start test DO statement  
    { emit("JUMP",-$1,0);  
      backpatch($2,-triple);  
    } 
 ; 

while.start: 
    WHILE    { $$ = triple; forwardTest = 1; } 

 ; 

4/21/11 © UCF EECS 241 



While.y #9 
test:  exp RELOP exp  { emit("-",$1,$3); 

     $$ = triple; 
     switch( (char) $2) { 
       case '=':    if (forwardTest) emit("JNZ",-triple+1,0); 
    else emit("JZ",-triple+1,0); break; 
          case '#':     if (forwardTest) emit("JZ",-triple+1,0); 
    else emit("JNZ",-triple+1,0); break; 
          case '>':    if (forwardTest) emit("JNP",-triple+1,0); 
    else emit("JP",-triple+1,0); break; 
          case '<':    if (forwardTest) emit("JNM",-triple+1,0); 
    else emit("JM",-triple+1,0); break; 

                              case '+':     if (forwardTest) emit("JM",-triple+1,0); 
    else emit("JNM",-triple+1,0); break; 
       case '-':      if (forwardTest) emit("JP",-triple+1,0); 
    else emit("JNP",-triple+1,0); break; 

                  }  
   } 
 ; 
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While.y #10 
do: 

 do.start LBRACE statement.list RBRACE WHILE test 
    { backpatch($6, $1); } 
 ; 

do.start: 
 DO    { $$ = triple; forwardTest = 0; } 
 ; 

if: 
 IF {forwardTest=1;} test THEN statement {$$=triple;} optionalElse 
    { backpatch($3, -$6); } 
 ; 

optionalElse:  
 ELSE {$$=triple; emit("JUMP",0,0);} statement {backpatch1($2,-triple);} | 
 /* empty */  
 ; 
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While.y #11 
assign: 

 IDENT sub ASSIGN exp              { if ($1==0) { 
        error("undefined"); emit("ERROR",0,0); 
      } 
      else if ($2==0) { 
        if (symtab[$1].size>0) { 
          error("need subscript"); emit("ERROR",0,0); 
        } 
        else emit(":=",$1,$4); 
      }  
      else if (symtab[$1].size==0) { 
        error("cannot subscript"); emit("ERROR",0,0); 
      }  
      else { 
        emit("[]=",$1,$2); emit("_",$4,0); 
      } 
    } 
 ; 
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While.y #12 
sub: 

 LBRACK exp RBRACK   
    { $$ = $2; } | 
 /* empty */     
    { $$ = 0; } 
 ; 
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While.y #13 
exp:  exp PLUS exp 

    { $$ = -triple; 
      emit("+",$1,$3);  
    } | 
 exp MINUS exp 
    { $$ = -triple; 
      emit("-",$1,$3);  
    } | 
 exp TIMES exp 
    { $$ = -triple; 
      emit("*",$1,$3);  
    } | 
 exp DIVIDE exp 
    { $$ = -triple; 
      emit("/",$1,$3);  
    } | 
 LPAREN exp RPAREN 
    { $$ = $1; } | 
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While.y #14 
 NUMBER    { $$ = -triple; emit("con",$1,0); } | 
 IDENT sub   { $$ = -triple; 
      if ($1==0) { 
        error("undefined variable"); emit("ERROR",0,0); 
      }  
      else if ($2==0) { 
        if (symtab[$1].size>0) { 
          error("need subscript"); emit("ERROR",0,0); 
        }  
        else $$ = $1; 
      }  
      else if (symtab[$1].size==0) { 
         error("cannot subscript"); emit("ERROR",0,0); 
      }  
      else emit("=[]",$1,$2); 
    } 
 ; 
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While.y #15 
%% 
void basicinit( void) { 
  code[0].opcode[0] = '\0'; 
  showStart = 1;  /* Index of next code slot that has yet to be dumped */ 
  triple = 1;   /* Index of first available code slot */ 
  symsize = 1;   /* Index of next available symbol table slot (zero-th reserved) */ 
  errorNo = 0;   /* Number of errors detected */ 
  warnNo = 0;   /* Number of warnings given */ 
}  

void enter(char *name, int size) { 
  char *p;  
  if (symsize<SYMMAX) { symtab[symsize].size = size; 
    symtab[symsize].countRead  = 0; symtab[symsize].countWrite = 0; 
    p = symtab[symsize++].name; while (*p++ = *name++); 
  } 
  else fatal("symbol table too large"); 
} 
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While.y #16 
void backpatch(int trip, int val) { 
  code[trip].second = val; 
} 

void backpatch1(int trip, int val) { /* for backpatch the first field */ 
  code[trip].first = val; 
} 
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While.y #17 
void emit(char *opcode, int first, int second) { /* generates code and handles var count */ 
  char *p; 
  if (triple<CODEMAX) { 
      if ( strcmp(opcode, "con") ) {     /* not a constant, so need to do further checks */ 

 if (second>0)   /* 2nd var only used for read */ 
       symtab[second].countRead++; /* rvalue; note: a[a1]:=b; a1 is read */ 

        if ( !strcmp(opcode, ":=") || !strcmp(opcode, "[]=") )  
       symtab[first].countWrite++;  /* lvalue */ 

        else if (first>0)  
       symtab[first].countRead++;  /* rvalue; first operand  */ 

      } 
      code[triple].first = first; code[triple].second = second; 
      p = code[triple++].opcode; while (*p++ = *opcode++); 
    } 
   else fatal("code table is too large\n"); 
} 
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While.y #18 
void emit(char *opcode, int first, int second) { /* generates code and handles var count */ 
  char *p; 
  if (triple<CODEMAX) { 
      if ( strcmp(opcode, "con") ) {     /* not a constant, so need to do further checks */ 

 if (second>0)   /* 2nd var only used for read */ 
       symtab[second].countRead++; /* rvalue; note: a[a1]:=b; a1 is read */ 

        if ( !strcmp(opcode, ":=") || !strcmp(opcode, "[]=") )  
       symtab[first].countWrite++;  /* lvalue */ 

        else if (first>0)  
       symtab[first].countRead++;  /* rvalue; first operand  */ 

      } 
      code[triple].first = first; code[triple].second = second; 
      p = code[triple++].opcode; while (*p++ = *opcode++); 
    } 
   else fatal("code table is too large\n"); 
} 
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While.y #19 
void ok(int extra) { 
   while ((yychar!=WHILE) && (yychar!=SEMICOLON) && (yychar!=extra) && 

   (yychar>0)) yychar = yylex(); 
} 
void fatal(char const *msg) { 
  printf("%s\n",msg); 
  dumpcode(); 
} 
void dumpcode(void) { 
  int i; 
  printf("\n"); 
  for (i=showStart;i<triple;i++) 
    printf("%4d : %8s %4d %4d\n",i,code[i].opcode,code[i].first,code[i].second); 
  showStart = triple; 
} 
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While.y #20 
void countReport(void) { 
  int i; 
  printf("\n*** NUMBER OF ERRORS FOUND: %d *** \n", errorNo); 
  printf(  "*** NUMBER OF WARNINGS: %d *** \n", warnNo); 
  /* dump out symbol table with reference counts */ 
  for (i=1; i<symsize; i++)  

 if (symtab[i].size>0) 
   printf("%s[%d], # of read ref = %d, # of write ref = %d\n",  
  symtab[i].name, symtab[i].size, symtab[i].countRead,  
  symtab[i].countWrite);  
 else 
   printf("%s, # of read ref = %d, # of write ref = %d\n", 
  symtab[i].name, symtab[i].countRead, symtab[i].countWrite);  

