University of Central Florida

Department of Electrical Engineering & Computer Science

COP 3402: System Software

Spring 2014

Homework #4 (PL/0 Compiler)

Due Wednesday, July 23rd, 2014 by 11:59 p.m.

REQUIREMENT:

All assignments must compile and run on the Eustis server. Please see course website for details concerning use of Eustis.

Objective:

In this assignment, you must extend the functionality of Homework #3 to include the additional grammatical constructs highlighted in yellow in the grammar below (Appendix B).

Example of a program written in PL/0:

var x, w;

begin

x:= 4;

read w;

if w > x then
w:= w + 1

else

w:= x;
write w;
end.

Component Descriptions:

The compiler must read a program written in PL/0, generate PM/0 machine code and run it in the Virtual Machine (VM) you implemented in HW1. Your compiler must neither parse nor generate code for programming constructs that are not in the grammar described below (Appendix B).

Submission Instructions:

1.- Submit via Webcourses:

1. Source code of the PL/0 compiler (including source code for scanner, parser/code generator, virtual machine and compile driver).

2. A text file entitled “readme.txt”, with instructions on how to compile the PL/0 compiler on Eustis, how to use your PL/0 compiler and what file names are used as input and output for each program of the PL/0 compiler.
3. A text file containing a correctly formed PL/0 program and the corresponding four output files generated by your PL/0 compiler: lexeme list, symbol list, PM/0 machine code and stack trace.

4. A document (in Microsoft Word or PDF format, the latter is preferred) with incorrectly formed PL/0 programs and screenshots of the output of your PL/0 compiler showing the corresponding error message to each incorrect PL/0 program. This document must demonstrate at least ten different errors.
5. A digital version of the User’s Guide for the PL/0 compiler (in Microsoft Word or PDF format, the latter is preferred).

6. All files should be compressed into a single file, in .zip format.

7. Late assignments will not be accepted (for this project there is not a two day extension after the due date).
2.- Submit in class the next class day following the due date:

1. A hard copy of the User’s Guide for the PL/0 compiler.

The User’s Guide should assume that the user has no experience whatsoever with the compiler and the PL/0 language and very little experience with the platform on which the compiler is run. At the very least, the User’s Guide should cover:

1. How to compile and run the PL/0 compiler.

2. How to use the PL/0 compiler once it is running.

3. How to use the PL/0 language.

a. E.g. how to use an “if” statement, how to assign a value to a variable, etc.

b. Examples of PL/0 code are very helpful.

Appendix A:

Traces of Execution:

Example 1, if the input is:

var x, y;

begin
 y := 3;

 x := y + 56

end.
The output should look like:

1.- A print out of the token (internal representation) file:

29 2 0 17 2 1 18 21 2 1 20 3 2 18 2 0 20 2 1 4 3 3 18 22 19
2.- Print out the message “ No errors, program is syntactically correct”

3.- Print out the generated code.
4.- Run the program on the VM virtual machine (HW1) and print out of the stack trace.
Note: all print outs to console depend on the directives given to each program.

Note: regardless of the given directives, if no errors are detected the compile process must generate four files: the lexeme list, the symbol list, the machine code and the stack trace.

Example 2, if the input is:

var x, y;

begin

 y := 3;
 x := y + 56

end  (notice period expected after the “end” reserved word)

The output should look like:

1.- A print out of the token (internal representation) file:

29 2 0 17 2 1 18 21 2 1 20 3 2 18 2 0 20 2 1 4 3 3 18 22

2.- Print the message “Error number xxx, period expected.”

 ***** Error number xxx, period expected

Note: the error messages must be printed out to console, regardless of the given directives. Printing out such messages to file is optional.

Example 3: Use this example (recursive program) to test your compiler:
var f, n;

procedure fact;

var ans1;

begin

 ans1:=n;

 n:= n-1;

 if n = 0 then f := 1;

 if n > 0 then call fact;

 f:=f*ans1;

end;

begin

n:=3;

call fact;

write f;
end.

Example 4: Use this example (nested procedures program) to test your compiler:

var x,y,z,v,w;

procedure a;

 var x,y,u,v;

 procedure b;

 var y,z,v;

 procedure c;

 var y,z;

 begin

 z:=1;

 x:=y+z+w;
 end;

 begin

 y:=x+u+w;

 call c;
 end;

 begin

 z:=2;

 u:=z+w;

 call b;
 end;

begin

 x:=1; y:=2; z:=3; v:=4; w:=5;

 x:=v+w;

 write z;

 call a;

end.
Appendix B:

EBNF of PL/0:

program ::= block "." .

block ::= const-declaration var-declaration procedure-declaration statement.

constdeclaration ::= ["const" ident "=" number {"," ident "=" number} ";"].

var-declaration ::= ["var "ident {"," ident} “;"].

procedure-declaration ::= { "procedure" ident ";" block ";" }
statement ::= [ident ":=" expression

| "call" ident

| "begin" statement { ";" statement } "end"

| "if" condition "then" statement ["else" statement]

| "while" condition "do" statement

| "read" ident

| "write" expression

| e] .
condition ::= "odd" expression

| expression rel-op expression.

rel-op ::= "="|“!="|"<"|"<="|">"|">=“.
expression ::= ["+"|"-"] term { ("+"|"-") term}.
term ::= factor {("*"|"/") factor}.

factor ::= ident | number | "(" expression ")“.
number ::= digit {digit}.
ident ::= letter {letter | digit}.
digit ;;= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9“.
letter ::= "a" | "b" | … | "y" | "z" | "A" | "B" | ... | "Y" | "Z".
Based on Wirth’s definition for EBNF we have the following rule:

[] means an optional item.
{ } means repeat 0 or more times.
Terminal symbols are enclosed in quote marks.

