
Deletion from an AVL Tree 
 

First we will do a normal binary search tree delete. Note that 
structurally speaking, all deletes from a binary search tree 
delete nodes with zero or one child. For deleted leaf nodes, 
clearly the heights of the children of the node do not change. 
Also, the heights of the children of a deleted node with one 
child do not change either. Thus, if a delete causes a violation 
of the AVL Tree height property, this would HAVE to occur 
on some node on the path from the parent of the deleted node 
to the root node.  
 
Thus, once again, as above, to restructure the tree after a 
delete we will call the restructure method on the parent of the 
deleted node.  
 
One thing to note: whereas in an insert there is at most one 
node that needs to be unbalanced, there may be multiple nodes 
in the delete that need to be rebalanced.  
 
At any point in the restructuring algorithm ONLY one node 
will ever be unbalanced.  
 
What may happen is when that node is fixed, it may propagate 
an error to an ancestor node. But, this is NOT a problem 
because our restructuring algorithm goes all the way to the 
root node, removing any problems as they appear, one by one. 
 



Choosing the Nodes A, B and C for a Delete 
Restructuring 

 
One thing that is more complicated about choosing the nodes 
A, B and C for the AVL Tree delete restructuring is that these 
nodes are NOT from the ancestral path followed from the 
origin of the delete. 
 
 
Clearly, if a delete will cause an imbalance, it will be because 
the subtree that contains the deleted node has become too 
short. (Since this subtree can only get “shorter” and the 
previous version of the tree was balanced, the only possible 
imbalance is caused when this tree goes from a height of k-1 to 
k-2, where k is the height of the tree on the other side.) 
 
Remember that the nodes A, B and C are always on the 
“longest” path to the bottom of the tree. This means that when 
we find an imbalanced node after deleting, the node to the 
opposite side is guaranteed to be down the longer path.  
 
From there, we have a choice for the third node of A, B and C. 
We could go to the right or the left.  

 
a) If one side is longer than the other, choose that side. 
b) If the two sides are equal, go to the same side as the  
    parent is to the grandparent. 

 
This last rule is a bit confusing, so let’s clarify with a couple 
examples.  



Let’s say that the node deleted was in the subtree T shown 
below (which will store a single node in this instance) and the 
imbalance is caused at the node storing 30: 
 
    30 (imbalance) 
          /     \ 
       T      45 
                                       /   \ 
    35    50 
                                    /          \ 
                                 32          55 
 
We know that 30 will be one of A, B and C. So will 45. Now we 
must choose between 35 and 50. Since both subtrees of 45 are 
of the same height, and since 45 is the RIGHT child of 30, we 
will choose 45’s right child, 50 to be the third node of the 
group. Thus, our labels are as follows: 
 
    30 (A) 
          /     \ 
       T      45 (B) 
                                       /   \ 
    35    50 (C) 
                                    /          \ 
                                 32          55 
 
and our restructuring is as follows: 
 
    45 
                                   /    \ 
                                30    50 
                               /   \        \ 
                             T   35     55 
                                   / 
                                32 



Similarly, if we had the following situation: 
 
    30 (imbalance) 
          /     \ 
       10        T 
                              /   \ 
   7    20 
                          /          \ 
                        3          25 
 
Because 10 is the left child of 30, we must choose the left child 
of 10, 7 to comprise our three nodes: 
 
              (C)30 (imbalance) 
          /     \ 
         (B)10      T 
                              /   \ 
      (A)7    20 
                          /          \ 
                        3          25 
 
Our rebalance works as follows: 
 
    10 
          /     \ 
       7       30 
                             /         /    \ 
                           3        20    T 
                       \ 
                              25 
 



AVL Tree Delete Examples 
 

1) The most simple example is formed when a node from a tree 
with four nodes gets deleted. In this example, consider the 
value 12 getting deleted: 
 
     10 
           /      \ 
         5       12 (delete this node) 
                  \ 
          8 
 
In this instance, after the nod storing 12 is deleted, we move up 
to the parent, 10. From here, it’s fairly obvious that our nodes 
A, B and C will be the numbers 5, 8 and 10, respectively. Our 
resulting tree is: 
 
     8 
          /     \ 
         5   12 
 
  
2) Consider deleting 30 from the tree below: 
 
     20 
         /       \ 
             10         30 (delete this node) 
                                   /     \       / 
                                 5     15   25 
                                         / 
                                       12 
 
 
 



Using the rules for a regular binary search tree delete, we 
would make the 25 the right child of 20. The 25 is balanced, so 
then we trace up to the 20. This is unbalanced. To determine A, 
B and C, we know that our first choice must be to go left from 
20. Thus, two of the three values are 20 and 10. Then to choose 
between 5 and 15, we choose 15 because that subtree is strictly 
TALLER than the subtree rooted at 5: 
 
            20(C) 
         /       \ 
             10(A)      25  
                                   /     \        
                                 5 (B)15   
                                         / 
                                       12 
 
