STACK

· A stack is a collection of items into which new items are inserted and from which items are deleted at one end (called the top of the stack).

· Different implementations are possible; although the concept of a stack is unique.

Example: Trays in the cafeteria.

· Two primary operations:

1. push: adds a new item on top of a stack.

2. pop: removes the item on the top of a stack

· Stack is also known as push-down list

· LIFO (Last In First Out): order of addition and deletion of items from a stack.

A stack is a dynamic structure. It changes as elements are added to and removed from it.

· Implementation of a stack as an array

#define maxstack 100

struct stack{

int items[maxstack];

int top;

};

int isEmpty(struct stack s){

return (s.top < 0);

}

int isFull(struct stack s){

return (s.top >= maxstack-1);

}

To put a new item on stack:

void push (struct stack *s, int x){

if (s->top >= maxstack-1)

printf(“The stack is full.\n”);

else {

s->top = s->top +1;

s->items[s->top] = x;

}

}

To pop an item from the stack:

int pop (struct stack *s){

int x;

if (s->top < 0)

printf(“Stack is empty.\n”);

else{

x = s->items[s->top];

s->top = s->top –1;

return x;

}

}

To indicate which item is at top of stack (without disturbing the stack)
int returntop (struct stack *s){

int x;

if (s->top < 0)

printf(“Stack is empty.\n”);

else{

x = s->items[s->top];

return x;

}}

Main program

int main()

{

struct stack S;

int c, i;

S.top = -1;

while ((c=getchar())!='\n')

push(&S, c);

while (!isEmpty(S))

printf("%c", pop(&S));

printf("\n");

}

Use of stack

Evaluation of arithmetic expressions

· Notation can be infix, postfix or prefix.

Infix: operator is between operands A + B

Postfix : operator follows operands AB+

Prefix: operator precedes operands +AB

· Operators in a postfix expression are in correct evaluation order.

Postfix Expressions

a + b * c
Infix form

 (precedence of * is higher than of +)

a + (b * c)

a + (b c *) convert the multiplication

a (b c *) + convert the addition

 a b c * + Postfix form

Example 2:

(A + B) * C

Infix form

(A B +) * C
Convert the addition

(A B +) C *

Convert multiplication

A B + C *
Postfix form

No need of parenthesis anywhere

a + ((b * c) / d) a + ((b c *) /d)

(precedence of * and / are same and they are left associative)

a + (b c * d /)
 a b c * d / +

· More examples

Infix
Postfix

(a + b) * (c – d)
a b + c d - *

a – b / (c + d * e)
a b c d e * + / -

((a + b) * c – (d – e))/(f + g)
a b + c * d e - - f g + /

Order of precedence for 5 binary operators:

power (^)

multiplication (*) and division (/)

addition (+) and subtraction (-)

The association is assumed to be left to right except in the case of power where the association is assumed from right to left.

i.e. a + b + c = (a+b)+c = ab+c+

a^b^c = a^(b^c) = abc^^

Evaluating a Postfix Expression

Each operator in a postfix string refers to the previous two operands .

 Each time we read an operand we push it onto a stack.

When we reach an operator

its operands will be the top two elements on the stack.

We can then pop these two elements,

 perform the indicated operation on them

and push the result on the stack so that

 it will be available for use as an operand of the next operator.

Example

6 5 2 3 + 8 * + 3 + *

	
	
	
	
	
	
	

	
	
	
	
	
	
	 3

	
	
	
	
	 2
	
	 2

	
	
	 5
	
	 5
	
	 5

	 6
	
	 6
	
	 6
	
	 6

1

 2

 3

 4

	
	
	
	
	
	
	

	
	
	 8
	
	
	
	

	 5
	
	 5 5 5 5
	
	 40
	
	

	 5
	
	 5
	
	 5
	
	 45

	 6
	
	 6
	
	 6
	
	 6

5

 6

 7

 8

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	 3
	
	
	
	
	
	

	 45
	
	 48
	
	
	
	

	 6
	
	 6
	
	
	
	

Finally with the operator * the result of evaluating the expression is

288

Converting an Infix Expression to Postfix

while there are more characters in the input

 {

Read next symbol ch in the given infix expression.