A period is used to indicate the end of the definition of a syntactic class.
Appendix C:

Error messages for the tiny PL/0 Parser:

1. Use = instead of :=.

2. = must be followed by a number.

3. Identifier must be followed by =.

4. const, var, procedure must be followed by identifier.

5. Semicolon or comma missing.

6. Incorrect symbol after procedure declaration.

7. Statement expected.

8. Incorrect symbol after statement part in block.

9. Period expected.

10. Semicolon between statements missing.

11. Undeclared identifier.

12. Assignment to constant or procedure is not allowed.

13. Assignment operator expected.

14. call must be followed by an identifier.

15. Call of a constant or variable is meaningless.

16. then
 expected.

17. Semicolon or } expected.

18. do expected.

19. Incorrect symbol following statement.

20. Relational operator expected.

21. Expression must not contain a procedure identifier.

22. Right parenthesis missing.

23. The preceding factor cannot begin with this symbol.

24. An expression cannot begin with this symbol.

25. This number is too large.

Note: Not all of these error messages may be used, and you may choose to create some error messages of your own to more accurately represent certain situations.
Appendix D:

Recursive Descent Parser for a PL/0 like programming language in pseudo code:

As follows you will find the pseudo code for a PL/0 like parser. This pseudo code will help you out to develop your parser and intermediate code generator for tiny PL/0:

 procedure PROGRAM;

 begin

 GET(TOKEN);

 BLOCK;

 if TOKEN != "periodsym" then ERROR

 end;

 procedure BLOCK;

 begin

 if TOKEN = "constsym" then begin

 repeat

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN);

 if TOKEN != "eqsym" then ERROR;

 GET(TOKEN);

 if TOKEN != NUMBER then ERROR;

 GET(TOKEN)

 until TOKEN != "commasym";

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 if TOKEN = "varsym" then begin

 repeat

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN)

 until TOKEN != "commasym";

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 while TOKEN = "procsym" do begin

 GET(TOKEN);

 if TOKEN != “identsym” then ERROR;

 GET(TOKEN);

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN);

 BLOCK;

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 STATEMENT

 end;

 procedure STATEMENT;

 begin

 if TOKEN = "identsym" then begin

 GET(TOKEN);

 if TOKEN != "becomessym" then ERROR;

 GET(TOKEN);

 EXPRESSION

 end

 else if TOKEN = "callsym" then begin

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN)

 end

 else if TOKEN = "beginsym" then begin

 GET TOKEN;

 STATEMENT;

 while TOKEN = "semicolomsym" do begin

 GET(TOKEN);

 STATEMENT

 end;

 if TOKEN != "endsym" then ERROR;

 GET(TOKEN)

 end

 else if TOKEN = "ifsym" then begin

 GET(TOKEN);

 CONDITION;

 if TOKEN != "thensym" then ERROR;

 GET(TOKEN);

 STATEMENT

 end

 else if TOKEN = "whilesym" then begin

 GET(TOKEN);

 CONDITION;

 if TOKEN != "dosym" then ERROR;

 GET(TOKEN);

 STATEMENT

 end

 end;

 procedure CONDITION;

 begin

 if TOKEN = "oddsym" then begin

 GET(TOKEN);

 EXPRESSION

 else begin

 EXPRESSION;

 if TOKEN != RELATION then ERROR;

 GET(TOKEN);

 EXPRESSION

 end

 end;

 procedure EXPRESSION;

 begin

 if TOKEN = "plussym"or "minussym" then GET(TOKEN);

 TERM;

 while TOKEN = "plussym" or "slashsym" do begin

 GET(TOKEN);

 TERM

 end

 end;

 procedure TERM;

 begin

 FACTOR;

 while TOKEN = "multsym" or "slashsym" do begin

 GET(TOKEN);

 FACTOR

 end

 end;

 procedure FACTOR;

 begin

 if TOKEN = "identsym then

 GET(TOKEN)

 else if TOKEN = NUMBER then

 GET(TOKEN)

 else if TOKEN = "(" then begin

 GET(TOKEN);

 EXPRESSION;

 if TOKEN != ")" then ERROR;

 GET(TOKEN)

 end

 else ERROR

 end;

Appendix E:

Symbol Table

Recommended data structure for the symbol.

#define MAX_SYMBOL_TABLE_SIZE 100

typedef struct symbol{

int kind;
// const = 1, var = 2, proc = 3

char name[12];
// name up to 11 chars

int val;

// number (ASCII value)

int level;
// L level

int addr;
// M address
} symbol;

symbol_table[MAX_SYMBOL_TABLE_SIZE];

For constants, you must store kind, name and value.

For variables, you must store kind, name, L and M.

For procedures, you must store kind, name, L and M.