The restructure is as follows: 
 
     15(B) 
          /        \ 
         (A)10       20(C) 
     /    \           \ 
           5    12         25 
  
 
3) Now consider deleting the value 30 from the following 
slightly different tree: 
 
     20 
         /       \ 
             10         30 (delete this node) 
                                   /     \       / 
                                 5     15   25 
                                 \        / 
                                  7    12 



This situation, what has changed is that both 5 and 15 have 
subtrees of the exact same height. In this case, we must choose 
the direction of the first node to the second. Since 10 is the left 
child of 20, we must choose 5, the left child of 10 instead of 15. 
The resulting labels are as follows: 
 
     20(C) 
         /       \ 
             10 (B)    25 
                                   /     \        
                           (A)5      15    
                                 \        / 
                                  7    12 
 
The resulting tree is: 
 
     10(B) 
           /      \ 
    (A)5     20(C) 
          \     /   \ 
          7  15  25 
       / 
             12 
 



4) Consider deleting the value 15 from the following tree: 
 
     50 
      /               \ 
    25(A) 75 
          /      \          /    \ 
       15     40(C) 60     80 
                                         /        /  \        \ 
         (B)35      55 65     90 
                                                      / 
              62 
 
First, we can see that when we get to 25, we will have an 
imbalance. This situation is similar to the first case we saw, so 
we label A = 25, B = 35 and C = 40. Following this 
restructuring, we have: 
 
     50 
      /               \ 
    35(B) 75 
          /      \          /    \ 
          (A)25     40(C) 60     80 
                                                  /  \        \ 
                        55 65     90 
                                                      / 
              62 
 
The problem, of course, is that now, 35 is balanced, but as we 
continue up the tree to 50, we’ve introduced a problem here, 
since we made the left of 50 shorter by one level. 
 
In this case, we will choose 50 and 75 to be two of our three 
nodes. To choose the third, we see that the tree rooted at 60 is 
strictly taller than the one rooted at 80. Thus, we have that A = 
50, B = 50 and C = 75: 



 
     50(A) 
      /               \ 
    35      75(B) 
          /      \          /    \ 
               25     40      60(C)80 
                                                  /  \        \ 
                        55 65     90 
                                                      / 
              62 
 
Finally, to do the restructuring, we’ll have 60 be the new root 
of the tree, 50 to the left and 75 to the right: 
 
     60 
         /         \ 
     50          75 
           /     \        /    \ 
        35    55    65    80 
                               /   \            /         \ 
                            25  40       62         90 
 
5) For this example, we will delete the node storing 8 from the 
AVL tree below: 
 

32 
    /    \ 
         16      48 
        /     \  /          \ 
     8     24        40    56 
       \      /      \     /   \ 
        28     36  44     52   60 
                                                                      /    \ 
                58    62 
 



 
We must first rebalance the node storing 16, resulting in:  
 

32 
    /    \ 
         24      48 
        /     \  /          \ 
     16     28        40    56 
             /      \     /   \ 
             36  44     52   60 
                                                                      /    \ 
                58    62 
 
Notice that all four subtrees for this restructuring are null, and 
we only use the nodes A, B, and C. Next, we march up to the 
parent of the node storing 24, the node storing 32. Once again, 
just like the previous example, this node is imbalanced. The 
reason for this is that the restructuring of the node with a 16 
reduced the height of that subtree. By doing so, there was an 
INCREASE in the difference of height between the subtrees of 
the old parent of the node storing 16. This increase could 
propagate an imbalance in the AVL tree. 
 
When we restructure at the node storing the 32, we identify the 
node storing the 56 as the tallest grandchild.  
 
 
 
 



Following the steps we've done previously, we get the final tree 
as follows: 
 
 

48 
    /    \ 
         32      56 
        /     \  /          \ 
     24     40        52    60 
   /     \    /    \             /   \ 
        16    28 36   44                58   62 
                                                                       
 
6) In the final example, we will delete the node storing 4 from 
the AVL tree below: 
 

32(A) 
    /    \ 
         16      48(B) 
        /     \  /          \ 
     8      24        40    56(C) 
   /                        /    \       /     \             
(node to delete)4                      36    44  52     60                 
         /           /    \ 
                34        58    62 
 
When we call rebalance on the node storing an 8, (the parent of 
the deleted node), we do NOT find an imbalance at an 
ancestral node until we get to the root node of the tree. Here we 
identify both 32 and 48, like before as two of our three nodes. 
Now, when we decide between 40 and 56, we find the height of 
both subtrees to be the same. In this case, since 48 is the right 
child of 32, we must pick the right child of 48, which is 56, to 
be the third node. Thus A = 32, B = 48 and C = 56. 
 



Accordingly, we restructure as follows: 
  

48(B) 
    /    \ 
       (A)32              56(C) 
        /     \  /          \ 
     16      40        52    60 
   /     \    /    \             /   \ 
         8     24 36   44                58   62 
                                     /           

       32 


