
Computer Science I Program 3: Where to Sit? (Recursion)

Please Check Webcourses for the Due Date

Please read the whole assignment before you start coding

Objective
Give practice with recursion.

Give practice with functions in C.

Give practice with creating a design for a program without a given list of functions or structs.

Background Story
You and your friends are planning to get together to attend a movie! However, there are a few

restrictions on where everyone can sit:

• Some people don't want to sit next to each other.

• Everyone should have access to popcorn! (This means that for each person, either they

bought popcorn, or the person directly to their left or the person directly to their right did.)

For example, imagine that there are five people who want to attend the movie: Alia, Belinda,

Carlos, Danica and Edward, where only Alia and Edward buy popcorn. In addition, Alia and Carlos

can't sit next to each other and Belinda and Edward can't sit next to each other. Given these

restrictions, they can sit in a single row in 10 possible orders.

 Alia Belinda Carlos Edward Danica

 Alia Belinda Danica Edward Carlos

 Belinda Alia Danica Carlos Edward

 Belinda Alia Danica Edward Carlos

 Carlos Edward Danica Alia Belinda

Carlos Edward Danica Belinda Alia

Danica Alia Belinda Carlos Edward

Danica Edward Carlos Belinda Alia

Edward Carlos Belinda Alia Danica

Edward Carlos Danica Alia Belinda

Problem
Write two related programs where, given the list of people who are going to the movies together,

the pairs of people who can't sit next to each other, and the list of people who are buying popcorn,

determines the two following things:

 (1) Program 1 – the number of different orderings (permutations) of the movie attendees

 that satisfy all the restrictions.

 (2) Program 2 – the first ordering (in lexicographical order) of the movie attendees

 that satisfy all the restrictions.

Input
The first line of input contains two positive integers: n (3 ≤ n ≤ 10), the number of people attending

the movie, and p (0 ≤ p ≤ n), the number of pairs of people who do not want to sit next to each

other.

The next n lines will contain the information about each of the people attending the movie, with

one person described per line. These lines will describe the people in alphabetical order. Each of

these lines will have the following format:

NAME 0/1

Each name will be an uppercase alphabetic string with no more than 19 characters. If the number

0 is on the line, this indicates that that person does not have popcorn. If the number 1 is on the line,

this indicates that that person does have popcorn.

The following p lines will each contain a pair of names, indicating two people who do not want to

sit next to each other. It is guaranteed that each of the 2p names appearing in this section will be

one of the n names listed previously as the movie attendees. Secondly, it's guaranteed that the two

names on a single line will be distinct.

Output (for Program 1)
On a single line, simply output the total number of valid orderings of the people attending the

movie sitting together in a single row, from left to right. It is guaranteed that the input data will be

such that this value will be a positive integer.

Output (for Program 2)
Output, with one name per line, the first lexicographical valid ordering of the people attending the

moving sitting together in a single row, from left to right. In lexicographical ordering, all lists

starting with name1 will come before all lists starting with name2 if name1 comes before name2

alphabetically. Specifically, given two lists, to determine which one comes first lexicographically,

find the first corresponding name on both lists that don't match. Which ever name comes first

alphabetically, is the list that comes first in lexicographical order. (Hint: since the given names

are already in alphabetical order, the permutation algorithm shown in class will naturally

evaluate the permutations in lexicographical order. Thus, to solve this program, the first

valid solution found while running the algorithm will be the correct answer.)

Sample Input Sample Output 1 Sample Output 2

5 2

ALIA 1

BELINDA 0

CARLOS 0

DANICA 0

EDWARD 1

ALIA CARLOS

BELINDA EDWARD

10 ALIA

BELINDA

CARLOS

EDWARD

DANICA

8 3

ALEX 1

ELLIE 1

FRANKLYN 0

JAMELLE 0

MARTY 1

PRI 1

SAMANTHA 1

WES 0

ALEX WES

ELLIE MARTY

ELLIE WES

10248 ALEX

ELLIE

FRANKLYN

JAMELLE

MARTY

PRI

SAMANTHA

WES

6 5

ANEESHA 0

ARTHUR 0

JACQUELINE 1

MATTHEW 1

MEGAN 0

ROBINSON 0

ROBINSON ARTHUR

MATTHEW MEGAN

MATTHEW ARTHUR

ROBINSON MEGAN

MEGAN ANEESHA

2 MEGAN

JACQUELINE

ARTHUR

ANEESHA

MATTHEW

ROBINSON

Sample Explanation
In each of the three cases, we can verify that the outputted list is valid. (In the first sample, Alia and Edward

have popcorn and are in seats 1 and 4. Everyone else is adjacent to one of these two seats. In addition both

Alia and Carlos are separated and Belinda and Edward are separated.)

In the second sample case, many orderings are possible simply because most of the attendees have popcorn

and there are limited pairs of attendees who can't sit next to each other.

In the last sample, popcorn must be in seats 2 and 5. The five pairs of constraints reduces the possibilities

to what is listed and its reverse ordering.

Implementation Requirements/Run Time Requirements

1. No dynamically allocated memory is necessary. All the memory requirements are relatively

small.

2. The permutation algorithm from class must be used. The run time of each program should be

roughly O(n x n!). (n! for each permutation and n for evaluating if a permutation is a valid

arrangement of the movie attendees.)

3. You may use global variables to clean up your code so it's easier to read. Please use them

sparingly. (Here are the ones recommended: number of people attending the movie, list of names,

the list of who has popcorn, and a two dimensional array storing who is allowed to sit next to

whom.)

4. Your code must compile and execute on the Eustis system. The C compiler on this system is the

one that the graders will be using to grade/evaluate your submissions.

Deliverables

1. Please submit a source file, wheretosita.c, via Webcourses, for your solution to problem

A (where the output is a single number).

2. Please submit a source file, wheretositb.c, via Webcourses, for your solution to problem

B (where the output is a list of names).

