COP 3503 – Computer Science II  –  CLASS NOTES  - DAY #15

Trees differ from linked list in one important way, they are not linear structures.  Linked lists are inherently linear in their structure regardless of the number of lists in which a particular node participates (multiply linked lists).  Traversal in a linear list always proceeds from a particular node to either its logical predecessor or successor node.  Only the implementation of the list will affect which node is the logical successor or predecessor node.  A linked list cannot easily represent data which is hierarchical in nature.  Hierarchical data exhibits ancestor-descendant, superior-subordinate, whole-part, or similar relationships among the data elements.  The Java class hierarchy is an example of such a relationship.

As with the linked list, it is possible to represent a tree using a static data structure although this is not common.  There is however, one instance where a static implementation is commonly used for the purposes of speed of retrieval and we will examine this special case later (actually it concerns a special case of a binary tree).  The most common implementation of a tree is done dynamically and this is the implementation we will focus upon.  Before we examine the actual implementation issues surrounding trees, we need to focus on what exactly is a tree.

There are actually two different approaches to defining a tree structure, one is a recursive definition and the other is a non-recursive definition.  The non-recursive definition basically considers a tree as a special case of a more general data structure, the graph.  In this definition the tree is viewed to consist of a set of nodes which are connected in pairs by directed edges such that the resulting graph is connected (every node is connected to a least one other node – no node exists in isolation) and cycle-free.  This general definition does not specify that the tree have a root and thus a rooted-tree is a further special case of the general tree such every one of the node except the one designated as the root is connected to at least one other node.  In certain situations the non-recursive definition of a tree has certain advantages, however, for our purposes we will focus on the recursive definition of a tree which is:


A complete set of terminology has evolved for dealing with trees and we’ll look at some of this terminology so that we too can discuss tree structures with some degree of sophistication.  As you will see the terminology of trees is derived from mathematical, genealogical, and botanical disciplines.

Rooted Tree:  (from the non-recursive definition) A tree in which one node is specified to be the root, (call it node c).  Every node (other than c), call it b is connected by exactly one edge to exactly one other node, call it p.  Given this situation, p is b’s parent.  Further, b is one of p’s children. 

Degree of a node:  The number of subtrees associated with a particular node is the degree of that node.  For example, using our definition of a tree the node designated as the root node r has a degree of n.

Leaf Node:  A node of degree 0 has no subtrees and is called leaf node.  All other nodes in the tree have degree of at least one and are called internal nodes.

Child Node:  Each root ri of subtree ti of tree t is called a child of r.  The term grandchild is defined in a similar fashion as is the term great-grandchild.

Parent:  The root node r of tree t is the parent of all the roots ri of the subtrees ti, 1<i( n.  The term grandparent is defined in a similar manner.

Siblings:  Two roots ri and rj of distinct subtrees ti and tj of tree t are called siblings.  (These are nodes which have the same parent.)

The additional set of tree terminology definitions below will assume the following:  

Let R represent the set of nodes which define the tree t.

Path length:  Given a tree t containing the set of nodes R, a path in t is defined as a non-empty sequence of nodes: p={r1, r2, …, rk ) where ri ( R, for 1( i( k such that the ith node in the sequence ri is the parent of the (i+1)th node in the sequence ri+1.  The length of path p is k-1. (What this is saying is that: there is a unique path that traverses from the root to each node in the tree.  The number of edges along this path is the path length.)

Number of nodes/edges in a tree:  A tree t containing n nodes has exactly n-1 edges since all of the nodes in the tree, except for the root r, have exactly one edge leading into them.

Height of a node:  The height of a node ri ( R in a tree t is the length of the longest path from node ri to a leaf node.  Thus all leaf nodes are at height 0.  (The number of edges that must be traversed to move from a specific node to the deepest leaf in the subtree in which the original node is a member.  (See level or depth of a node below.)

Height of a tree:  The height of tree t is the height of its root node r.  

Level or Depth:  The depth (or level) of a node ri ( R in a tree t is the length of the unique path in t from its root r to the node ri.  (The number of edges that must be traversed from the root node to reach a specific node in the tree.)  

Ancestor/Descendant: If there is a path from node a to node b then b is a descendant of a and a is an ancestor of b.  Note that each node is its own descendant.

Proper ancestor/Proper descendant:  If b is a descendant of a and a ( b then b is a proper descendant of a and a is a proper ancestor of b.

The following diagram illustrates the various properties of trees.









Nodes with the same color are all on the same level or at the same depth in the tree.

There are a total of 29 paths in this tree!  See if you can find them all.

Height of node k is 0. 

Height of node g is 2. 

Height of the tree is 3.

Node g is at level 1.  Node j is at level 2.  Node k is at level 3.  Node d is at level 0.

Node g is a proper ancestor of node i.

Node f  is a proper descendant of node d.  Node l is a proper descendant of node g.

Nodes h, j, and m are siblings.

Nodes f, h, j, and m are all on the same level (2) but f is not a sibling of h, j, and m.