} 
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While.y #21 
void error(char const *s) { 
  printf("\nError: %s\n", s); 
  errorNo++;  
} 

void warning(char const *s) { 
  printf("\nWarning: %s\n", s); 
  warnNo++;  
} 

void yyerror(char const *s) { 
  printf("%s\n", s); 
} 

4/21/11 © UCF EECS 254 



While.y #22 
#include "while.lex.c" 

int main(int argc, char **argv ) { 
  int result; 
  ++argv, --argc; /* skip over program name */ 
  if ( argc > 0 ) yyin = fopen( argv[0], "r" ); 
  else yyin = stdin; 
  result = yyparse(); 
  system("pause()"); 
  return(result); 
} 
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While.y #23 
var1,var2,a[5],b[7]; 
var1 := var2+10; var1 := 9; 
   1 :      con   10    0 
   2 :        +    2   -1 
   3 :       :=    1   -2 
   4 :      con    9    0 
   5 :       :=    1   -4 
var1 := 1; 
   6 :      con    1    0 
   7 :       :=    1   -6 
while var1<5 do 
   8 :      con    5    0 
   9 :        -    1   -8 
  10 :      JNM   -9    0 
{ a[var1] := var1*var1 + 1; 
  11 :        *    1    1 
  12 :      con    1    0 

  13 :        +  -11  -12 
  14 :      []=    3    1 
  15 :        _  -13    0 
  b[var1] := a[var1] + var2; 
  16 :      =[]    3    1 
  17 :        +  -16    2 
  18 :      []=    4    1 
  19 :        _  -17    0 
  var1 := var1+1;  
  20 :      con    1    0 
  21 :        +    1  -20 
  22 :       :=    1  -21 
} 
  23 :     JUMP   -8    0 
end 
  24 :     EXIT    0    0 
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While.y #23 
*** NUMBER OF ERRORS FOUND: 0 ***  
*** NUMBER OF WARNINGS: 0 ***  
var1, # of read ref = 7, # of write ref = 4 
var2, # of read ref = 2, # of write ref = 0 
a[5], # of read ref = 1, # of write ref = 1 
b[7], # of read ref = 0, # of write ref = 1 
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Bottom-Up Parsing 

Days#16, 17 



Reductions 

•  Top-down focuses on producing an input 
string from the start symbol 

•  Bottom-up focuses on reducing the string 
to the start symbol 

•  By definition, reduction is the reverse of 
production 
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Handle Pruning 
•  Bottom-up reverses a rightmost derivation since rightmost rewrites 

the leftmost non-terminal last 
•  Bottom-up must identify a handle  of a sentential form (a string of 

terminals and non-terminals derived from the start symbol), where 
the handle is the substring that was replaced at the last step in a 
rightmost derivation leading to this sentential form. 

•  A handle must match the body (rhs) of some production 
•  Formally, if S ⇒rm* αAω ⇒rmαβω where A → β then β, in the position 

following α, is a handle of  αβω

•  We would like handles to be unique, and they are so in 

unambiguous grammars 
•  Handle pruning is the process of reducing a sentential form to a 

deriving sentential form by reversing the last production 
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shift/reduce Parsing 
•  This involves a stack that holds the left part of a 

sentential for with the input holding the right part 
•  Initially the stack has a bottom of stack marker 

and the input is the entire string to be parsed, 
plus an end marker 
Stack = $  Input = w$ 

•  Our goal is to consume the string and end up 
with the start symbol on stack 
Stack = $S  Input = $ 
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shift/reduce Process 

•  The process is one where we can either 
– Shift the next input symbol onto stack 
– Reduce “handle” on top of stack  
– Accept if successfully get to start symbol with 

all input consumed 
– Error is a syntax error is discovered 
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Conflicts in shift/reduce 

•  Handle pruning can encounter two types 
of conflicts 
– reduce/reduce is when there are two 

possible reductions and we cannot decide 
which to use 

– shift/reduce conflict is when we cannot 
decided whether to shift or reduce 
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Classic shift/reduce 
stmt  →  if expr then stmt  

  |  if expr then stmt else stmt 
  |  other 

Stack = $… if expr then stmt 
Input = else … $ 
Should we shift else into stack or reduce?? 
Can prefer shift over reduce, but that may not work 

as a general policy 
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Classic reduce/reduce 
If have two types of expression lists preceded by an id. One is an array 
reference and the other is a function call. Both can appear by themselves in C. 
Relevant rules are: 
stmt  →  id ( p_list ) 

 |  expr 
p_list  →  p_list parm | parm 
e_list  →  e_list parm | expr 
expr  →  id ( e_list) | id 
parm  →  id 
Stack = $...id(id   Input = , id)…$ 
Is this first expr or a parm? 
One solution is that we differentiate procid from id  in symbol table and hence 
via lexical analysis. Then the third symbol in stack, not part of handle, 
determines the reduction. The key is context. 
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Our Goal 
Find a useful subset of context free grammars that 
1. Covers all or at least most unambiguous CF 
languages 
2. Is easy to recognize 
3. Avoids conflicts without severely limiting 
expressiveness 
4. Is amenable to a fast parsing algorithm 
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LR Parsing 

Days#18,19 



LR Parsing 
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    LR(k) parsing. 

  left to right  right-most  k lookahead 
  scanning  derivation 

•  LR is associated with bottom-up; LL with top-down 
•  LL(k), k>1, languages ⊃ LL(k-1) languages  
•  LR(1) languages ⊃ LL(k) languages, k ≥ 0 
•  LR(k), k>1, languages = LR(1) languages  
•  However, LR(k), k>1, grammars ⊃ LR(k-1) grammars 
•  LR grammars can find errors quickly, but they do not 

always have good context to recover 



LR Parser Types 
•  SLR – simple LR parser  
•  LALR –look-head LR parser 
•  LR – most general LR parser 
•  SLR, LALR and LR are closely related  

–  The parsing algorithm is the same 
–  Their parsing tables are different 

4/21/11 © UCF EECS 269 



LR Parsing Algorithm 
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Configuration of LR Algorithm 
•  A configuration of a LR parsing is: 

  ( So X1 S1 ... Xm Sm,  ai ai+1 ... an $ ) 

  Stack    Rest of Input 

•  Sm and ai  decide the parser action by consulting the parsing action 
table.  (Initial Stack  contains just So ) 

•  A configuration of a LR parsing represents the right sentential form: 

  X1 ... Xm ai ai+1 ... an $ 
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Actions of LR-Parser 
1.  shift s  -- shifts the next input symbol onto the stack. Shift is performed 

only if action[sm,ai] = sk, where k is the new state. In this case 
 ( So X1 S1 ... Xm Sm, ai ai+1 ... an $ )   ( So X1 S1 ... Xm Sm ai k, ai+1 ... an $ ) 

2.  reduce A→β   (if action[sm,ai] = rn where n is a production number) 
–  pop 2|β|  items from the stack;  
–  then push A and k  where  k=goto[sm-|β|,A] 

( So X1 S1 ... Xm Sm, ai ai+1 ... an $ )   ( So X1 S1 ... Xm-|β| Sm-|β| A k, ai ... an $ ) 

–  Output is the reducing production reduce A→β or the associated semantic 
action or both 

3.  Accept – Parsing successfully completed 
4.  Error  -- Parser detected an error (empty entry in action table) 
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Reduce Action 
•  pop 2|β|  (=j) items from the stack;  let us assume that 
β=Y1Y2...Yj 

•  then push A and s  where  s=goto[sm-j,A] 

 ( So X1 S1 ... Xm-j Sm-j Y1 Sm-j+1 ...Yj Sm, ai ai+1 ... an $ )   
    ( So X1 S1 ... Xm-j Sm-j A s, ai ... an $ ) 

•  In fact, Y1Y2...Yj is a handle. 

 X1 ... Xm-j A ai ... an $ ⇒ X1 ... Xm-j Y1...Yj ai ai+1 ... an $ 
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Expression Grammar 
Example: Given the grammar: 
E   E + T    T   T  * F   F   id    
E   T    T   F     F   ( E )   

Compute Follow. 

 Follow 
  E  { ), +, $ } 
  T  { ) , *, +, $ }   
  F  { ) , * ,  +, $ }   
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SLR Parsing Tables 
•  An LR(0) item of a grammar G is a production of G with a dot at 

some position of the right side. 
•  Ex:  A → aBb     LR(0) Items:   A → .aBb 

           A → a.Bb 
       A → aB.b 
        A → aBb. 

•  Sets of LR(0) items will be the states of action and goto tables of the 
SLR parser. 

•  A collection of sets of LR(0) items (the canonical LR(0) collection) 
is the basis  for constructing SLR parsers. 