If ch is an operand put it into the output.

If ch is an operator i.e.* , /, +, -, or (

 {

If stack is empty push ch onto stack

Else check the item op at the top of the stack

while (more items in the stack &&

 precedence(ch) <= precedence (op)

{

pop op and append it to the output, provided it is not an open parenthesis

the next top element becomes op
}

push ch onto stack

}

If ch is right parenthesis ‘)’

Pop items from stack until left parenthesis

 reached

Pop left parenthesis and discard both left

and right parenthesis

}/* now no more characters in the infix expression*/

Pop remaining items in the stack to the output.

QUEUES

· A queue is a list from which items may be deleted at one end (front) and into which items may be inserted at the other end (rear)

· Similar to checkout line in a grocery store - first come first served.

· It is referred to as a first-in-first-out (FIFO) data structure.

· Queues have many applications in computer systems:

· jobs in a single processor computer

· print spooling

· information packets in computer networks.

· Primitive operations

enqueue (q, x):

 inserts item x at the rear of the queue q

x = dequeue (q):

 removes the front element from q and returns its value.

isEmpty(q) : true if the queue is empty, otherwise false.

Example

enqueue(q, ‘A’);

enqueue(q, ‘B’);

enqueue(q, ‘C’);

x = dequeue(q);

enqueue(q, ‘D’);

enqueue(q, ‘E’);

x= dequeue (q) -> x= ‘A’

Array Implementation

A huge array and two variables (indices) front and rear to point the first and the last elements of the queue.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

	5
	3
	8
	11
	9
	4
	
	
	
	
	
	
	
	
	

Initially:

q.rear = -1;

q.front = 0;

/* queue is empty when rear < front */

· Addition and deletion are simple.

· Good if the queue is often emptied.

· Disadvantage: needs a huge array as the number of slots would go on increasing as long as there are items to be added to the list (irrespective of how many items are deleted, as these two are independent operations.)

Ignoring overflow and underflow,

insert and remove can be implemented as:

/* number of elements in the queue = rear – front + 1 */

enqueue(q, x):

q.rear = q.rear +1;

q.items[q.rear] = x;

x = dequeue(q):

x = q.items[q.front];

q.front = q.front + 1;

Problems with this representation:

Although there is space we may not be able to add a new item. An attempt will cause an overflow.

	0
	1
	2
	3
	4

	
	
	C
	D
	E

It is possible to have an empty queue yet no new item can be inserted.(when front moves to the point of rear)

A solution: Circular Array

A good method to implement queues (efficient use of space) is to view the array as if it is a circular

array. This enables us to utilize the unavailable slots provided front and rear are handled carefully.

equivalently:

Let us take an example of a Queue with 7 slots, i.e. size is 7. Initially there are no elements, so let us keep both front and rear equal to – 1 .

Now we let us study the effect of following operations and see how front and rear values are changed.

Add 20

Since rear = – 1, element will be stored in slot 0.

0 1 2 3 4 5 6

	20
	
	
	
	
	
	

Now there is one element in the queue in the slot 0. So it is the first element, so front = 0, it is also the last element , so rear = 0.
This means whenever front = – 1
and an element is added , we have to make front = 0

	Front

0
	rear

0

 Now Add 15.

	20
	15
	
	
	
	
	

Now front remains at 0. There are two elements so the last element added moves value of rear to 1.

	Front

0
	rear

1

Now Add 6 and Add 11. This will take rear to 3. What does it imply? If rear is not yet equal to size – 1 , then increment rear and put the new element there.

	20
	15
	6
	11
	
	
	

	Front

0
	Rear

3

At this point we ask the Queue to remove an element. It is going to remove the element being pointed by front, viz. 20 in this case. This means the element at front is now 15 located at position 1.

	
	15
	6
	11
	
	
	

	
	
	
	
	
	
	

	Front

1
	rear

3

Now we perform

Add 9

Add 7

Remove one element.

This will cause front to move to 3, as 11 is the element currently in front.

