RECURSION

Recursion is a powerful problem-solving strategy. 

Solves large problems by reducing them to smaller problems of the same form. 

The subproblems  have the same form as the original problem.

To illustrate the basic idea,

Funding coordinator for a large charitable organization. 

 Job: to raise one million dollars in contributions to meet the expenses of the organization. 

not easy to locate persons who would be willing to donate one million dollars. 

However people don’t mind donating smaller amounts. 

 lets say $100 is a good enough amount

 call 10,000 friends to complete the task. 

organization has a reasonable supply of volunteers across the country.

find 10 dedicated supporters in different parts of the country and 

appoint them regional coordinators.

So each person  now has to raise $100,000.

 It is simpler than raising one million, but hardly qualifies to be easy.

 They can adopt the same strategy, 

i.e. delegate  parts of the job to another 10 volunteers each within their region 

and asking each to raise $10,000. 

The delegation process can continue until there are volunteers who have to go around raising donations of  $100 each from individual donors.

The following structure is a psuedocode for the  problem:

========================================

 Ask funding coordinator to collect  fund

 void collect (int fund)

{


if ( fund <=100) {



contact individual donor.


} else {



find 10 volunteers.



Get each volunteer to collect fund/10 dollars



Pool the money raised by the volunteers.  }

}

Basic nature  of the problem remains the same,

 i.e. collect n dollars, 

 value of n is smaller each time it is called.

 To solve the problem  invoke the same function again.

Having a function to call itself is the key idea of recursion in the context of programming.

 A structure providing a template for writing recursive functions is as follows:

 If  (test for a simple case) {



Compute simple solution without recursion

 } else  {



break the problem into similar subproblems

 

solve subproblem by calling this function    



                                                 recursively.



Reassemble the solution to the subproblems

Recursion is an example of divide-and-conquer problem solving strategy. 

It can be used as an alternative to iterative problem solving strategy.
Example 1:  space shuttle taking off

void count_down(int n)

{


if (n <= 0)



printf(“\nBlast off.\n”);

    else{



printf(“%d! “, n);



count_down(n-1);

 
}

}

int main ()

{


count_down(10);

}

Example 2: Let us consider the Factorial Function

n! = n * (n-1) * (n-2) *  … * 2 * 1

0! = 1

Iterative solution:

int fact(int n)

{

int p, j;

p = 1;

for ( j=n; j>=1; j--)


p = p* j;


return ( p );

}

Recursive definition:

In the recursive implementation there is no loop. 

We make use of an important mathematical property of factorials.

 Each factorial is related to factorial of the next smaller integer :

n! = n * (n-1)!

To make sure the process stops at some point, we define 0! to be 1.  

 conventional mathematical definition : 

n! = 1 
if n = 0

n! = n*(n-1)! 
if n > 0

This definition is recursive, 

because it defines 

the factorial of n in terms of factorial of n – 1. 

The new problem has the same form i.e. find factorial of n – 1 

In C:

int fact(int n)

{


if (n ==0) 

 

return (1);


else 

return (n * fact(n-1));

}

The Nature of Recursion

1) One or more simple cases of the problem (called the stopping cases) have a simple non-recursive solution.

2) The other cases of the problem can be reduced (using recursion) to problems that are closer to stopping cases.

3) Eventually the problem can be reduced to stopping cases only, which are relatively easy to solve.

In general:

if (stopping case)


solve it

else 


reduce the problem using recursion

Tracing a Recursive Function

Let  us try to follow the logic the computer uses to evaluate any function call. 

It  uses a stack to keep track of function calls. 

Whenever a “new” function is called,

 all its   parameters and local   variables

along with the memory address of the calling statement 

are pushed onto system stack
(this gives the computer the return point after execution of the function)

 In the factorial example , suppose “main”  has a statement                

 f= factorial (4);

	when main calls factorial,

 computer creates a new stack frame 

and 

copies the argument value into the formal parameter n. 


main     fact1

	if (n ==0) 

 

return (1);


else 

return (n * fact(n-1));

   n = 4




To evaluate function fact1, it reaches the point where it needs the  value of  fact (n-1) to be multiplied by n

 This initiates a recursive call. 