•  Augmented Grammar: 
 G’ is G with a new production rule S’→S where S’ is the new starting 
symbol. 
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The Closure Operation 
•  If  I  is a set of LR(0) items for a grammar G, then  closure(I)  is the 

set of LR(0) items constructed from I by the two rules: 

1.  Initially, every LR(0) item in I is added to closure(I). 
2.  If A → α.Bβ  is in closure(I)  and B→γ is a production rule 

of G;  then B→.γ  will be in the closure(I). We will apply this 
rule until no more new LR(0) items can be added to closure(I). 
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Closure Example 
E’ → E   closure({E’ → .E}) =  
E → E+T            {  E’ → .E  kernel item 
E → T     E → .E+T 
T → T*F     E → .T 
T → F     T → .T*F 
F → (E)     T → .F   
F → id     F → .(E) 

      F → .id   } 
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Closure Algorithm 
function closure ( I ) 
begin 

 J := I; 
 repeat  
  for each item A → α.Bβ in J and each production 
    B→γ  of G such that B→.γ is not in J do 
    add B→.γ  to J; 
 until no more items can be added to J; 
 return J; 

end 
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Goto Function 
If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then 
goto(I,X) is defined as follows: 

If  A → α.Xβ  in I then every item in closure({A → αX.β}) will be in goto(I,X). 

If I is the set of items that are valid for some viable prefix γ, then goto(I,X) is the set 

of items that are valid for the viable prefix γX. 

Example: 
 I ={   E’ → .E,   E → .E+T,   E → .T,  
   T → .T*F,  T → .F,  F → .(E),   F → .id  } 
 goto(I,E) = { E’ → E., E → E.+T } 
 goto(I,T) = { E → T., T → T.*F } 
 goto(I,F) = {T → F. } 
 goto(I,() = { F → (.E), E → .E+T, E → .T, T → .T*F, T → .F,  
   F → .(E), F → .id  } 
 goto(I,id) = { F → id. } 
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Canonical LR(0) Collection 
•  To create the SLR parsing tables for a grammar G, we 

will create the canonical LR(0) collection of the grammar 
G’. 

•  Algorithm: 
C is { closure({S’→.S}) } 

repeat the followings until no more set of LR(0) items can be added to C. 

for each I in C and each grammar symbol X 

if goto(I,X) is not empty and not in C  

add goto(I,X) to C 

•  The goto function is a deterministic FSA (finite state 
automaton), DFA, on the sets in C. 

4/21/11 © UCF EECS 280 



Canonical LR(0) Example 
I0: E’ → .E  I1: E’ → E.  I6: E → E+.T  I9: E → E+T.  
     E → .E+T       E → E.+T       T → .T*F       T → T.*F 
     E → .T         T → .F 
     T → .T*F  I2: E → T.       F → .(E)  I10: T → T*F. 
     T → .F       T → T.*F       F → .id  
     F → .(E)  
     F → .id  I3: T → F.  I7: T → T*.F  I11: F → (E).  

          F → .(E)  
   I4: F → (.E)       F → .id  
        E → .E+T    
        E → .T  I8: F → (E.)  

             T → .T*F       E → E.+T   
             T → .F   
             F → .(E)  
             F → .id  

   I5: F → id.  
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DFA of Goto Function 
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Compute SLR Parsing Table 
1.  Construct the canonical collection of sets of LR(0) items for G’.    

 C←{I0,...,In} 
2.  Create the parsing action table as follows 

•  If  a is a terminal, A→α.aβ in Ii  and goto(Ii,a)=Ij  then action[i,a] is  shift 
j. 

•  If  A→α.  is in Ii , then action[i,a] is  reduce A→α  for all a in 
FOLLOW(A)   where A≠S’. 

•  If  S’→S.  is in Ii , then action[i,$] is  accept. 
•  If any conflicting actions generated by these rules, the grammar is not 

SLR(1). 
3.  Create the parsing goto table 

•  for all non-terminals A,  if goto(Ii,A)=Ij  then goto[i,A]=j 
4.  All entries not defined by (2) and (3) are errors. 
5.  Initial state of the parser contains  S’→.S 
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(SLR) Parsing Tables 
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state id + * ( ) $ E T  F 
0 s5 s4 1 2 3 
1 s6 acc 
2 r2 s7 r2 r2 
3 r4 r4 r4 r4 
4 s5 s4 8 2 3 
5 r6 r6 r6 r6 
6 s5 s4 9 3 
7 s5 s4 10 
8 s6 s11 
9 r1 s7 r1 r1 
10 r3 r3 r3 r3 
11 r5 r5 r5 r5 

Action Table Goto Table 
0)   E’ → E 
1)   E → E+T 
2)   E → T 
3)   T → T*F 
4)   T → F 
5)   F → (E) 
6)   F → id 



Actions of SLR-Parser 
stack   input   action    output 
0    id*id+id$   shift 5 
0id5   *id+id$   reduce by F→id    F→id  

0F3   *id+id$   reduce by T→F    T→F  

0T2   *id+id$   shift 7 
0T2*7   id+id$   shift 5 
0T2*7id5   +id$   reduce by F→id    F→id 
0T2*7F10  +id$    reduce by T→T*F    T→T*F 
0T2   +id$   reduce by E→T    E→T 
0E1   +id$   shift 6 
0E1+6   id$   shift 5 
0E1+6id5  $   reduce by F→id    F→id 
0E1+6F3   $   reduce by T→F    T→F 
0E1+6T9   $   reduce by E→E+T    E→E+T 
0E1   $   accept 
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SLR(1) Grammar 
•  An LR parser using SLR(1) parsing tables for a 

grammar G is called the SLR(1) parser for G. 

•  If a grammar G has an SLR(1) parsing table, it is 
called an SLR(1) grammar. 

•  Every SLR grammar is unambiguous, but every 
unambiguous grammar is not an SLR grammar. 
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Conflicts 
•  If a state does not know whether it will make a shift 

operation or reduction for a terminal, we say that there is 
a shift/reduce conflict. 

•  If a state does not know whether it will make a reduction 
operation using the production rule i or j for a terminal, 
we say that there is a reduce/reduce conflict. 

•  If the SLR parsing table of a grammar G has a conflict, 
we say that that grammar is not SLR grammar. 

4/21/11 © UCF EECS 287 



Conflict Example 1 
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S → L=R      I0: S’ → .S        I1:  S’ → S.        I6:  S → L=.R     I9: S → L=R. 
S → R  S → .L=R   R → .L 
L→ *R  S → .R         I2: S → L.=R  L→ .*R 
L → id  L → .*R  R → L.  L → .id 
R → L  L → .id 

  R → .L          I3: S → R. 
                       I4: L → *.R        I7:  L → *R. 
             Problem  R → .L 
 FOLLOW(R)={=,$}  L → .*R        I8:  R → L. 
 =        shift 6  L → .id 
           reduce by   
 shift/reduce conflict          I5: L → id. 

Action[2,=] = shift 6 
Action[2,=] = reduce by R → L 
[ S ⇒L=R ⇒*R=R] so follow(R) contains =   



Conflict Example2 
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S → AaAb             I0: S’ → .S   
S → BbBa   S → .AaAb  
A → ε    S → .BbBa 
B → ε    A → . 

    B → . 

  Problem 
 FOLLOW(A)={a,b} 
 FOLLOW(B)={a,b} 
 a  reduce by A → ε    b  reduce by A → ε 
  reduce by B → ε    reduce by B → ε 
 reduce/reduce conflict   reduce/reduce conflict 



SLR Weakness 
•  In SLR method, state i makes a reduction by 

A→α when the current token is a: 
–  if A→α. is in Ii  and  a  is in FOLLOW(A) 

•  In some situations, βA  cannot be followed 
by the terminal a in a right-sentential form 
when βα and the state i are on the stack top.       
This means that making reduction in this 
case is not correct.  



LR(1) Item 
•  To avoid some invalid reductions, the states need to carry more 

information. 
•  Extra information is put into a state by including a terminal symbol 

as a second component in an item. 

•  A LR(1) item is: 

  A → α.β,a   where a is the look-head of the LR(1) item 
     (a is a terminal or end-marker.) 

