
Deletion from an AVL Tree

First we will do a normal binary search tree delete. Note that
structurally speaking, all deletes from a binary search tree
delete nodes with zero or one child. For deleted leaf nodes,
clearly the heights of the children of the node do not change.
Also, the heights of the children of a deleted node with one
child do not change either. Thus, if a delete causes a violation
of the AVL Tree height property, this would HAVE to occur
on some node on the path from the parent of the deleted node
to the root node.

Thus, once again, as above, to restructure the tree after a
delete we will call the restructure method on the parent of the
deleted node.

One thing to note: whereas in an insert there is at most one
node that needs to be unbalanced, there may be multiple nodes
in the delete that need to be rebalanced.

At any point in the restructuring algorithm ONLY one node
will ever be unbalanced.

What may happen is when that node is fixed, it may propagate
an error to an ancestor node. But, this is NOT a problem
because our restructuring algorithm goes all the way to the
root node, removing any problems as they appear, one by one.

Choosing the Nodes A, B and C for a Delete
Restructuring

One thing that is more complicated about choosing the nodes
A, B and C for the AVL Tree delete restructuring is that these
nodes are NOT from the ancestral path followed from the
origin of the delete.

Clearly, if a delete will cause an imbalance, it will be because
the subtree that contains the deleted node has become too
short. (Since this subtree can only get “shorter” and the
previous version of the tree was balanced, the only possible
imbalance is caused when this tree goes from a height of k-1 to
k-2, where k is the height of the tree on the other side.)

Remember that the nodes A, B and C are always on the
“longest” path to the bottom of the tree. This means that when
we find an imbalanced node after deleting, the node to the
opposite side is guaranteed to be down the longer path.

From there, we have a choice for the third node of A, B and C.
We could go to the right or the left.

a) If one side is longer than the other, choose that side.
b) If the two sides are equal, go to the same side as the
 parent is to the grandparent.

This last rule is a bit confusing, so let’s clarify with a couple
examples.

Let’s say that the node deleted was in the subtree T shown
below (which will store a single node in this instance) and the
imbalance is caused at the node storing 30:

 30 (imbalance)
 / \
 T 45
 / \
 35 50
 / \
 32 55

We know that 30 will be one of A, B and C. So will 45. Now we
must choose between 35 and 50. Since both subtrees of 45 are
of the same height, and since 45 is the RIGHT child of 30, we
will choose 45’s right child, 50 to be the third node of the
group. Thus, our labels are as follows:

 30 (A)
 / \
 T 45 (B)
 / \
 35 50 (C)
 / \
 32 55

and our restructuring is as follows:

 45
 / \
 30 50
 / \ \
 T 35 55
 /
 32

Similarly, if we had the following situation:

 30 (imbalance)
 / \
 10 T
 / \
 7 20
 / \
 3 25

Because 10 is the left child of 30, we must choose the left child
of 10, 7 to comprise our three nodes:

 (C)30 (imbalance)
 / \
 (B)10 T
 / \
 (A)7 20
 / \
 3 25

Our rebalance works as follows:

 10
 / \
 7 30
 / / \
 3 20 T
 \
 25

AVL Tree Delete Examples

1) The most simple example is formed when a node from a tree
with four nodes gets deleted. In this example, consider the
value 12 getting deleted:

 10
 / \
 5 12 (delete this node)
 \
 8

In this instance, after the nod storing 12 is deleted, we move up
to the parent, 10. From here, it’s fairly obvious that our nodes
A, B and C will be the numbers 5, 8 and 10, respectively. Our
resulting tree is:

 8
 / \
 5 12

2) Consider deleting 30 from the tree below:

 20
 / \
 10 30 (delete this node)
 / \ /
 5 15 25
 /
 12

Using the rules for a regular binary search tree delete, we
would make the 25 the right child of 20. The 25 is balanced, so
then we trace up to the 20. This is unbalanced. To determine A,
B and C, we know that our first choice must be to go left from
20. Thus, two of the three values are 20 and 10. Then to choose
between 5 and 15, we choose 15 because that subtree is strictly
TALLER than the subtree rooted at 5:

 20(C)
 / \
 10(A) 25
 / \
 5 (B)15
 /
 12

The restructure is as follows:

 15(B)
 / \
 (A)10 20(C)
 / \ \
 5 12 25

3) Now consider deleting the value 30 from the following
slightly different tree:

 20
 / \
 10 30 (delete this node)
 / \ /
 5 15 25
 \ /
 7 12

This situation, what has changed is that both 5 and 15 have
subtrees of the exact same height. In this case, we must choose
the direction of the first node to the second. Since 10 is the left
child of 20, we must choose 5, the left child of 10 instead of 15.
The resulting labels are as follows:

 20(C)
 / \
 10 (B) 25
 / \
 (A)5 15
 \ /
 7 12

The resulting tree is:

 10(B)
 / \
 (A)5 20(C)
 \ / \
 7 15 25
 /
 12

4) Consider deleting the value 15 from the following tree:

 50
 / \
 25(A) 75
 / \ / \
 15 40(C) 60 80
 / / \ \
 (B)35 55 65 90
 /
 62

First, we can see that when we get to 25, we will have an
imbalance. This situation is similar to the first case we saw, so
we label A = 25, B = 35 and C = 40. Following this
restructuring, we have:

 50
 / \
 35(B) 75
 / \ / \
 (A)25 40(C) 60 80
 / \ \
 55 65 90
 /
 62

The problem, of course, is that now, 35 is balanced, but as we
continue up the tree to 50, we’ve introduced a problem here,
since we made the left of 50 shorter by one level.

In this case, we will choose 50 and 75 to be two of our three
nodes. To choose the third, we see that the tree rooted at 60 is
strictly taller than the one rooted at 80. Thus, we have that A =
50, B = 50 and C = 75:

 50(A)
 / \
 35 75(B)
 / \ / \
 25 40 60(C)80
 / \ \
 55 65 90
 /
 62

Finally, to do the restructuring, we’ll have 60 be the new root
of the tree, 50 to the left and 75 to the right:

 60
 / \
 50 75
 / \ / \
 35 55 65 80
 / \ / \
 25 40 62 90

5) For this example, we will delete the node storing 8 from the
AVL tree below:

32
 / \
 16 48
 / \ / \
 8 24 40 56
 \ / \ / \
 28 36 44 52 60
 / \
 58 62

We must first rebalance the node storing 16, resulting in:

32
 / \
 24 48
 / \ / \
 16 28 40 56
 / \ / \
 36 44 52 60
 / \
 58 62

Notice that all four subtrees for this restructuring are null, and
we only use the nodes A, B, and C. Next, we march up to the
parent of the node storing 24, the node storing 32. Once again,
just like the previous example, this node is imbalanced. The
reason for this is that the restructuring of the node with a 16
reduced the height of that subtree. By doing so, there was an
INCREASE in the difference of height between the subtrees of
the old parent of the node storing 16. This increase could
propagate an imbalance in the AVL tree.

When we restructure at the node storing the 32, we identify the
node storing the 56 as the tallest grandchild.

Following the steps we've done previously, we get the final tree
as follows:

48
 / \
 32 56
 / \ / \
 24 40 52 60
 / \ / \ / \
 16 28 36 44 58 62

6) In the final example, we will delete the node storing 4 from
the AVL tree below:

32(A)
 / \
 16 48(B)
 / \ / \
 8 24 40 56(C)
 / / \ / \
(node to delete)4 36 44 52 60
 / / \
 34 58 62

When we call rebalance on the node storing an 8, (the parent of
the deleted node), we do NOT find an imbalance at an
ancestral node until we get to the root node of the tree. Here we
identify both 32 and 48, like before as two of our three nodes.
Now, when we decide between 40 and 56, we find the height of
both subtrees to be the same. In this case, since 48 is the right
child of 32, we must pick the right child of 48, which is 56, to
be the third node. Thus A = 32, B = 48 and C = 56.

Accordingly, we restructure as follows:

48(B)
 / \
 (A)32 56(C)
 / \ / \
 16 40 52 60
 / \ / \ / \
 8 24 36 44 58 62
 /

 32

