
1

COP 3503 Homework #5: Short Codes
Filename: codes.java

Time Limit: 4 seconds (per input case)

Standard Input, Standard Output

Many drugs have very long names that are hard to pronounce and take doctors a long time to write

down. In an effort to speed up the time it takes for doctors to write prescriptions, the MAA has

suggested that each drug name be mapped to a shorter code.

Doctors are great at memorizing codes, but it’s easier if the code for a drug is a substring within

the name of the drug. To that end, the MAA has produced a list of m potential codes for n (n ≤ m)

drugs. The goal is to match each drug to a unique code (an injective function) such that each code

is a substring of the drug it represents.

For this homework assignment you’ll have three tasks:

(a) Determining IF it’s possible or not to make such an assignment.

(b) If it is possible, determine any such valid matching.

(c) If it is possible, finding the first lexicographical mapping that is valid. In particular, the drugs

will be given in a particular order. One mapping comes before another mapping lexicographically,

if the first drug is mapped to a code that comes earlier in alphabetical order. (In the example below,

lisinopril comes first. It could be mapped to the codes “no”, “sin”, or “il”. Of these, “il” comes

first alphabetically. Thus, is there exists some mapping that works with lisinopril being mapped to

“il” this is preferred over mappings that map lisinopril to other codes. Between two mappings, one

is lexicographically first if the first drug in the list that is mapped differently is mapped to a code

that comes earlier alphabetically.

Let’s take a look at an example:

List of Drugs List of Abbreviations

---------------- --------------------------
lisinopril bu

ibuprofen pro

acetaminophen no

amoxicillin sin

naproxen il

 tam

In this example, a mapping is possible:

lisinopril → sin

ibuprofen → bu

acetaminophen → no

amoxicillin → il

naproxen → pro

2

But, this isn’t the first lexicographical mapping. That would be:

lisinopril → no

ibuprofen → bu

acetaminophen → tam

amoxicillin → il

naproxen → pro

The Problem:

Given a list of n drugs and m potential codes for those drugs, determine if there exists a way to

match each drug to a different code such that each drug has a code that is a substring of the drug

name. If it’s possible, determine one possible matching, and for maximal credit, determine the first

lexicographical matching.

The Input:

The first line of input contains two integers, n (1 ≤ n ≤ 100), representing the number of drugs for

the input case and m (n ≤ m ≤ 120), the number of potential codes for the input case.

The next n lines each contain the name of a single drug, in the order to be considered for the

matching. Each of these names will be unique strings of in between 10 and 30 lowercase letters,

inclusive.

The following m lines each contain the name of one code. Each of these codes will be unique

strings of in between 2 and 9 lowercase letters, inclusive.

The Output (for Task 1)

Output a single string, either “yes” or “no” on a line by itself depending on whether or not its

possible to map each drug to a different code in the given list.

The Output (for Tasks 2/3)

If the first line of output for Task 1 is “yes”, then you’ll output n more lines as follows:

The first line being the code the first input drug is mapped to, the second being the code the second

input drug is mapped to, and so forth.

If the mapping you output is the first lexicographical one, then full credit will be given.

3

Sample Input Sample Output

5 6

lisinopril

ibuprofen

acetaminophen

amoxicillin

naproxen

bu

pro

no

sin

il

tam

yes

no

bu

tam

il

pro

5 5

lisinopril

ibuprofen

acetaminophen

amoxicillin

naproxen

nap

pro

no

fen

cil

no

5 5

lisinopril

ibuprofen

acetaminophen

amoxicillin

naproxen

nap

pro

no

li

il

yes

il

pro

no

li

nap

4

Implementation Requirements

This problem can be solved by reading in the input, forming a network flow graph, then running a

max flow algorithm on that graph. (For the third task, the algorithm has to be run multiple times.)

It is expected that you use the following posted code with the two network flow algorithms

presented in class:

FordFulkerson.java

or

Dinic.java

While you may develop your own network flow code, doing so is quite time consuming, so the

recommended path is to use the posted code. (This is courtesy of the UCF Programming Team

circa 2016.)

If you only want to complete the first task, then no editing of this code is required and all you have

to do is call the methods in the class without ever accessing any information in the class from

outside of it. If you want to complete the second and/or third task, you’ll either have to access the

instance variables of your FordFulkerson or Dinic object OR add methods to one of those classes.

This editing will require you to understand (to some extent) what the code is doing and what each

variable is storing and when. This is perhaps more similar to a real-world task where you frequently

use others’ code and may have to modify it some.

Rough Grading Breakdown

Code points will determine 40 points out of 100.

There will be 10 test cases for task 1 – the output for each of these will be worth 2 pts per test case.

Credit will only be given if the proper algorithm is used. Namely, by sheer luck one is

expected to match half of the outputs (one could just write a one line program that outputs

“no” all the time. In these cases, even if the output matches, no credit will be given.

There will be 10 test cases for tasks 2/3 (each of which have more than one valid matching) – you

earn 2 pts for any valid matching, and 4 pts for the lexicographically first matching.

Thus, a perfect score for completing Task 1 is 60/100, Tasks 1 and 2 is 80/100 and all three tasks

is 100/100. Note that task 1 is quite easy (since you’re using pre-written code), and task 2 is

moderate (much less original code than programs 2, 3 and 4). Task 3 is quite challenging, so the

expectation is that most students will get around 80 on this assignment.

5

What To Submit

For this assignment, please submit a single Java program named codes.java which solves the

posted problem. In your header comment, state whether you solved just task 1, or tasks 1 and 2,

or all 3.

Note: Your program should either just output yes or no, OR for yes cases it should output yes

followed by one single matching on n lines. We’ll judge both tasks 2 and 3 based on the single

matching you output. Your program will be tested on different input cases for Tasks 1 vs. Tasks 2

and 3.