At this stage picture is like this

main  fact1

	   n=4



	if (n ==0) 

 

return (1);


else 

return (n *fact(n-1));
                                               ?




 current value of  n is 4, 

n-1 takes the value 3, 

and another fact call is invoked

main fact1  fact2

	if (n ==0) 

 

return (1);


else 

return (n * fact(n-1));

n= 3




and the process continues till fact is called  5 times and n gets the value 0:
Main fact1 fact2 fact3 fact4 fact5 

	if (n ==0) 

 

return (1);


else 

return (n * factorial(n-1));

n = 0




	


Because n is 0,

 the function parameter can return its result by executing the statement        

return(1);

The value 1 is returned to the calling frame, 

which now becomes the top of stack as shown:

Main fact1 fact2 fact3 fact4
	if (n ==0) 

 

return (1);


else 

return (n * factorial(n-1));
                      value 1

n = 1



	


Now the computation proceeds back through each of recursive calls.

 In above frame  n=1 so it returns the value 1 to its caller , now the top frame shown here:

Main fact1 fact2 fact3
	if (n ==0) 

 

return (1);


else 

return (n * factorial(n-1));

                    value 1

n =2 




Because n is 2,  a value 2 is passed back to previous level:

Main fact1 fact2 
	if (n ==0) 

 

return (1);


else 

return (n * factorial(n-1));

                      value 2

n = 3




Now the value returned is  3 x 2 to previous level as shown:

Main fact1 
	if (n ==0) 

 

return (1);


else 

return (n * factorial(n-1));

                      value 6          

n = 4




Finally the value 4 x 6 is calculated at  24 is returned to the main program.

Example:   Palindrome 

A Palindrome is a string of characters that reads the same backwards and forwards 

(e.g. noon, level, deed, mom). 

Palindromes can be defined recursively. 

Any palindrome will contain a shorter palindrome inside itself. 

In the following program segment, we are trying to read a string  and print it in reverse order.

void palindrome(int n)

{


char next;


if (n == 1) {

/* stopping case */



scanf("%c",&next);



printf("%c", next);

    }


else {



scanf("%c", &next);



palindrome(n-1);



printf("%c",next);


}


return;

}

int main()

{

printf("Enter a string: ");

palindrome(5);

printf("\n");

}

M A D A M

Trace of palindrome: for input abc
palindrome(3);

Example 5: Binary search  ( recursive version)

Divide and conquer implementation

/* findkey returns the index of the key in the array, 

if key does not exist then function returns  -1 */

int findkey(key, int array[ ], int n )

{


return ( binary(key,array,0,n-1)) ;

}

static int binary ( key, array[ ], lh, rh)

/* lh and rh  are  quantities  already in our earlier binary search algorithm */

{


int mid, cmp;


if ( lh > rh ) return (-1 );


mid =  ( lh + rh )/ 2;


if   ( key =  array [mid] )



return (mid);


if  ( key < array [mid]  {



return (binary (key, array, lh, mid – 1 ));


}  else  {



return (binary (key, array, mid + 1, rh )) ;


}

}

Example 6: Fibonacci Sequence

In 1202, Italian mathematician Leonardo Fibonacci posed a problem

that has had a wide influence on many fields.

 The problem is related to growth in population of rabbits,

 generation to generation,

 if rabbits reproduced according to the  following rules:

1. Each pair of fertile rabits produces a new pair of offspring each month.

2.  Rabbits become fertile in their second month of life.

3. No rabbit dies.

Suppose we start with a pair introduced in January. 

Thus on Jan 1 , no rabbits

and on Feb 1 , one pair.

