
Computer Science I Program 2: Movie Ticketing Queue (Queues)

Please Check Webcourses for the Due Date

Please read the whole assignment before you start coding

Objective
Give practice implementing a queue via a linked list.

Give practice designing a functioning program without all function prototypes being given.

Give practice following and implementing rules in a simulation.

Background Story
Our theater always shows block buster movies and there is constantly high demand for tickets. Tickets

need to be purchased in advance from the ticketing center. The ticketing center has 12 queues (numbered

from 1 to 12) and some booths (max 12) to handle those queues. Due to a recent hurricane in the other

part of the state, many ticketing employees are on leave to take care family at their home cities affected

by the hurricane. So, due to the shortage of employees we are operating only b number of booths (0< b

≤ 12) operated by b number of employees. The booths are numbered from 1 to b. All the customers must

arrive and stand in one of the 12 queues before getting redirected to one of the booths (we assume this

redirection takes no time.)

Upon arrival, a customer enters the name (a single string with max length 50 with all upper case letters)

and number of tickets nt (0< nt ≤500) in the kiosk. The time of arrival t (0 ≤ t ≤ 109) is automatically

recorded and is unique for each customer. After receiving this data, the system extracts the first letter of

the name and gets its position p (0 ≤ p < 26) in the alphabet. For example, if the name is ADAM, then p

for ADAM is 0. (A = 0, B = 1, …, Z = 25) Then the system automatically assigns a queue number q

based on the following strategy:

1. The queue number q of a customer is p%13, if p%13≠0

2. If p%13 is zero, then the customer is assigned to the first nonempty queue with the least number

of customers across all of the queues. If the least number is same for multiple queues, then the

customer is assigned the first queue (based on the queue number) out of those queues. If the very

first customer is in this category, assign them to the first queue. We define the size of a queue to

be the total number of people that have previously been in that queue at any point.

Processing the customers
For the purposes of this problem, we assume that before the employees start processing customers, it is

known in advance which of the queues will be non-empty at some point in time. Let the number of

queues that receive at least 1 customer at some point in time equal k.

Due to the shortage of employees, for all of the cases your program will be run, k ≥ b.

The k queues will be split amongst the b booths as follows:

Each booth will receive customers from at least ⌊
𝒌

𝒃
⌋ queues, where ⌊𝑥⌋, represents the greatest integer

less than or equal to x. (This is the technical way to define integer division for positive integers,

mathematically. It's called the floor function.)

The first k%b booths will receive one more queue. The queues will be assigned in numerical order, with

the smallest queues being assigned to booth 1, the next smallest queues being assigned to booth 2, and

so forth.

Let's consider a couple examples.

Let the non-empty queues be 1, 3, 4, 8, 9 and 12 and let there be 4 booths.

Since ⌊
6

4
⌋ = 1, each booth will have at least 1 queue assigned to it and the first 6%4 = 2 booths will

receive customers from two queues.

Thus, for this example, all customers from queues 1 and 3 will go to booth 1, all customers from queues

4 and 8 will go to booth 2, all customers from queue 9 will go to booth 3 and all customers from queue

12 will go to booth 4.

For the second example, let the non-empty queues be 2, 3, 4, 6, 7, 8, 9, 10, 11 and 12, and let there be 3

booths. ⌊
10

3
⌋ = 3 and 10%3 = 1. Thus, the queues will be assigned to booths as follows:

Booth 1: Queues 2, 3, 4, 6

Booth 2: Queues 7, 8, 9

Booth 3: Queues 10, 11, 12

The booths start processing customers at time t = 0. As soon as the first customer arrives at a booth, the

employee at that booth starts processing her order. The processing time (in seconds) of a customer is

calculated by 30 + number of tickets * 5. For example, if a customer buys 8 tickets, then it would take

30 + 8*5 = 70 seconds to process her transaction.

If a customer arrives in the queue before her assigned booth is ready, she will continue to wait in her

queue until that booth is ready to call her up to process her order.

The Problem
Write a program that reads in information about customers: customer name, number of tickets and time

of arrival, and uses this information to determine which booth each customer will buy tickets from, and

at what time they will complete their transaction.

Input
The first line will contain 2 positive integers, n (n ≤ 500,000), the number of customers purchasing

tickets and b (b ≤ 12), the number booths operating on that day.

The following n lines will have information about each customer. These n lines will be sorted from

earliest arrival time to latest arrival time. Each of these lines will start with the name of the customer, a

single string of 1 to 50 uppercase letters, followed by a positive integer, nt (0 < nt ≤ 500), representing

the number of tickets the customer is buying, and another unique positive integer, t (t ≤ 109), representing

the time, in seconds, from the beginning of the simulation that the customer steps into a line. It is

guaranteed that all of the check in times are unique and that all of the customer names are unique as well.

These pieces of information will be separated by white space on the line. (Please just use scanf to read

in the input!)

The Output
For each booth and for each customer served by the booth print the checkout time, in the order that they

get checked out from that booth.

For each booth, print a single header line with the following format:

Booth Y

where Y represents the booth number, starting with 1.

For each customer who bought tickets at that booth, output a single line with the following format:

CUSTOMER from line X checks out at time T.

where CUSTOMER is the name of the customer checking out, X is the queue they came from before

arriving at the booth, and T is the number of seconds AFTER the start of the simulation, that they

complete checking out. (Thus, this time is the time they get called by the booth, plus the time it takes

them to process.)

After each booth, output a blank line.

Sample Input
17 3

TANVIR 10 2

ARUP 8 4

TRAVIS 40 5

LILY 5 10

XIE 60 15

GUSTAVO 55 16

JOSE 20 23

DANIEL 20 27

VENU 24 28

ANEESHA 70 29

ANSH 6 35

GUHA 40 36

MEADE 60 38

MASON 12 40

NELLY 10 150

SHARON 5 5000

LEAVENS 2 9000

Sample Output
Booth 1

TANVIR from line 6 checks out at time 82.