•  Such an object is called an LR(1) item. 
–  1 refers to the length of the second component 
–  The lookahead has no effect on an item of the form [A → α.β,a], where β is not 

∈. 
–  But an item of the form [A → α.,a] calls for a reduction by A → α only if the next 

input symbol is a. 
–  The set of such a’s will be a subset of FOLLOW(A), and could be proper. 



LR(1) Item  (cont.) 
•  When β  (in the LR(1) item A → α.β,a ) is not empty, the  look-head does 

not have any affect. 

•  When β  is empty  (A → α.,a ), we do the reduction by A→α only if the next 
input symbol is a (not for any terminal in FOLLOW(A) as with SLR). 

•  A state will contain     A → α.,a1  where {a1,...,an} ⊆ FOLLOW(A) 

     ... 

       A → α.,an  



Canonical Collection 
•  The construction of the canonical collection of the sets 

of LR(1) items are similar to the construction of the 
canonical collection of the sets of LR(0) items, except 
that closure and goto operations work a little bit 
different. 

closure(I)  is:   ( where I is a set of LR(1) items) 
–  every LR(1) item in I is in closure(I) 

–  if  A→α.Bβ,a  in closure(I) and B→γ is a rule of G; then  B→.γ,b  will be 
in the closure(I) for each terminal b in FIRST(βa) .                                                          



goto operation 
•  If I is a set of LR(1) items and X is a grammar 

symbol (terminal or non-terminal), then goto(I,X) 
is defined as follows: 
–  If  A → α.Xβ,a  in I                                                                           

then every item in closure({A → αX.β,a}) will 
be in goto(I,X).  



Canonical LR(1) Collection 

•  Algorithm: 
C is { closure({S’→.S,$}) } 
repeat the followings until no more set of LR(1) items can be 

added to C. 
for each I in C and each grammar symbol X 

if goto(I,X) is not empty and not in C  
add goto(I,X) to C 

•  goto function is a DFA on the sets in C. 



Short Notation 
•  A set of LR(1) items containing the 

following items  
  A → α.β,a1 
           ...          
  A → α.β,an 

can be written as 

   A → α.β,a1/a2/.../an 



Canonical LR(1) Collection 
S → AaAb             I0: S’ → .S ,$    I1: S’ → S. ,$   
S → BbBa   S → .AaAb ,$  
A → ε    S → .BbBa ,$    I2: S → A.aAb ,$  
B → ε    A → . ,a 

    B → . ,b     I3: S → B.bBa ,$  

I4: S → Aa.Ab ,$    I6: S → AaA.b ,$    I8: S → AaAb. ,$ 
     A → . ,b 

I5: S → Bb.Ba ,$    I7: S → BbB.a ,$    I9: S → BbBa. ,$ 
     B → . ,a    

   

S 
A 

B 
a 

b 

A 

B 

b 

a 

to I4 

to I5 



An Example 

I0: closure({(S’ → • S, $)}) = 
    (S’ → • S, $) 
    (S → • C C, $) 
    (C → • c C, c/d) 
    (C → • d, c/d) 

I1: goto(I0, S) = (S’ → S • , $) 

I2: goto(I0, C) = 
    (S → C • C, $) 
    (C → • c C, $) 
    (C → • d, $) 

I3: goto(I0, c) = 
    (C → c • C, c/d) 
    (C → • c C, c/d) 
    (C → • d, c/d) 

I4: goto(I0, d) = 
    (C → d •, c/d) 

I5: goto(I2, C) = 
    (S → C C •, $) 

1. S’ → S 
2. S  → C C   
3. C  →  c C 
4. C  → d 



An Example 
I6: goto(I3, c) = 
    (C → c • C, $) 
    (C → • c C, $) 
    (C → • d, $) 

I7: goto(I3, d) = 
    (C → d •, $) 

I8: goto(I4, C) = 
    (C → c C •, c/d) 

: goto(I4, c) = I4 

: goto(I4, d) = I5 

I9: goto(I7, c) = 
    (C → c C •, $) 

: goto(I7, c) = I7 

: goto(I7, d) = I8 



C → d •, c/d 

C 

(S’ → S • , $ 

S → C • C, $ 
C → • c C, $ 
C → • d, $ 

C → c • C, c/d 
C → • c C, c/d 
C → • d, c/d 

S → C C •, $ 

C → c • C, $ 
C → • c C, $ 
C → • d, $ 

C → d •, $ 

C → c C •, c/d 

S’ → • S, $ 
S → • C C, $ 

C → • c C, c/d 
C → • d, c/d 

C → cC •, $ 

S 

C 

c 

d 

C 

c 

d 
c 

c 

C 

I0 

I2 

I3 

I4 

I5 

I1 

I6 

I7 

I8 

I9 

d 

d 



An Example 
I0          I1 

         I2 
         
                
           I6       I9 

          I7 
   

S 

C 
C 

C 

C 
c 

c 

c 

d 

d 

d d 

I8 

I4 

I3 

I5 



An Example 

          c       d       $       S       C 
  0     s3     s4               1        2  
  1                        a 
  2     s6     s7                         5  
  3     s3     s4                         8  
  4     r3      r3 
  5                        r1  
  6     s6     s7                         9 
  7                        r3 
  8     r2      r2 
  9                        r2  



The Core of LR(1) Items 
•  The core of a set of LR(1) Items is the set 

of their first components (i.e., LR(0) 
items) 

•  The core of the set of LR(1) items 
 { (C → c • C, c/d), 

         (C → • c C, c/d), 
        (C → • d, c/d) } 

 is   {  C → c • C, 
          C → • c C, 

           C → • d } 



Construction of LR(1) Parsing 
Tables 

1.  Construct the canonical collection of sets of LR(1) items  
for G’.     C←{I0,...,In} 

2.  Create the parsing action table as follows 
•  If  a is a terminal, A→α.aβ,b in Ii  and goto(Ii,a)=Ij  then action[i,a] is  

shift j. 
•  If  A→α.,a  is in Ii , then action[i,a] is  reduce A→α  where A≠S’. 
•  If  S’→S.,$  is in Ii , then action[i,$] is  accept. 
•  If any conflicting actions are generated by these rules, the grammar is not LR(1). 

3.  Create the parsing goto table 
•  for all non-terminals A,  if goto(Ii,A)=Ij  then goto[i,A]=j 

4.  All entries not defined by (2) and (3) are errors. 

5.  Initial state of the parser contains  S’→.S,$ 



LALR Parsing Tables 
1.  LALR  stands for Lookahead LR. 

2.  LALR parsers are often used in practice because LALR parsing 
tables are smaller than LR(1) parsing tables. 

3.  The number of states in SLR and LALR parsing tables for a 
grammar G are equal.  

4.  But LALR parsers recognize more grammars than SLR parsers. 

5.  Bison creates a LALR parser for the given grammar.  

6.  A state of an LALR parser will again be a set of LR(1) items. 



Creating LALR Parsing Tables 

Canonical LR(1) Parser            LALR Parser 
       shrink # of states 

•  This shrink process may introduce a reduce/reduce 
conflict in the resulting LALR parser (so the grammar is 
NOT LALR) 

•  But, this shrink process does not produce a shift/reduce 
conflict. 



The Core of Set of LR(1) Items 
•  The core of  a set of LR(1) items is the set of its first component. 

Ex: S → L.=R,$     S → L.=R   Core 
  R → L.,$   R → L. 

•  We will find the states (sets of LR(1) items) in a canonical LR(1) parser with 
same cores. Then we will merge them as a single state. 

 I1:L → id.,=     A new state:   I12: L → id.,=  

                              L → id.,$ 

 I2:L → id.,$   have same core, merge them 

•  We will do this for all states of a canonical LR(1) parser to get the states of 
the LALR parser. 

•  In fact, the number of the states of the LALR parser for a grammar will be 
equal to the number of states of the SLR parser for that grammar. 



Creation of LALR Parsing 
Tables 

1.  Create the canonical LR(1) collection of the sets of LR(1) items for    
the given grammar. 

2.  For each core present; find all sets having that same core; replace 
those sets having same cores with a single set which is their union.

 C={I0,...,In}    C’={J1,...,Jm}  where m ≤ n 
3.  Create the parsing tables (action and goto tables) same as the 

construction of the parsing tables of LR(1) parser. 
1.  Note that: If  J=I1 ∪ ... ∪ Ik  since I1,...,Ik have same cores 

   cores of goto(I1,X),...,goto(I2,X) must be same.  
1.  So, goto(J,X)=K  where K is the union of all sets of items having same 

cores as goto(I1,X). 