Since they are not yet fertile 

on  March 1, still one pair.

In march they produce another pair,

 so on April 1, the count is 2 pairs.

 In April the original pair produces another pair, 

so on May 1 there are 3 pairs.

 Then……

We start getting the Fibonacci sequence: 

It is the sequence of integers:

t0 
t1
t2
t3
t4
t5
t6
t7
t8
t9
0
1
1 
2 
3 
5 
8 
13 
21 
34 …

Interesting observation: 

Each element in this sequence is the sum of the two preceding elements.

The specification of the terms in the Fibonacci sequence:


 
n 
if n is 0 or 1 (i.e. n < 2)

tn = 

 
tn-1+ tn-2  
otherwise

How fast do the numbers grow? 

 If  4th  term is 2, 

7th term is 8,

 12th term is 89, 

20th term is 4181…..

It can be shown by induction that 

 tn  > ( 3/2)n

tn =  tn-1+ tn-2  

tn
  > ( 3/2)n-1    + ( 3/2)n-2

 >   (2/3) (3/2)  ( 3/2)n-1

   
   + (2/3) (3/2)  (2/3) (3/2)  ( 3/2)n-2

> (2/3)  ( 3/2)n

 
 + (2/3) (2/3)  ( 3/2)n

 > [(2/3) + (4/9) ] ( 3/2)n

 >(10/9) ( 3/2)n

tn >  ( 3/2)n

In C:

int fibonacci(int n)

{

  if (n < 2)


return n;

  else 

    return(fibonacci(n-2) + fibonacci(n-1));

}

Calling the function : 

x = fibonacci(5);

What is the complexity of this function? At every call , two more fibonacci functions are being called. So if it is called  n times then it must be of the order of  (2)n

Common Errors

· It may not terminate if the stopping case is not correct or is incomplete (stack overflow: run-time error)

· Make sure that each recursive step leads to a situation that is closer to a stopping case.

Look at this example:

 int  bad (int  n )

{


if ( n == 0 )



return 0;


else



return bad( n / 3 + 1 ) + n – 1 ;

}

 So here bad (2) calls bad (1), bad(1) calls bad(1) repeatedly, so bad(1) cannot be evaluated. So bad(2) cannot be evaluated. Similarly,  bad(3) , bad(4), bad(5) all make calls to bad(2) and none can be evaluated.

Comparison of Iteration and Recursion

· In general, an iterative version of a program will execute more efficiently in terms of time and space than a recursive version. This is because the overhead involved in entering and exiting a function is avoided in iterative version.

· However a recursive solution can be sometimes the most natural and logical way of solving a problem.

· Conflict: machine efficiency versus programmer efficiency

· It is always true that recursion can be replaced with iteration and a stack.

Recursion  (contd.)

Exercises:

Iterative Fibonacci

 Write an iterative implementation of an algorithm to compute fibonacci (n).

The Greatest common Divisor  (g.c.d.)

Gcd of  2  non-negative integers is the largest integer that divides evenly into both. 

Write an algorithm to find gcd of  say 24 and 36……….

In 3rd century B.C. , Euclid gave an algorithm

If  p is evenly divisible by q, then q is the gcd.

Otherwise, gcd of p and q equals gcd of  q and he remainder of p divided by q.

Write a recursive function GCD(int p, int q) .

Exponentiation:

Raising an integer to a power (which  is also an integer)

Would work only if there is a machine to hold large integers

 xn requires  n-1 multiplications.

A more efficient  iterative solution is possible.

Note that a power 16 can be obtained by first computing power of 8 and multiplying the result with itself.

Power  of 8 can be obtained by multiplying two numbers of power of 4 each.  

Note the similarity with binary search. A higher power can be obtained from its lower power (i.e. power/2).