ARUP from line 6 checks out at time 152.

TRAVIS from line 6 checks out at time 382.

GUSTAVO from line 6 checks out at time 687.

DANIEL from line 3 checks out at time 817.

ANEESHA from line 3 checks out at time 1197.

GUHA from line 6 checks out at time 1427.

SHARON from line 5 checks out at time 5055.

Booth 2

XIE from line 10 checks out at time 345.

JOSE from line 9 checks out at time 475.

VENU from line 8 checks out at time 625.

ANSH from line 8 checks out at time 685.

NELLY from line 9 checks out at time 765.

Booth 3

LILY from line 11 checks out at time 65.

MEADE from line 12 checks out at time 395.

MASON from line 12 checks out at time 485.

LEAVENS from line 11 checks out at time 9040.

Sample Explanation
There are 17 customers and 3 booths open.

Tanvir gets assigned to queue 6 because 19%13 = 6.

For Arup, the relevant calculation is 0%13 = 0. This means he gets placed in the queue which has seen

the fewest customers (but has seen at least one), which is queue 6.

The next 7 customers get placed in the queue assigned by rule #1, since each of the corresponding mod

calculations is non-zero. At this point in time, the picture is as follows:

1 2 3 4 5 6 7 8 9 10 11 12

 DANIEL

 TANVIR

VENU JOSE XIE LILY

 ARUP

TRAVIS

GUSTAVO

When we process Aneesha, her mod value is 0. There are several queues of size 1. This actually just

means that before this point in time each of these queues has seen a total of 1 person. It's possible that

before Aneesha arrived, someone from one of these queues was already pulled to a booth, but for the

purposes of this assignment, we consider a queue's size to equal the total number of people that have

previously entered the queue (as opposed to the total number of people currently in that queue at that

point in time.) Thus, Aneesha will get assigned to the smallest queue number, 3, which has previously

had exactly 1 person. When Ansh arrives, the "smallest" queue using this definition is queue number 8

which had previously only received Venu. When we complete the assignments of customers to queues,

we get the following picture:

1 2 3 4 5 6 7 8 9 10 11 12

 DANIEL

SHARON TANVIR

VENU JOSE XIE LILY MEADE

 ANEESHA

 ARUP

ANSH NELLY

LEAVENS MASON

TRAVIS

GUSTAVO

GUHA

There are 8 queues (3, 5, 6, 8, 9, 10, 11, 12) to split amongst 3 booths. The assignment of queues to

booths is as follows:

Booth 1: Queues 3, 5, 6

Booth 2: Queues 8, 9, 10

Booth 3: Queues 11, 12

A tabular format of the numbers is shown below. The booth meeting time of a customer depends on the

previous check out time and arrival time. Then the customer’s check out time is calculated based on the

formula mentioned above:

Name
No. of
tickets

Arrival
time

Calculated
Queue

Assigned
Queue

Assigned
booths

Booth meeting
time

Checkout
time

TANVIR 10 2 6 6 b1 2 82

ARUP 8 4 0 6 b1 82 152

TRAVIS 40 5 6 6 b1 152 382

LILY 5 10 11 11 b3 10 65

XIE 60 15 10 10 b2 15 345

GUSTAVO 55 16 6 6 b1 382 687

JOSE 20 23 9 9 b2 345 475

DANIEL 20 27 3 3 b1 687 817

VENU 24 28 8 8 b2 475 625

ANEESHA 70 29 0 3 b1 817 1197

ANSH 6 35 0 8 b2 625 685

GUHA 40 36 6 6 b1 1197 1427

MEADE 60 38 12 12 b3 65 395

MASON 12 40 12 12 b3 395 485

NELLY 10 150 0 9 b2 685 765

SHARON 5 5000 5 5 b1 5000 5055

LEAVENS 2 9000 11 11 b3 9000 9040

Implementation Restrictions/Run Time Requirements
1. You must create a struct that stores information about a customer (name, number of tickets, line

number, and arrival time). Also, you must need to create a function that can create a customer using

dynamic memory allocation, fill out the customer and then return the customer. You have to use this

function whenever you need to create a customer.

2. You must create a node struct for a linked list of customers. This struct should have a pointer to a

customer struct, and a pointer to a node struct.

3. You must create a struct to store a queue of customers. This struct should have two pointers – one to

the front of the queue and one to the back, AND an integer field to store the size of the queue.

4. For all the above structs, feel free to add more fields if necessary.

5. There are several different ways to simulate the process described, but in some way shape or form,

you should use at least one queue and the associated functions in the simulation.

6. You must dynamically allocate memory as appropriate for linked lists.

7. Your queue must support the following operations and you must use them appropriately in your code.

Each of these operations should run in O(1) time.

 a. Enqueue

 b. Dequeue

 c. Peek: Return the front of the queue WITHOUT dequeuing.

 d. Empty (returns 1 if the queue is empty, 0 if it is not)

 e. Size

8. You must free memory appropriately. Namely, when you dequeue, you’ll free memory for a node, but

you will NOT free memory for the customer. You will free this memory a bit later right after you

calculate when that customer will finish checking out.

Personal Note
This assignment is challenging not because it's algorithmically difficult, but because there are many

small rules that don't necessarily have a "clean" implementation. The design of the code will be very

important and it will be critical to write a practice program where you implement your own queue first

without regards to this assignment so that you understand the nuts and bolts of how to implement your

own queue. This means you need to get started early!!! (On average, I think this assignment will take

twice as long as assignment #1.)

Deliverables

1. Please submit a single source file, movieline.c, via Webcourses.