4.  If no conflict is introduced, the grammar is LALR(1) grammar.          
(We may only introduce reduce/reduce conflicts; we cannot 
introduce a shift/reduce conflict) 



C → d •, c/d 

C 

(S’ → S • , $ 

S → C • C, $ 
C → • c C, $ 
C → • d, $ 

C → c • C, c/d 
C → • c C, c/d 
C → • d, c/d 

S → C C •, $ 

C → c • C, $ 
C → • c C, $ 
C → • d, $ 

C → d •, $ 

C → c C •, c/d 

S’ → • S, $ 
S → • C C, $ 

C → • c C, c/d 
C → • d, c/d 

C → cC •, $ 

S 

C 

c 

d 

C 

c 

d 

c 

c 

C 

I0 

I2 

I3 

I4 

I5 

I1 

I6 

I7 

I8 

I9 

d 

d 



C → d •, c/d 

C 

(S’ → S • , $ 

S → C • C, $ 
C → • c C, $ 
C → • d, $ 

C → c • C, c/d 
C → • c C, c/d 
C → • d, c/d 

S → C C •, $ 

C → c • C, $ 
C → • c C, $ 
C → • d, $ 

C → d •, $ 

C → c C •, c/d/$ 

S’ → • S, $ 
S → • C C, $ 

C → • c C, c/d 
C → • d, c/d 

S 

C 

c 

d 

C 

c 

d 

c 

c 

C 

I0 

I2 

I3 

I4 

I5 

I1 

I6 

I7 

I89 

d 

d 



C 

(S’ → S • , $ 

S → C • C, $ 
C → • c C, $ 
C → • d, $ 

C → c • C, c/d 
C → • c C, c/d 
C → • d, c/d 

S → C C •, $ 

C → c • C, $ 
C → • c C, $ 
C → • d, $ 

C → d •, c/d/$ 

C → c C •, c/d/$ 

S’ → • S, $ 
S → • C C, $ 

C → • c C, c/d 
C → • d, c/d 

S 

C 

c 

C 

c 

d 

c 

c 

C 

I0 

I2 

I3 

I5 

I1 

I6 

I47 

I89 

d 

d 

d 



C 

(S’ → S • , $ 

S → C • C, $ 
C → • c C, $ 
C → • d, $ 

S → C C •, $ 

C → c • C, c/d/$ 
C → • c C,c/d/$ 
C → • d,c/d/$ 

C → d •, c/d/$ 

C → c C •, c/d/$ 

S’ → • S, $ 
S → • C C, $ 

C → • c C, c/d 
C → • d, c/d 

S 

C 

d 

C 

c 

d 

c 

I0 

I2 

I5 

I1 

I36 

I47 

I89 

d 
c 



LALR Parse Table 

            c   d   $  S            C 
  0     s36   s47                1   2  
  1                           acc   
  2     s36       s47                           5  
  36   s36   s47                           89  
  47    r3        r3   r3 
  5                           r1  
  89    r2   r2   r2 



Shift/Reduce Conflict 
•  We say that we cannot introduce a shift/reduce conflict during the 

shrink process for the creation of the states of a LALR parser. 
•  Assume that we can introduce a shift/reduce conflict. In this case, a 

state of LALR parser must have: 

   A → α.,a  and  B → β.aγ,b 
•  This means that a state of the canonical LR(1) parser must have: 

  A → α.,a  and  B → β.aγ,c 
 But, this state has also a shift/reduce conflict. i.e. The original 
canonical LR(1) parser has a conflict.  
 (Reason for this, the shift operation does not depend on 
lookaheads) 



Reduce/Reduce Conflict 
•  But, we may introduce a reduce/reduce conflict during the shrink 

process for the creation of the states of a LALR parser. 

   I1 : A → α.,a     I2: A → α.,b 

         B → β.,b          B → β.,c 

      ⇓ 

      I12: A → α.,a/b        reduce/reduce conflict 

            B → β.,b/c 

     



Canonical LALR(1)– Ex2 
S’ → S   
1) S → L=R  
2) S → R  
3) L→ *R  
4) L → id  
5) R → L  

I0:S’ → .S,$ 
    S → .L=R,$ 
    S → .R,$ 
    L → .*R,$/= 
    L → .id,$/= 
    R → .L,$ 

I1:S’ → S.,$

I2:S → L.=R,$ 
    R → L.,$ 

I3:S → R.,$ 

I411:L → *.R,$/= 
      R → .L,$/= 
      L→ .*R,$/=  
      L → .id,$/= 

I512:L → id.,$/= 

I6:S → L=.R,$ 
    R → .L,$ 
    L → .*R,$ 
    L → .id,$ 

I713:L → *R.,$/= 

I810:  R → L.,$/= 

I9:S → L=R.,$ 

to I6 

to I713 

to I810 

to I411 

to I512 

to I810 

to I411 

to I512 

to I9 

S 

L 

L 
L 

R 

R 

id 

id 
id 

R 

* 

* 

*

Same Cores 
   I4  and I11 

   I5  and I12 

   I7  and I13 

   I8  and  I10 



LALR(1) Parsing– (for Ex2) 

id * = $ S L R 
0 s5 s4 1 2 3 
1 acc 
2 s6 r5 
3 r2 
4 s5 s4 8 7 
5 r4 r4 
6 s12 s11 10 9 
7 r3 r3 
8 r5 r5 
9 r1 

no shift/reduce or  
no reduce/reduce conflict 

 ⇓ 
so, it is a LALR(1) grammar 



Using Ambiguous Grammars 
•  All grammars used in the construction of LR-parsing tables must be   un-

ambiguous. 
•  Can we create LR-parsing tables for ambiguous grammars ? 

–  Yes, but they will have conflicts. 
–  We can resolve these conflicts in favor of one of them to disambiguate the 

grammar. 
–  At the end, we will have again an unambiguous grammar. 

•  Why use an ambiguous grammar? 
–  Some of the ambiguous grammars are more natural, and a corresponding 

unambiguous grammar can be very complex. 
–  Usage of an ambiguous grammar may eliminate unnecessary reductions. 

•  Ex. 
       E → E+T  |  T 

E → E+E  |  E*E  |  (E)  |  id          T → T*F  |  F 
       F →  (E)  |  id 



Sets for Ambiguous Grammar 
I0: E’ → .E 
     E → .E

+E   
     E → .E*E 
     E → .(E) 
     E → .id 

I1: E’ → E. 
     E → E .+E   
     E → E .*E 

I2: E → (.E) 
     E → .E+E 
     E → .E*E 
     E → .(E) 
     E → .id 

I3: E → 
id. 

I4: E → E +.E 
     E → .E+E   
     E → .E*E 
     E → .(E) 
     E → .id   

I5: E → E *.E 
     E → .E+E   
     E → .E*E 
     E → .(E) 
     E → .id   

I6: E → (E.) 
     E → E.+E 
     E → E.*E 

I7: E → E+E. 
     E → E.+E   
     E → E.*E 

I8: E → E*E. 
     E → E.+E   
     E → E.*E 

I9: E → 
(E). 

I5 

) 

E 

E 

E 

E 

* 

+ 

+ 

+ 

+ 

* 

*

* 

( 

( 

( 
( 

id 

id 

id 
id 

I4 

I2 

I2 

I3 

I3 

I4 

I4 

I5 

I5 



SLR Tables for Amb Grammar 
FOLLOW(E) = { $,+,*,) } 
State I7 has shift/reduce conflicts for symbols + and *. 

I0 I1 I7 I4 
E + E 

when current token is + 
     shift      + is right-associative 
     reduce   + is left-associative 

when current token is * 
     shift     * has higher precedence than + 
     reduce  + has higher precedence than * 



SLR Tables for Amb Grammar 
FOLLOW(E) = { $,+,*,) } 

State I8 has shift/reduce conflicts for symbols + and *. 

