COP 3402 System Software	Summer 2001 – Pass 2

This document describes Pass2 of the assembler project. You are to write Pass 2 in standard C code and make sure that it will run on the Olympus system, compiled in gcc. Further details on what you are to hand in will be provided in your labs. Completing Pass 2 does not require a working Pass 1.

Input files:

The input files for Pass 2 will be an intermediate file and a symbol table file, both produced by Pass 1. However, you will use the intermediate and symbol table files provided on Olympus, not ones produced by your Pass 1. Your Pass 2 must prompt the user for the input intermediate filename and use that input name to also open the associated symbol table file. You have also been provided with an ASCII text file called opcode.tab that contains the complete set of opcodes. You may assume that there won't be any format errors in the symbol table file.

	# EXAMPLE2.ASM

	.PROGRAM		EXAMPLE2

	.CONST						# constants

		MAX	HALF	%0A			# hex constant

		NUM2	HALF	17			# decimal constant

0000		STR1	BYTE	$"A String!"	# string constant

		FIVE	HALF	^0101			# binary constant

		CHAR	BYTE	$'S'			# character constant

	.EXTERN

		SUM3	MYLIB				# my subroutine

		SQRT	MATHLIB				# math subroutine

	.DATA	

000A		INDEX	DEFH	1		# short integer

000C		SQRT	DEFX	1		# external reference

0010		NUMS	DEFB	FIVE		# array of bytes

0018		SUM3	DEFX	1		# external reference

001C		SHORT	DEFH	3		# short integer

0024		BIG	DEFW	1		# long integer

	.CODE						# code starts here

0000			SH	R0, INDEX, R0

0004			ORI	R4, R0, ^01100101

0008			AND	R10, R10, R0

000C		LOC1:	SUBI	R4, R4, FIVE

0010			LH	R3, R0, INDEX

0014			ADDI	R3, R3, 1

0018			SH	R0, INDEX, R3

001C			ADD	R10, R10, R4

0020			SGT	R7, R4, R0

0024			BEQZ	R7, LOC2

0028			JR	LOC1

002C		LOC2:	SW	R0, BIG, R10	

0030			LW	R20, R0, SQRT

0034			JAL	R20

0038			EXIT	0

	.END

Sample input file for Pass 2 (i.e., the example2.int file provided on Olympus)

�
Symbol Table for the intermediate file (example2.int) read from example2.sym:

identifier	size (dec)	type	value		address

MAX	2 bytes	hex	10

NUM2	2 bytes	dec	17

STR1	9 bytes	str	"A String!"		0000

FIVE	2 bytes	bin	5

CHAR	1 byte	char	'S'

INDEX	2 bytes	data			000A

SQRT	4 bytes	extern			000C

NUMS	5 bytes	data			0010

SUM3	4 bytes	extern			0018

SHORT	6 bytes	data			001C

BIG	4 bytes	data			0024

LOC1		label			000C

LOC2		label			002C

CODE_SIZE	60 bytes

DATA_SIZE	40 bytes

Internal Data Structures in Pass 2:

Pass 2 uses the same two main data structures as Pass 1, the opcode table and the symbol table. Both tables should be created as an array of structures in C. The arrays should be large enough to hold all expected entries. Since there are exactly 50 opcodes in the language, the opcode table size is known. The size of the symbol table was set to at least 200 entries in Pass 1 and, since the symbol table won't increase in size in Pass 2, you can use the same size here. You can base your opcode table and symbol table structures on the ones you used in Pass 1, but you may need to add extra fields to your symbol table to include information needed by Pass 2.

Remember that the symbols CODE_SIZE and DATA_SIZE were added to the symbol table at the end of Pass 1 and those symbols can be used to retrieve the overall code and data (including string constants) sizes for Pass 2. Note that the size column contains a decimal number.

Output files:

Pass 2 will produce two output files:

The listing file will contain the same information that is contained in the intermediate file, plus the object code (written in hexadecimal) produced by Pass 2 of the assembler. It will also include any errors encountered in Pass 2. As in Pass 1, errors will be printed on the line following the error. The count of errors will be printed at the bottom of the file (if no errors are found, the count printed is 0). An example of a listing file for a program that contains no errors is also shown below. The listing file's filename will be based on the input filename, but with the extension ".lst" instead of ".int".

The object code output file will contain the assembled object code for each instruction and an image of the data storage space for the program. The data storage space will contain either string constants or zeros, depending on the contents of the associated memory area. The object code file's specific format is shown on below. The object code output file's filename will be based on the input filename, but with the extension ".obj" instead of ".int".

�
Listing File Format:

The listing file includes all of the information in the input intermediate file, but also adds a column (to the right of the address column, see below) that includes the assembled object code for that line. No object code is generated for constants, data or assembler directives. The object code is 32 bits long and will be printed in hexadecimal notation with leading zeros (remember, 32 bits = 4 bytes = 8 hex digits). The object code printed next to each instruction is exactly the same as the object code output to the object code file for the instruction on that line. The listing file is provided for debugging purposes since it may also include error messages for each error in the program.

