
Computer Science I Program 6: Theater Inventory (Hash Tables)

Please Check Webcourses for the Due Date

Please read the whole assignment before you start coding

Objective
Practice implementing a hash table via separate chaining hashing.

Background Story
Our theater is thriving due to the new loyalty program devised by employee Davin Hamter!

The theater now wants to improve its tracking of inventory. The theater sells many items. It must

buy these items from suppliers at a wholesale price. For example, it may buy 1000 servings of

popcorn for $300. Then, it charges customers a fixed price per item (say $6 per serving of popcorn).

For the purposes of this problem, assume that the theater starts with $100,000 to help buy supplies.

Over the course of a simulation, the theater can buy supplies, sell products and update the price it

sells a particular item. After each update, the theater wants a log of the change to inventory. At the

very end of the simulation, the theater would like to know how much money it has. In addition, it

would like to have some metrics about the performance of the program.

Since the theater knows you are learning about hash tables in class, they would like for you to

implement this functionality via a hash table using separate chaining hashing.

Problem
Write a program that reads in input corresponding to various changes and queries to the theater's

inventory and prints out corresponding messages for input commands 1 and 2. Here is an informal

list of each of the possible commands in the input:

(1) Buy supplies from a supplier.

(2) Sells a quantity of an item to a customer.

(3) Update the sale price of an item.

For each command, we define the complexity of the command to be as follows:

If the desired item is already in the appropriate linked list, then the complexity of the command is

equal to k, where the item is stored in the kth node of the linked list (using 1-based counting).

If the desired item is NOT in the appropriate linked list (meaning that we must create a new node

for buying supplies), then the complexity of the command is equal to the length of the linked list

plus 1. (This is also the length of the resulting linked list after inserting the new item.)

Your program will compute the sum of complexities of each of the commands, in addition to

computing the total amount of cash the theater has after all of the commands are executed.

Input
The first line of input contains a single positive integer: n (n ≤ 300,000), the number of commands

to process.

The next n lines will each contain a single command.

Here is the format of each of the possible commands:

Command 1
buy <item> <quantity> <totalprice>

<item> will be a lowercase alphabetic string with no more than 19 characters, indicating the

item being purchased from the supplier.

<quantity> will be a positive integer indicating how many of the item are being purchased.

<totalprice> will be a positive integer (in dollars), representing the total purchase price.

Command 2
sell <item> <quantity>

<item> will be a lowercase alphabetic string with no more than 19 characters, indicating the

item being sold to a customer.

<quantity> will be a positive integer indicating how many of the item are being sold.

Note: if the stock of the item in question is less than the quantity requested, then just sell all of the

available quantity of that item. It's guaranteed that item will be in the inventory.

Command 3
change_price <item> <new_price>

<item> will be a lowercase alphabetic string with no more than 19 characters, indicating a valid

item in the inventory.

<new_price> will be a positive integer (in dollars), representing the updated price at which the

item (single copy) will be sold. It's guaranteed that item will be in the inventory.

It is guaranteed that through all of the commands, the theater will never get below $0 and

that the total amount of cash the theater has will never exceed the maximum value that can

be stored in an integer variable. Same goes for every individual quantity of any item. Also,

each item will have a well-defined price before it’s sold to a customer. (In short, the data will

be such that you can use type int throughout, with minimal error checking except for not

selling to much of an item, and all the data will make sense, so to speak.)

Output
For each input command of type 1 and 2, output a single line as described below:

Commands 1 and 2

Print out a single line with the format:

<item> <quantity> <totalcash>

where <item> is the name of the item bought/sold, <quantity> is the number of that item

left in inventory AFTER the transaction, and <totalcash> is the total amount of money left

after the transaction.

After all of the transactions have completed, print both the total cash on hand at the end of the

simulation on a line by itself, followed by the total complexity of all of the operations executed as

previously defined, on a line by itself.

Sample Input Sample Output

10

buy popcorn 1000 3000

buy soda 2000 1000

change_price popcorn 6

change_price soda 5

sell popcorn 50

sell soda 100

change_price popcorn 8

sell popcorn 90

sell soda 1899

buy soda 10 3

popcorn 1000 97000

soda 2000 96000

popcorn 950 96300

soda 1900 96800

popcorn 860 97520

soda 1 107015

soda 11 107012

107012

10

Note: Since popcorn and soda have different hash values, both will be in linked lists of size 1

always and incur a complexity of 1 for each operation. Also, more test cases will be posted before

the program is due.

Hash Function to Use
Please use the following hash function:

int hashfunc(char* word, int size) {

 int len = strlen(word);

 int res = 0;

 for (int i=0; i<len; i++)

 res = (1151*res + (word[i]-'a'))%size;

 return res;

}

Hash Table Insertion Details
When inserting an item into the hash table, insert it to the front of the table. This will affect the

cost calculated by your program. (For example, if we insert a new item “popcorn” into the table,

and then search for it right afterwards, say a buy followed by a sell, then the cost of the sell will

be 1 because popcorn will be at the front of its corresponding linked list.)

Structs to Use
Please use the following #define and two structs in your code:

#define MAXLEN 19

#define TABLESIZE 300007

typedef struct item {

 char name[MAXLEN+1];

 int quantity;

 int saleprice;

} item;

typedef struct node {

 item* iPtr;

 struct node* next;

} node;

typedef struct hashtable {

 node** lists;

 int size;

} hashtable;

Note: When you initialize your array of node* for your hashtable, please initialize the array

dynamically to be the size TABLESIZE and set each list in the table to NULL. The size component

should simply be set to TABLESIZE as well.

Implementation Requirements/Run Time Requirements

1. Use a hash table as previously described, using the hash function previously mentioned.

2. The run-time for processing each of the commands should be amortized O(1) time. The final

number printed out will indicate the relative complexity for an input case.

3. A global variable may be used (but doesn't need to be) to keep track of the total complexity and

total cash on hand.

4. Your code must compile and execute on the Eustis system. The C compiler on this system is the

one that the graders will be using to grade/evaluate your submissions.

Deliverables

1. Please submit a single source file, inventory.c, via Webcourses, for your solution to the

problem.