I0 I1 I8 I5 
E * E 

when current token is * 
     shift      * is right-associative 
     reduce   * is left-associative 

when current token is + 
     shift     + has higher precedence than * 
     reduce  * has higher precedence than + 



id + * ( ) $ E 
0 s3 s2 1 
1 s4 s5 acc 
2 s3 s2 6 
3 r4 r4 r4 r4 
4 s3 s2 7 
5 s3 s2 8 
6 s4 s5 s9 
7 r1 s5 r1 r1 
8 r2 r2 r2 r2 
9 r3 r3 r3 r3 

Action Goto 
SLR Tables for Amb Grammar 



Error Recovery in LR Parsing 
•  An LR parser will detect an error when it consults the parsing action 

table and finds an error entry. All empty entries in the action table 
are error entries. 

•  Errors are never detected by consulting the goto table. 
•  An LR parser will announce error as soon as there is no valid 

continuation for the scanned portion of the input. 
•  A canonical LR parser (LR(1) parser) will never make even a single 

reduction before announcing an error.  
•  The SLR and LALR parsers may make several reductions before 

announcing an error. 
•  But, all LR parsers (LR(1), LALR and SLR parsers) will never shift 

an erroneous input symbol onto the stack. 



Panic Mode Error Recovery 
•  Scan down the stack until a state s with a goto on a 

particular nonterminal A is found. (Get rid of everything 
from the stack before this state s). 

•  Discard zero or more input symbols until a symbol a is 
found that can legitimately follow A. 
–  The symbol a is simply in FOLLOW(A), but this may not work for 

all situations. 

•  The parser stacks the nonterminal A and  the state 
goto[s,A], and it resumes normal parsing. 

•  This nonterminal A is normally a basic programming 
block (there can be more than one choice for A). 
–  stmt, expr, block, … 



Phrase-Level Error Recovery 
•  Each empty entry in the action table is marked 

with a specific error routine. 
•  An error routine  reflects the error that the user 

most likely will make in that case. 
•  An error routine inserts the symbols into the 

stack or the input (or it deletes the symbols from 
the stack and the input, or it can do both 
insertion and deletion). 
–  missing operand 
–  unbalanced right parenthesis 



Assign#4 Help 

Days#20 



A Little Assign#4 Help 
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T + 

T 
E 

- T 

E → E + T | E – T | T 



E with No Error Recovery 
int E() { 

 int op1, op2; symbol op; 
 op1 := T(); 
 while sy in [plus, minus] do { 
  op := sy; 
  op2 := T(); 
  op1 := emit(op, op1, op2); 
 } 
 return op1; 

} 
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Syntax Directed Translation 

Days#21,22 



Syntax Directed Defn. (SDD) 

•  A CFG with attributes and rules 
•  Example: 

– Production   Semantic Rule 
– E → E1 + T  E.code = E1.code || T.code || ‘+’ 

•  In above || is concatenation of strings 
•  The example shows synthesized attributes 

– ones that flow up the parse tree 
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SDD in Bison 

•  Bison/Yacc has built-in notion of attributes 
referred to as $$, $1, etc. 

•  In Bison, you can declare type YYSTYPE 
to override default of int used for yylval  

•  Often one uses a union and the type can 
be referenced by union type tag $<tag>$ 
or $<tag>1 etc. 

•  If you do not set $$ then default is $$ = $1 
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Attributes 

•  Attributes are synthesized when they are 
defined at a node labeled A using 
attributes of the node and its children. 

•  Attributes are inherited when they are 
defined at node labeled A using attributes 
of the node, its parent and its children. 

•  Terminals are only allowed to have 
synthesized attributes. 
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S- and L-sttributed 
•  An SDD with only synthesized attributes is called S-

attributed. S-attributed are often used for bottom-up 
where they can be evaluated on the fly. 

•  An SDD with mixed synthesized and inherited attributes 
is called L-attributed if it can be evaluated left-to-right 
and depth first. L-attributed are often used for top-down.  

•  Under certain circumstances (the right kind of 
dependencies) both types can be evaluated in one pass. 
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S-attributed 

<E> → <E1> + <T>  
<E> → <E1> – <T>  
<E> → <T>  
<T> → <T1> * <F>  
<T> → <T1> / <F>  
<T> → <F>  
<F> → – <F1>  
<F> → ( <E> )  
<F> → id 
<F> → unsigned_integer 

E.val := E1.val + T.val  
E.val := E1.val – T.val  
E.val := T.val  
T.val := T1.val * F.val  
T.val := T1.val / F.val  
T.val := F.val  
F.val := – F1.val  
F.val := E.val  
F.val := id.entry 
F.val := unsigned_integer.val 
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Annotated Parse Tree 
•  Adds attributes to nodes 
•  Also called attributed or decorated 
•  S-attributed evaluates up the tree (typically post-

order traversal but any bottom-up works) 
•  L-attributed evaluates pre-order and left to right. 

The pre-order allows attributes to flow from 
parent; left-to-right allows younger children to 
pass values along. 
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S-attributed Evaluation 

•  (1+3)*2 
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L-attributed 
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<E> → <T> <TT>  
<TT> → + <T> <TT1>     
<TT> → – <T> <TT1>     
<TT> → ε

<T> → <F> <FT>  
<FT> → * <F> <FT1>     
<FT> → / <F> <FT1>  
<FT> → ε

<F> → – <F1>  
<F> → ( <E> )  
<F> → id  
<F> → unsigned_integer 

TT.inh := T.val; E.val := TT.syn  
TT1.inh := TT.inh + T.val; TT.syn := TT1.syn  
TT1.inh := TT.inh – T.val; TT.syn := TT1.syn  
TT.syn := TT.inh 
FT.inh := T.val; E.val := FT.syn  
FT1.inh := FT.inh × F.val; FT.syn := FT1.syn  
FT1.inh := FT.inh / F.val; FT.syn := FT1.syn  
FT.syn := FT.inh 
F.val := – F1.val  
F.val := E.val  
F.val := id.entry 
F.val := unsigned_integer.val 

Note: inherited attribute of a node can be assigned to 
synthesized attribute but not vice versa. 



L-attributed Evaluation 

•  (1+3)*2 (yellow is syn or val; blue is inh) 

4/21/11 © UCF EECS 338 



Declaration Statements 
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<D> → <T> <L>  
<T> → int    
<T> → float    
<L> → <L1> ‘,’ id 
<L> → id 

L.inh := T.type 
T.type := integer 
T.type := float 
L1.inh := L.inh; addType(id.entry,L.inh) 
addType(id.entry,L.inh) 



Evaluation Order 

•  Any order that maintains dependencies is 
acceptable in attribute evaluation 

•  Typical approach is topological sort of 
dependency graph 

•  Problem: If actions have side effects then 
one must be careful to not change 
semantics with varying orders of 
evaluation 
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S-synthesizing a Syntax Tree 
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<E> → <E1> + <T>  
<E> → <E1> – <T>  
<E> → <T>  
<T> → <T1> * <F>  
<T> → <T1> / <F>  
<T> → <F>  
<F> → – <F1>  
<F> → ( <E> )  
<F> → id  
<F> → num 

E.node := new Node(‘+’, E1.node, E.node) 
E.node := new Node(‘–’, E1.node, E.node) 
E.node := T.node  
T.node := new Node(‘*’, T1.node, F.node) 
T.node := new Node(‘/’, T1.node, F.node) 
T.node := F.node  
F.node := new UnaryNode(minus, F1.node)  
F.Node := E.node 
F.node := new LeafNode(ident, id.entry) 
F.node := new LeafNode(number, num.val) 



L-synthesizing a Syntax tree 
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<E> → <T> <TT>  
<TT> → + <T> <TT1>     
<TT> → – <T> <TT1>     
<TT> → ε

<T> → <F> <FT>  
<FT> → * <F> <FT1>     
<FT> → / <F> <FT1>  
<FT> → ε

<F> → – <F1>  
<F> → ( <E> )  
<F> → id  
<F> → num 

E.node := TT.syn; TT.inh := T.node  
TT1.inh := new Node(‘+’,TT.inh,T.node; TT.syn := TT1.syn  
TT1.inh := new Node(‘–’,TT.inh,T.node; TT.syn := TT1.syn  
TT.syn := TT.inh 
T.node := FT.syn; FT.inh := F.node  
FT1.inh := new Node(‘×’,FT.inh,F.node; FT.syn := FT1.syn  
TT1.inh := new Node(‘/’,TT.inh,F.node; FT.syn := FT1.syn  
FT.syn := FT.inh 
F.val := – F1.val  
F.node := E.node  
F.node := new LeafNode(ident, id.entry) 
F.node := new LeafNode(number, num.val) 



Flattening of the Syntax Tree 

•  Triples and quads as we defined them 
area  form of flattening 

•  Triples are compact but hard to move 
•  Quads are wasteful in many cases, but 

easy to move, e.g., from inside a loop to 
precede it when semantics are still correct 
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Indirect Triples 

•  Compromise between triples and quads 
•  Generate triples but have a separate list 

that specifies which triples actually are at a 
particular node position 
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Dataflow Analysis 

Days#25,26,27 



Dataflow Analysis 
•  Use of data flow within program to determine 

producer/consumer relationship between points 
in program. 