A recursive algorithm :

power( x,  n)

{

 if ( n==0) 

     return 1;

 if(n==1) 

     return x;

 if (n is even) 

     return power ( x * x,  n / 2);

 else

      return power( x * x, n / 2 ) * x  ;

}

What is the complexity of  the algorithm?   O( log  n)

Towers of Hanoi Problem:

Invented by French mathematician  Lucas in 1880s.

Original problem set in India in a holy place called Benares.

 There are  3 diamond needles fixed on a brass plate. 

One needle contains 64 pure gold disks.

Largest resting on the brass plate , other disks of decreasing diameters.

 Called tower of  Brahma.

 Priests are supposed to transfer the disks from one needle to the other such that at no time a disk of larger diameter should sit on a disk of smaller diameter.

 Only one disk can be moved at a time.

Later  setting shifted  to Vietnam, but puzzle and  legend remains the same. 

 How much time would it take? Estimate…..

Finding a Recursive strategy:

1. simple case:  Any tower with more than one disk must be moved in pieces. If there is just one disk, then move it.

2. It must be possible to break the problem into simpler subproblems of same form.

To move 8 disks from needle A to needle B, try  to bring 7 disks to needle C.

 Then the last disk can be transferred from A to B.

 So now you have to solve the problem of transferring 7 disks.

Movetower ( n, start, finish, temp needles)

{


if (n==1) {



move one disk from start to finish


}   else  {



move tower of size n-1 from start to temp



move a single disk from start to finish


move  tower of size n-1 from temp to finish

}

}

Coding the solution

void Movetower ( n, start, finish, temp)

{


if ( n==1) {



movesingle ( start, finish);


}  else  {



movetower ( n-1, start, temp, finish);



movesingle ( start, finish);



movetower ( n-1, temp,  finish, start);

For illustration, let us take case of 3 disks
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Movetower ( 3, A, B, C)

n
start

finish 
temp

3
A

B

C

This calls

2
A

C

B

1
A

B

C

Now it can perform the simple case

Move top disk from A to B. 

Recursion moves back to  n = 2 case. 

Now it can do movesingle start to finish (note case 2 above)

Move next disk to C.

 Now we can execute the last statement of the function i.e. movetower ( 1, B, C, A)

It says move a tower of size 1 from B to C.

Now A has the largest disk, C has two disks

Recursion goes back to n=3 case

Now it can perform movesingle A to B

Next statement remaining is movetower (2, C, B, A).

Similar steps follow and job is completed.

Towers of Hanoi: Solution
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Class Exercises

1) Trace the following recursive function:

#include <stdio.h>

int f(char *s)

{

   if (*s == '\0')


  return 0;

   else 


  return (1 + f(s+1));

}

int main()

{

   char a[20] = "Computer Science I";

   printf("%d\n",f(a));

}

2) Trace the following recursive function:

#include <stdio.h>

int f(int c)

{

   if (!(c > 10)) {


  printf("%d\n", c);


  f(c + 1);

   }

}

int main()

{

   f(0);

}

3) Trace the following recursive function:

#include <stdio.h>

void f(int);

void g(int);

void f(int c)

{

   printf("hello from f()\n");

   if (++c <= 3)

     g(c);

}

void g(int c)

{

   printf("hello from g()\n");

   f(c); 

}

int main()

{

  printf("hello from main\n");

  f(1);

  return 0;

}

4) Write a recursive function to check if a given item is a member of a set. Function prototype is:

/* Inputs: An integer array, the item 
   being searched and the index of the 
   last element in the array.

   Output: true (1) or false (0)

*/

int isMember(int a[], int item, int n);

5) Write a recursive function to check if the contents of an array are in ascending order or not. The function prototype is:

/* Inputs: an integer array, the index 
   of the last element in the array.

   Output: true or false.

*/

int isAscending(int a[], int n);










n=3


3 <= 1? false


read next : a


palindrome(2)


write a


return





n=2


2 <= 1? false


read next : b


palindrome(1)


write b


return





n=1


1 <= 1? true


read next : c


write c


return
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