	
	
	
	11
	9
	7
	

	Front

3
	Rear

5

Now we perform Add 8. This will apparently show that there is no more space in the queue after the last slot.

	
	
	
	11
	9
	7
	8

	Front

3
	Rear

6

At this point suppose we want to add another element say 4. Now it can be put only in the first position, which means if rear = size – 1 , then put the element in slot 0 and make rear = 0.

	4
	
	
	11
	9
	7
	8

	Front

3
	rear

0

Next we do Add 6 , followed by Add 1. The picture at this stage looks like this

	4
	6
	1
	11
	9
	7
	8

	Front

3
	rear

2

Now can we do Add 3. We cannot do so, as the Queue is physically full. We can see that ourselves. But how would a program find out that the area allocated to the queue is full?

Observe how front and rear are related. You will always see that if front = rear + 1, then it means the queue is full.

Suppose this was the picture at some stage

	
	
	
	
	
	
	8

	Front

6
	rear

6

And we perform Remove. The list is going to be empty after that. So we remove the element in the position of front

And make

Front = rear = – 1, to indicate that list is completely empty.

On the other hand for the following situation if we say remove when front is at 6 (i.e. size – 1) and rear not equal to front,

	3
	5
	
	
	
	
	8

	Front

6
	rear

1

Then we have to make front = 0,

else for all other cases

 on remove operation we simply do front ++

So when do we say that the Queue is empty?

 when front = – 1.

When do we say that the Queue is full?

There are two situations:

1) front = 0 and rear = size – 1 OR

2) front = rear + 1.

We are now in a position to implement a Queue through the following pseudo-code:

Let total number of available slots : size

Initialization

rear = – 1 ; front = – 1 ;

To add an element ‘num’ in the queue

enqueue (int num)

{

 if (list not full)

if (rear == size – 1 || rear == – 1)

{

a[0] = num;

rear = 0;

 if (front == – 1)

 front = 0;

 }

 else a[++ rear} = num;

 else printf(“ queue is full \n”);

}

To remove an item from the queue:

 int Dequeue

{

 if (list not empty)

{

 tmp = a[front] ;

 if (front == rear)

 rear = – 1;

 front = – 1;

 else if (front == size – 1)

 front = 0;

 else

front ++;

 return tmp;

}

list is full

 bool isFull()

{

return front == 0 && rear == size – 1

 | | front == rear + 1;

 }

list not empty

 bool isEmpty ()

 {

 return front == – 1 ;

}

Application of Queues:

Queues are frequently used in simulation studies for real world applications, such as customers queuing up at a bank, at Federal offices, at shopping malls or supermarkets, or trucks waiting for service at a weighing station on an interstate, parts on an assembly line waiting to be loaded on to some machine, messages waiting to get across a network, computer jobs (processes) waiting to be processed by the server, flights waiting to land or take off at an air strip, railway wagons waiting to be connected to proper engines for moving the cargo forward, packets waiting at hubs for further delivery in a courier service such as FedEx or DHL.

In all these applications customers or objects have to wait as the service provider has limited capacity.

Always there will be two aspects to be measured . One is the waiting time to get to the servicing point and second is the time spent while getting served. Note that both the time periods are random in nature.

However, there is a mathematically sophisticated theory called the Queuing Theory, in which various scenarios can be analyzed and suitable models may be developed so that waiting time could be minimized, by optimizing number of service provider points.

Just to illustrate the above point, suppose a bank manager observers that when there is only one clerk to serve the customers, the queue gets unreasonably long and many customers get frustrated and walk away. He employs six clerks and finds that there is no more any waiting lines. Customers have to wait only a short while, before being serviced. The question that bothers the manager is whether 6 clerks are really needed, or he could do with 5 ,4 or 3 clerks.

 A simulation program can answer this question, provided we get some idea of typical arrival rates of customers and type of service needed by them.
front

rear

front

C

B

A

rear

E

D

C

B

rear

front

rear

front

rear

front

size-1

Size - 2

0

1

rear

front

rear

front

top

F

E

D

C

B

A

Insert:

A B C D E F

top

Delete:

F E D

top

C

B

A

PAGE
8