	# EXAMPLE2.ASM

	.PROGRAM		EXAMPLE2

	.CONST						# constants

		MAX	HALF	%0A			# hex constant

		NUM2	HALF	17			# decimal constant

0000		STR1	BYTE	$"A String!"	# string constant

		FIVE	HALF	^0101			# binary constant

		CHAR	BYTE	$'S'			# character constant

	.EXTERN

		SUM3	MYLIB				# my subroutine

		SQRT	MATHLIB				# math subroutine

	.DATA	

000A		INDEX	DEFH	1		# short integer

000C		SQRT	DEFX	1		# external reference

0010		NUMS	DEFB	FIVE		# array of bytes

0018		SUM3	DEFX	1		# external reference

001C		SHORT	DEFH	3		# short integer

0024		BIG	DEFW	1		# long integer

	.CODE						# code starts here

0000	1C000042		SH	R0, INDEX, R0

0004	5C040065		ORI	R4, R0, ^01100101

0008	99405000		AND	R10, R10, R0

000C	48840005	LOC1:	SUBI	R4, R4, FIVE

0010	08030032		LH	R3, R0, INDEX

0014	40630001		ADDI	R3, R3, 1

0018	1C60002A		SH	R0, INDEX, R3

001C	81445000		ADD	R10, R10, R4

0020	AC803800		SGT	R7, R4, R0

0024	28E00004		BEQZ	R7, LOC2

0028	C7FFFFE0		JR	LOC1

002C	21400030	LOC2:	SW	R0, BIG, R10	

0030	14140014		LW	R20, R0, SQRT

0034	34140000		JAL	R20

0038	D0000000		EXIT	0

	.END

		Error Count: 0

Sample listing file output from Pass 2 (based on the input files shown above)

�
Object Code Format:

Although the object code file format was described in the handout on the assembly language, the description given below provides additional details for this assignment.

The object code file is divided into three parts:

the header – contains the program name and the overall sizes of the code and data sections

the object code and data storage contents

the trailer – contains the locations of the external references used by the linker/loader

The header section must include the following (no spaces between fields):

the word PROGRAM (all caps)

one hexadecimal byte giving the program name's length (maximum 255 characters)

the program's name (all caps)

four hexadecimal bytes giving the overall length of the code section

four hexadecimal bytes giving the overall length of the data section

The object code and data section consists of an exact image of the program as it will be loaded into memory by the linker/loader. The program's object code appears first and then the data section follows. Within the data section, string constants appear first and data storage locations follow. The alignment rules for halfwords and words should have been taken care of when storage addresses were assigned in Pass 1, so the information in the symbol table can be used to fill in this section. All string constants are stored as hexadecimal bytes representing the ASCII code for each character in the string. Since no data initialization is allowed, the data storage is filled with zeros. The overall lengths of the code and data sections must match the lengths included in the header section.

The trailer section must include information about each external reference in the .EXTERN section of the program. The format of the trailer section must include the following (no spaces between fields):

the word EXTERN (all caps)

one hexadecimal byte giving the number of external references included in this section

one entry for each external reference, consisting of the following:

one hexadecimal byte giving the length of the external reference's variable name

the external reference's variable name from the DEFX declaration

one hexadecimal byte giving the length of the name of the external file associated with the external reference in the .EXTERN section

the name of the external file associated with the external reference in the .EXTERN section

four hexadecimal bytes giving the address (in the data storage area) of the external reference variable

If there are no external references (i.e., an empty .EXTERN section), you must still output a trailer section, but the count of external references will be zero.

The example below shows the object code file generated from the intermediate file shown on page 1.

Note that there is a carriage return (\n) between the header section and the object code section and another carriage return (\n) between the object code section and the trailer section. The object code section should be one continuous line (however it is broken into lines here due to the limits of line length on the printed page).

�
Object code file from example2.int

PROGRAM08EXAMPLE20000003C00000028

1C0000425C040065994050004884000508030032406300011C60002A81445000AC803800

28E00004C7FFFFE0214000301414001434140000D00000004120537472696E6721000000

00

EXTERN0204SUM305MYLIB0000001804SQRT07MATHLIB0000000C

Error Detection in Pass 2:

In Pass 2, you are to perform the error checking that couldn't be done in Pass 1 and report any errors found. Errors will fall into several categories and the error messages printed in the listing file should be standardized to match the examples shown below. Pass 1 should have found any duplicate references and invalid opcodes, but not all syntax errors or undefined symbols could be detected in Pass 1. Because of the possibility of forward references in branch and jump operations and the possibility that the .DATA section came after the .CODE section, undefined symbols must be checked in Pass 2.

If errors are found, and it is possible to do so, continue Pass 2 so all errors can be found. The total number of errors found should be counted and that total should be printed at the end of the listing file output.

Undefined Symbol – operands must be checked in Pass 2 since they can contain forward references or references to data not declared until after the .CODE section. The error message should read: "ERROR: Undefined Symbol %s" with the undefined symbol's name. This error message should be printed on the line following the line where the error occurred.

Syntax Errors – Pass 1 took care of some syntax errors, but could not fine all of them:

immediate values that are invalid for the instruction where they are used (e.g., too large)

other syntax errors that couldn’t be detected in Pass 1

The error message should read: "ERROR: Syntax Error %s" where, if possible, the %s should be replaced by the symbol or operation that caused the error. This error message should be printed on the line following the line where the error occurred.

Page � PAGE �1�

