
Computer Science I Program 5: Theater Loyalty Program

(Binary Search Trees)

Please Check Webcourses for the Due Date

Please read the whole assignment before you start coding

Objective
Practice implementing a binary search tree.

Practice coming up with a functional breakdown for a large program.

Practice efficiently updating all necessary components of a data structure after each update.

Background Story
Our theater is now done experimenting with pie shaped projectors (turned out to be a big fail!)

Instead, they are going to copy the Universal Cinema Foundation and start a rewards program.

Each guest gets 1 loyalty point for each dollar they spend at the theater. Over time, guests may

gain loyalty points, use loyalty points to redeem prizes or query the number of loyalty points they

have. On occasion, a guest may get very upset at the theater (maybe they showed the Taylor Swift

movie one too many times), and request to be removed from the loyalty program. One strange

request the theater wants the program to handle is a query of how many users have names that

come alphabetically before a particular user.

Since the theater knows you are learning about binary search trees in class, they would like for you

to implement this functionality via a binary search tree of nodes, where the nodes are compared

via the name of the customer stored in the node, in alphabetical order.

Problem
Write a program that reads in input corresponding to various changes and queries to the theater's

loyalty program and prints out corresponding messages for each of the input commands. Here is

an informal list of each of the possible commands in the input:

(1) Add Loyalty Points to a particular customer.

(2) Subtract Loyalty Points from a particular customer.

(3) Delete a particular customer.

(4) Search for a particular customer in the binary search tree. If the customer is found, report both

their number of loyalty points and their depth in the tree (distance from the root in # of links to

follow.)

(5) Count the number of customers whose names come alphabetically before a particular customer.

At the very end of the input, your program should store pointers to each struct storing customer

data and sort that data by loyalty points, from highest to lowest, breaking ties alphabetically. (For

two customers with the same number of loyalty points, the one whose name comes first

alphabetically should be listed first.) This data should be sorted via either Merge Sort or Quick

Sort.

Input
The first line of input contains a single positive integer: n (n ≤ 300,000), the number of commands

to process.

The next n lines will each contain a single command. Note: The commands will be such that the

resulting binary search tree will never exceed a height of 100.

Here is the format of each of the possible input lines:

Command 1
add <name> <points>

<name> will be an lowercase alphabetic string with no more than 19 characters.

<points> will be a positive integer less than or equal to 100.

Command 2
sub <name> <points>

<name> will be an lowercase alphabetic string with no more than 19 characters.

<points> will be a positive integer less than or equal to 100.

Note: if a customer has fewer points than is specified in this command to subtract, then just subtract

the total number of points they have instead.

Command 3
del <name>

<name> will be a lowercase alphabetic string with no more than 19 characters.

Delete the customer with the name <name> from the binary search tree. No action is taken if the

customer isn't in the tree to begin with.

Command 4
search <name>

<name> will be a lowercase alphabetic string with no more than 19 characters.

This will search for the customer with the name <name> and report both the number of loyalty

points the customer has and the depth of the node in the tree storing that customer, if the customer

is in the tree.

Command 5

count_smaller <name>

<name> will be a lowercase alphabetic string with no more than 19 characters.

This will calculate the number of names in the binary search tree that come alphabetically before
<name>.

Output
For each input command, output a single line as described below:

Command 1

Print out a single line with the format:

<name> <points>

where <name> is the name of the customer who added points and <points> is the new total

number of points they have. Note: If the customer is not in the binary search tree, then create a

new node for them initialized to <points> number of points. If the customer is already in the

binary search tree, just add <points> number of points to their current total.

Command 2

If the customer is NOT in the tree, print out a single line with the format:

<name> not found

If the customer is in the tree, print out a single line with the format:

<name> <points>

where <name> is the name of the customer who subtracted points and <points> is the new

total number of points they have. Note: if the points to be subtracted was greater than the points

they previously had, then after the operation, they will have 0 points left.

Command 3

If the customer in question wasn't found in the binary search tree, output the following line:

<name> not found

If the name is found, output a line with the following format:

<name> deleted

where <name> is the name of the customer being deleted. (Of course, delete the node storing that

customer from the tree!) If you are deleting a node with two children, please replace it with

the maximum node in the left subtree. This is to ensure there is one right answer for each

test case.

Command 4

If the customer in question wasn't found in the binary search tree, output the following line:

<name> not found

If the name is found, output a line with the following format:

<name> <points> <depth>

where <name> is the name of the customer being searched, <points> is the number of

loyalty points they currently have and <depth> is the distance of the node the customer in

question was found in from the root node of the tree.

Command 5

For this command, just print a single integer on a line by itself representing the number of names

in the binary search tree that come before <name>, alphabetically. (Note: Because we require a

run time of O(h), where h is the height of the tree, this is likely the most challenging command to

process. The size field will be necessary in the node struct to make this determination in O(h)

time.)

After all commands in the input have been processed, create an array to store pointers to each

struct storing customer data. Then, sort that array by customer loyalty points from highest to

lowest, breaking ties by the names in alphabetical order as previously described. Finally, print out

one line per customer in this sorted order with the format:

<name> <points>

where <name> is the name of the customer and <points> is the number of loyalty points they

have at the end of the set of input commands.

Sample Input Sample Output

18

add christian 30

add allan 40

add aisha 45

add sami 28

add montserrat 60

add elijah 32

add bret 10

add aisha 3

add daniel 20

sub sami 30

del christian

sub montserrat 28

search bret

search daniel

search christian

sub christian 20

count_smaller sami

del sami

christian 30

allan 40

aisha 45

sami 28

montserrat 60

elijah 32

bret 10

aisha 48

daniel 20

sami 0

christian deleted

montserrat 32

bret 10 0

daniel 20 4

christian not found

christian not found

6

sami deleted

aisha 48

allan 40

elijah 32

monserrat 32

daniel 20

bret 10

Note: More samples will be posted online with the assignment.

Sample Explanation
Right before the first sub command, here is a picture of the tree (without all information stored in each

node):

 christian 30

 / \

 allan 40 sami 28

 / \ /

 aisha 48 bret 10 montserrat 60

 /

 elijah 32

 /

 daniel 20

After sami loses all of her points, christian is deleted (with the physical node being replaced by bret), and

montserrat loses some points, our new tree structure is

 bret 10

 / \

 allan 40 sami 0

 / /

 aisha 48 montserrat 32

 /

 elijah 32

 /

 daniel 20

After sami is deleted, we have the final tree structure as follows:

 bret 10

 / \

 allan 40 montserrat 32

 / /

 aisha 48 elijah 32

 /

 daniel 20

Finally, after we copy these nodes into an array of pointers to struct and sort as specified, the array should

be ordered as follows:

(aisha, 48), (allan, 40), (elijah, 32), (montserrant, 32), (daniel, 20), (bret, 10)

Structs to Use
Please use the following #define and two structs in your code:

#define MAXLEN 19

typedef struct customer {

 char name[MAXLEN+1];

 int points;

} customer;

typedef struct treenode {

 customer* cPtr;

 int size;

 struct treenode* left;

 struct treenode* right;

} treenode;

Note: the size variable in the treenode will store the total number of nodes in the subtree rooted at

that node, including itself. These will have to be updated accordingly during each insert and delete

operation. Their main purpose is to allow for an O(h) run-time for command number 5, where h is

the height of the tree.

Implementation Requirements/Run Time Requirements

1. A binary search tree of nodes of time treenode will be used to store the data as commands are

processed.

2. The run-time for processing each of the commands should be O(h), where h is the current height

of the tree.

3. There should be two compare functions, one to be used by the binary search tree functions and

a different one to be used by the sorting functions.

4. Only one full copy of each customer struct should exist. The array to be sorted should be of type

customer**, storing an array of pointers to structs.

5. The sort implemented at the end of the program must be either Merge Sort or Quick Sort.

6. Your code must compile and execute on the Eustis system. The C compiler on this system is the

one that the graders will be using to grade/evaluate your submissions.

Deliverables

1. Please submit a single source file, loyalty.c, via Webcourses, for your solution to the

problem.