•  Information sought at each point in program 
–  Where were values produced that might be consumed 

here? 
–  Where are values consumed that are produced here? 
–  What are constraints on values available here? 



Scalar Analysis 

•  Basic type is Scalar Analysis 
– Concentrates on simple variable names 
–  Indexed array ref. A[I] is treated as a 

reference to all of object A 
– This basic coverage ignores aliasing (multiple 

names for same object) 

4/21/11 © UCF EECS 347 



Focus of Analysis 

•  Basic Block 
– One in, one out sequence of code 

•  Local Analysis – done on single basic 
blocks 

•  Intraprocedural Analysis – done within 
procedures 

•  Interprocedural Analysis – done across 
procedures 
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Control vs Data Flow 
•  Control Flow 

–  intra creates flow graph with procedure entry as initial node 
–  inter creates a call graph with main body as initial node 

•  Data Flow 
–  determines accessibility of definitions and uses to each other 
–  UD chaining  

•  given a variable use, what definitions reach this use 

–  DU chaining  
•  given a variable definition, what uses are made of it 
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Program representation 
•  Control Flow Graph 

– Nodes N – statements of program (maybe of 
intermediate code; maybe of source code) 

– Edges E – flow of control 
•  pred(n) = set of all predecessors of n 
•  succ(n) = set of all successors of n 

– Start node n0 

– Set of final nodes Nfinal 



Control Flow Graph 
•  Program P consists of procedures, one of which 

is denoted p. 
•  We assume one entry / one exit procedures.  
•  A control flow graph G = (N, E, s) refers to a 

directed graph (N, E) and an initial node s in N, 
where there is a path from s to every node of G. 

•  Nodes can be statements or basic blocks. 
Commonly, they are the latter. 
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Basic Blocks Example 
Program SquareRoot; 
var  L, N, K, M : integer; C : boolean; 
begin 

 (* start of block B1 *)   
 read(L);  
 N ← 0;  
 K ← 0;  
 M ← 1;   
 (* end of block B1 *) 
 loop 
  (* start of block B2 *) 
  K ← K + M;  
  C ← K > L; 
  if C then break;   
  (* end of block B2 *) 
  (* start of block B3 *)   
  N ← N + 1;  
  M ← M + 2   
  (* end of block B3 *) 
 end loop; 
 (* start of block B4 *)   
 write(N)  
 (* end of block B4 *) 

end.  (* SquareRoot *) 
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Program Points 

•  One program point before each node 
•  One program point after each node 
•  Join point – point with multiple 

predecessors 
•  Split point – point with multiple successors 



Basic Idea 

•  Information about program represented 
using values from algebraic structure 
called lattice 

•  Analysis produces lattice value for each 
program point 

•  Two flavors of analysis 
– Forward dataflow analysis 
– Backward dataflow analysis 



Forward Dataflow Analysis 
•  Analysis propagates values forward through control flow 

graph with flow of control 
–  Each node has a transfer function f 

•  Input – value at program point before node 
•  Output – new value at program point after node 

–  Values flow from program points after predecessor 
nodes to program points before successor nodes 

–  At join points, values are combined using a merge 
function  

•  Canonical Example: Reaching Definitions 



•  Analysis propagates values backward through control flow 
graph against flow of control 
–  Each node has a transfer function f 

•  Input – value at program point after node 
•  Output – new value at program point before node 

–  Values flow from program points before successor 
nodes to program points after predecessor nodes 

–  At split points, values are combined using a merge 
function 

–  Canonical Example: Live Variables 

Backward Dataflow Analysis 



Partial Orders 

•  Set P 
•  Partial order ≤ such that ∀x,y,z∈P 

– x ≤ x      (reflexive) 
– x ≤ y and y ≤ x implies x = y  (asymmetric) 
– x ≤ y and y ≤ z implies x ≤ z  (transitive) 



Upper Bounds 

•  If S ⊆ P then 
– x∈P is an upper bound of S if ∀y∈S. y ≤ x 
– x∈P is the least upper bound of S if 

•  x is an upper bound of S, and  
•  x ≤ y for all upper bounds y of S 

– ∨ - join, least upper bound 
•  ∨ S is the least upper bound of S 
•  x ∨ y is the least upper bound of {x,y} 



•  If S ⊆ P then 
– x∈P is a lower bound of S if ∀y∈S. x ≤ y 
– x∈P is the greatest lower bound of S if 

•  x is a lower bound of S, and  
•  y ≤ x for all lower bounds y of S 

– ∧ - meet, greatest lower bound 
•  ∧ S is the greatest lower bound of S 
•  x ∧ y is the greatest lower bound of {x,y} 

Lower Bounds 



Covering 

•  x< y if x ≤ y and x≠y  
•  x is covered by y (y covers x) if 

– x < y, and 
– x ≤ z < y implies x = z 

•  Conceptually, y covers x if x< y and there 
are no elements between x and y 



Example 
•  P = { 000, 001, 010, 011, 100, 101, 110, 111} 

(standard boolean lattice, also called hypercube) 
•  x ≤ y if (x bitwise and y) = x 

111 

011 
101 

110 

010 
001 

000 

100 

Hasse Diagram 
•  If y covers x 

•  Line from y to x 
•  y above x in 

diagram 



Lattices 
•  If x ∧ y and x ∨ y exist for all x,y∈P,   

 then P is a lattice. 
•  If ∧S and ∨S exist for all S ⊆ P,    

 then P is a complete lattice. 
•  All finite lattices are complete 
•  Example of a lattice that is not complete 

–  Integers I 
–  For any x, y∈I, x ∨ y = max(x,y), x ∧ y = min(x,y) 
–  But ∨ I and ∧ I do not exist 
–  I ∪ {+∞,-∞ } is a complete lattice 



Top and Bottom 

•  Greatest element of P (if it exists) is top 
•  Least element of P (if it exists) is bottom 

(⊥) 



Extracting Loops 
•  Let G = (N,E,s)  

–  A node s’ ∈ N is the entry point for loop in G iff there is an s” ∈ N such 
that (s”, s’) ∈ E and s’ dominates s”. (s’ dominates s” if s’ is on every 
path from s (start node) to s”) 

–  Let s’ be an entry point of a loop. The max loop with entry s’ is G’ = 
(N’,E’,s’), where 
N’ = {s” | ∃ a path from s” to s’ containing only nodes “dominated” by s’}. 
E’=E ∩ (N’×N’) 

•  To do data flow analysis we often wish to obey 
dominances, doing loop entries before their bodies, if 
conditions before their choices, etc. 
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Numbering Nodes 

•  A depth first traversal can be used to 
number nodes so that 

•  s’ < s” (s’ dominates s”) implies #(s’) < 
#(s”). 

•  Note that it is not true that #(s’) < #(s”) 
implies s’ < s”. 
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DFT Algorithm 
DFT( G : flowgraph )   (* G = (N,E,s) *) 

 E’ ← { }; 
 i ← | N |; 
 for every t in N do t.mark ← false; 
 search( s ) 

Search( t : node ) 
 t.mark ← true; 
 while t.unmarked_successors ≠ { } do begin 
  t’ ← select( t.unmarked_successor ); 
  E’ ← E’ + { (t,t’) }; 
  Search( t’ ) 
 end; (* while *) 
 rPostOrder[t] ← i; 
 i ← i – 1 
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Properties of DFT 

•  This produces one of the natural orders.  
Visiting nodes based on these numbers 
speeds up data flow analysis. 

•  Arcs are forward (unvisited node); back 
(visited but not numbered); cross 
(numbered). 

•  Back arcs denote loops. 
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Categorizing Arcs in DFT 
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An Aside: Managing Heap 

•  DFT can be used in managed language 
•  Start with handles known to be accessible 

(use some root that gets all of these) 
•  Follow handles (pointers) to see what is 

accessible  
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Putting Pieces Together 

•  Forward Dataflow Analysis Framework 
•  Simulates execution of program forward 

with flow of control 



Forward Dataflow Analysis 
•  Simulates execution of program forward with flow of 

control 
•  For each node n, have 

–  inn – value at program point before n 
–  outn – value at program point after n 
–  fn – transfer function for n (given inn, computes outn) 

•  Require that solution satisfy 
–  ∀n. outn = fn(inn) 
–  ∀n ≠ n0. inn = ∨ { outm | m in pred(n) } 
–  inn0 = I 
–  Where I summarizes information at start of program 



Dataflow Equations 

•  Compiler processes program to obtain a 
set of dataflow equations 
  outn := fn(inn) 

  inn := ∨ { outm | m in pred(n) } 
•  Conceptually separates analysis problem 

from program 



May versus Must Analysis 
•  We now have a recurrence relation and hence seek a fixed point. 
•  We want the best but correct fixed point. 

•  MAY – determine if a property may be possible. This is attacked by 
assuming no elements satisfy, then union in all those that might 
have the property. By starting with the empty set, we get the Least 
Upper Bound (LUB).  This is conservative. 

•  MUST – determine if a property must be true. This is attacked by 
assuming all elements satisfy, then intersecting all those that must 
have the property. By starting with everything, we get the Greatest 
Lower Bound (GLB).  This is conservative. 

4/21/11 © UCF EECS 373 



Direction of Flow 

•  FORWARD FLOW – information flows 
from the root towards leaves of the control 
flow graph. 

•  BACKWARD FLOW – information goes 
from the leaves towards the root of the 
control flow graph. 
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Alg for Forward Dataflow 

for each n do outn := fn({ }) = fn(⊥) 
inn0 := { }; // or available at start  
outn0 := fn0(inn0) 
worklist := N - { n0 } 
while worklist ≠ ∅ do 

 remove a node n from worklist 
 inn := ∨ { outm | m in pred(n) } 
 outn := fn(inn) 
 if outn changed then  
  worklist := worklist ∪ succ(n) 



Correctness Argument 
•  Why result satisfies dataflow equations 
•  Whenever process a node n, set outn := fn(inn) 

Algorithm ensures that outn = fn(inn)  
•  Whenever outm changes, put succ(m) on worklist. 

Consider any node n ∈ succ(m). It will eventually 
come off worklist and algorithm will set  
  inn := ∨ { outm . m in pred(n) }              
to ensure that inn = ∨ { outm . m in pred(n) } 

•  So final solution will satisfy dataflow equations   



Reaching Definitions 
•  Useful in optimizations such as constant 

propagation and copy propagation 
•  For each basic block we determine the set of 

definitions that reach the beginning of that basic 
block called in[] and the set of definitions that 
reach the end of that block called out[] 

•  A definition d reaches a point p if there is a path 
from d to p such that d is not “killed” along that 
path 
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RD Abstraction 
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Form of data flow equations for reaching 
definitions is 
out[S]  =          gen[S]  ∪   ( in[S]  -  kill[S] ) 

Alternately can intersect in with preserve[S] 
gen[]   -- the set of definitions that reach the end of 
S independent of whether they reach the beginning  
of S  

kill[]   -- the set of definitions that never reach 
the end of S even if they reach the beginning 



Reaching Definitions 
•  P = powerset of set of all definitions in program 

(all subsets of set of definitions in program) 
•  ∨ = ∪ (order is ⊆) 
•  ⊥ = ∅ 
•  I = inn0 = ⊥ 
•  F = all functions f of the form f(x) = a ∪ (x-b) 

–  b is set of definitions that node kills 
–  a is set of definitions that node generates 

•  General pattern for many transfer functions 
–  f(x) = GEN ∪ (x-KILL) 



Reaching Definitions 

•  Notation: For any node n, pred[n] is the set 
of all immediate predecessors of n and  
succ[n] is the set of all immediate 
successors. 

•  RD[n] = ReachIn[n] = { s | p ∈ pred[n] and 
s ∈ ReachOut[p] }  

•  ReachOut[n] = (ReachIn[n] ∩ S_PRE[n]) 
∪ S_DEF[n] 
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Implementing RD 
for i = 1 to NBlocks do begin 

 ReachOut[i] ← S_DEF[i]; 
 ReachIn[i] ← { } 

end; 
change ← true; 
while change do begin 

 change ← false; 
 for i = 1 to NBlocks do begin 
  newIn ← { s | p ∈ pred[n] & s ∈ ReachOut[p] }; 
  if ReachIn[i] ≠ newIn then begin 
   ReachIn[i] ← newIn; 
   oldOut ← ReachOut[i]; 
   ReachOut[i] ← (ReachIn[i] ∩ PRE[i]) ∪ GEN[i]; 
   /* or (ReachIn[i] - KILL[i]) ∪ GEN[i]; 
   if oldOut ≠ ReachOut[i] then change := true 
  end 
 end 

end 
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•  Simulates execution of program backward against 
the flow of control 

•  For each node n, have 
–  inn – value at program point before n 
–  outn – value at program point after n 
–  fn – transfer function for n (given outn, computes inn) 

•  Require that solution satisfies 
–  ∀n. inn = fn(outn) 
–  ∀n ∉ Nfinal. outn = ∨ { inm . m in succ(n) } 
–  ∀n ∈ Nfinal = outn = O 
–  Where O summarizes information at end of program 

Backwards dataflow 



for each n do inn := fn(⊥) 
for each n ∈ Nfinal do outn := O; inn := fn(O) 
worklist := N - Nfinal  
while worklist ≠ ∅ do 

 remove a node n from worklist 
 outn := ∨ { inm . m in succ(n) } 
 inn := fn(outn) 
 if inn changed then  
  worklist := worklist ∪ pred(n) 

Alg for Backward Dataflow 



Liveness 
•  Calculates liveness information 
•  A variable is said to be live at a point if there are 

further uses of that variable. Otherwise it is said 
to be dead 

•  Backward analysis – ie we move in the 
backward direction 

•  Still a may problem 



Liveness Abstraction 
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Data Flow equations for live variable 
analysis 

out[B]   =    ∪ Succ[B] in[S] 

in[B]  =   use[B]   ∪   ( out[B]  - def[B] ) 

use[B] = the set of variables that are 
used prior to any definition 
def[B] = the set of variables that are       
definitely assigned prior to any use   



Scalar dependence 
S1:   A ← 1.0; 
S2:   B ← A + 3.1415; 
S3:   A ← .333 * (C – D); 
…   … 
S4:   A ← (B * 3.8) / 2.718; 

S2 is true dependent on S1 
S3 is anti-dependent on S2 
S4 is output dependent on S3 
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Example of dependence 
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Final Exam Promises 
•  An expression grammar that incorporates precedence and associativity. 
•  Distinction between languages and grammars in a particular class. 
•  Ambiguity 
•  FLEX type answer to a regular expression problem. 
•  EBNF / Railroad chart question 
•  Creation of a recursive descent parser for some simple construct. 
•  Creation of FIRST, FOLLOW and an LL(1) parse table. 
•  Removal of left recursion and common prefixes. 
•  CKY 
•  Bottom-Up and Top-Down stack manipulation 
•  Adding actions to Bison grammar, e.g., code generation, semantic error checks 
•  Completion of the states, actions and gotos for an SLR(1) parser. 
•  Completion of canonical LR(1) parser. 
•  LALR(1) parser by doing merges on a canonical LR(1) parser's states.  
•  Evaluation of attributes (inherited and synthesized) for some attributed translation grammar. 
•  Data flow algorithm based on one of the four discussed in class. 
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