Node d has two children and four great grandchildren.

Node g has three children.

The path from the root d to the node h is: {d, g, h} and has length 2.

The number of nodes in the tree is 10 and thus there are exactly 9 edges in the tree.

The degree of node g is 3.  

The leaf nodes of the tree are: {f, i, k, l, m}

General Implementation Issues

· The implementation must account for an unknown, potentially unbounded, and potentially widely varying number of children using some kind of data structure (such as a linked list) rather than explicit references from the node itself (this is too wasteful of space).  This means that a node definition of: [data, chld1ptr, chld2ptr, chld3ptr, chld4ptr, …, chldnptr] won’t do!

· This is commonly done using a first child/next sibling technique in which the children of a node are maintained in a linked list of tree nodes.

· Each node keeps two references (pointers): one to its leftmost child (if it isn’t a leaf node) and one to its right sibling (if it isn’t the rightmost sibling).

· Using this technique the tree structure looks different than what you are used to seeing.  Here edges that point downward are first child references, edges that go left to right are next sibling references, and null edges are not typically drawn since there are so many of them.  The diagram on the next page illustrates this technique.

Given the conventional tree:

This corresponds to the following tree using the first child/next sibling technique.



Null pointers are shown in the example above for completeness only, typically they are omitted for clarity.

Java Implementation

public class TreeNode 

{  protected  Object data;

    protected Singly_Linked_List  children;

    protected TreeNode sibling;

    public TreeNode (Object x, TreeNode, r)

   {  data = x;

       sibling = r;

       children = null;  //children = new Singly_Linked_List(null)

   } //end constructor  









     r





   null





   public TreeNode (Object x, Singly_Linked_List  sll, TreeNode  r)

   {  data = x;

       children = sll;

       sibling = r;

   } //end constructor








r


header



       null

    public Node getChild ( ) 

   {   return this.children.current;

   } // end getChild

//note: this is a special reference operator for Java objects which allows an object

//to refer to itself.  Since a method is always invoked through (or by) a particular 

//object or class, inside the invoking object or class, the this reference is used to 

//refer to the currently executing object.

   public TreeNode gotoSibling ( ) 

   {  return  this.sibling;

   } //end gotoSibling

   public Node getNextChild ( )

  {  return this.children.current.next;

  } //end getNtextChild

} //end TreeNode class

This class creates the structure illustrated on the next page.


Binary Trees

· A special case of a general tree in which each node can have at most two children.  Called a left child and a right child.

· The essential differences between a general tree and a binary tree are: (1) a given node in the binary tree has exactly two subtrees (one or both of which may be empty).  Each node in a general tree can have an arbitrary number of subtrees and (2) The subtrees of each node in a binary tree are ordered, that is, we distinguish between the left and right subtrees.  The subtrees of a node in a general tree are unordered.

· Used for many applications such as expression trees, binary searching, Huffman coding, etc..

· Expression Trees:  have a operator in the root of every subtree (all internal nodes), including the main root and every operand is a leaf node. 
· Huffman Coding Trees: every alphabet symbol is stored in a leaf node and its coding sequence is obtained by following the path from the root node to the leaf.  Typically a left link is assigned a “0” code and a right link is assigned a “1” code.  Huffman coding is based upon frequency of occurrence for the various letters in the alphabet with more frequently occurring letters assigned to shorter codes thus saving significant amounts of space in data storage, message transmission, etc..
Example: Suppose that we have a four letter alphabet consisting of a, b, c, and d, and e only.  To encode four letters requires 2 bits.  Suppose that these are assigned as follows: a = 00, b = 01, c = 10, and d = 11.  Now suppose that we have a sentence of these letters which is 15 characters long.  This sentence will require 30 bits to encode.  Suppose that we also have some information about the frequency of occurrence of each of our letters and know that “a” occurs most frequently, followed by b and so on.  Suppose we have, for our 15 character sentence: 8 a’s, 4 b’s, 2 c’s, and 1 d. A Huffman coding tree is built as shown below with the most frequently occurring letters closest to the root.

 



          0                1



0 1



       0           1


Reading the new codes from the tree we have:  a = 0, b = 10, c = 100, and d = 101.   With the new code this sentence requires (8*1) + (4*2) + (2*3) + (1*3) bits = 8 + 8 + 6 + 3 = 25 bits.  The original code required 30 bits so we have save (30-25)/30 = 16%.

We’ll revisit Huffman coding trees and expression trees later.

Properties of Binary Trees
The definitional restrictions placed on a binary tree when compared to a general tree give rise to certain properties that a binary tree will exhibit that are not exhibited by a general tree.  Some of these properties and corresponding terminology are defined below.  

Number of nodes in a binary tree:  A binary tree t of height h, h ( 0,  contains at least h and at most 2h-1 nodes.

Height of a binary tree:  The height of a binary tree that contains n, n ( 0, nodes is at most n and at least (log2 (n+1)(.

Full binary tree:  A binary tree of height h that contains exactly 2h-1 nodes is called a full binary tree.  (Each level i in the tree contains the maximum number of nodes, i.e., every node in level i-1 has two children.)






                      a full binary tree

                  (height = 3, 23-1 = 7)

        (number of nodes = 7)


not a full binary tree





                

(height = 4, 24-1 = 15)








(number of nodes = 7)

Complete binary tree:  A binary tree of height h in which every level except level 0 has the maximum number of nodes and level 0 nodes are placed from left to right on the level with no missing nodes.  Note that a full binary tree is a special case of a complete binary tree in which level 0 contains the maximum number of nodes.  Some complete binary trees are shown below.




Java Implementation of a Binary Tree

public class BinTreeNode

{    protected Object data;

      protected BinTreeNode  left;

      protected BinTreeNode right;

     public BinTreeNode (Object x)

    {   data = x;

         left = null;

         right = null;

     }  // end constructor

     public BinTreeNode (Object x, BinTreeNode l, BinTreeNode r)

    {   data = x;

         left = l;

         right = r;

     }  // end constructor

}// end BinTreeNode

The BinaryTree implementation left as an exercise.  Do this just like we did for the linked list classes, define a binary tree class, define a constructor, and then define some of the methods for operating on the binary tree.

How to Insert a Node

 Want to insert the left-child to the left of its parent and the right-child to the right of its parent.  Common technique is to insert in order of arrival and always place element as close to the root as possible, given a choice.  In other words do not arbitrarily make the tree taller.











 don’t insert here

Since trees are defined recursively, some methods can (and should) be written recursively.

public int Height ( )

{   int l, r;

     if ((left = = null) && (right = = null))


return 0;

      return ((l = left.Height ( ) >= (r = right.Height ( ) )) ? l+1: r+1

} //end Height

Note: conditional statement available in both Java and C++ the form of this is:


predicate ? return if predicate = True


                : return if predicate = False;

Tree Traversals

Preorder:  processed in order root/left-child/right-child

public void preorderTrav (BinTree)

{  if (root != null)


{ process (root);  //assumed method


   preorderTrav(left);


   preorderTrav(right);


} //endif

} //end preorderTrav

Inorder:  processed in order left-child/root/right-child

public void inorderTrav (BinTree)

{  if (root != null)


{ inorderTrav(left);


   process (root);  //assumed method


   inorderTrav(right);


} //endif

} //end inorderTrav

Postorder:  processed in order left-child/right-child/root

public void postorderTrav (BinTree)

{  if (root != null)


{ postorderTrav (left);


   postorderTrav (right);

   process (root);  //assumed method


} //endif

} //end postorderTrav

Expressions

An infix expression represented as a tree can be evaluated with an inorder traversal of the tree.

public void getExp (BinTreeNode t)

{ (1) if (t == null) return;

   (2) if ((t.left != null)) & (t.right != null))


   System.out.print (“(“);

    (3) getEXP (t.left);

    (4) System.out.print (t.data);

    (5) getEXP (t.right);

    (6) if ((t.right.left == null) && (t.right.right == null))

  
   System.out.print (“)”);

} //end getEXP

Example:  Consider the expression “ (a + ((b – c) * d)







    t




Trace:  set t to root of the tree


  1. t != null


  2. t.left != null && t.right != null // so print “(“


  3. call getEXP(t.left)



//  t now points to t.left – the node with “a”



1. t != null



2. t.left == null && t.right == null   // so no print



3. call getEXP(t.left) 




// t now points to t.left.left {which is null in this case}




1. t == null so return



4. print t.data  // so “a” is printed



5. call getEXP(t.right)




1. t == null so return


4. System.out.print (t.data)   // print out “+” the root node


5. call getEXP(t.right)



// t now point to t.right //node with “*”



1. t != null



2. t.left != null && t.right != null  // so print “(“  output = “(a + (”



3. call getEXP(t.left)




//t now points to node with “-“




1. t != null




2. t.left != null && t.right != null // so print “(“




3. call getEXP(t.left)





// t now points to node containing “b”





1. t != null





2. t.left == null && t.right == null //so no print





3. call getEXP(t.left)






1. //t.left == null  so return





4. System.out.print(t.data) //so print “b”





5. call getEXP(t.right)






1. //t.right == null so return




4. System.out.print(t.data) //so print “-“




5. call getEXP(t.right)





//t now points to node containing “c”

1. t != null

2. t.left ==null && t.right == null so no print

3. call getEXP(t.left)

1. //tleft == null so return

4. System.out.print(t.data) //so print “c”

5. call getEXP(t.right)

1. //t.right ==null so return

6. t.right.left!=null &&t.right.right!=null so no print 

6. t.right.left==null && t.right.right ==null so print “)”

4. System.out.print(t.data) // so print “*”

5. getEXP(t.right)

//t now points to node containing “d”

1. t!=null

2. t.left == null && t.right==null so no print

3. getEXP(t.left)

1. t==null so return

4. System.out.print(t.data) // so print “d”

5. getEXP(t.right)

1. t == null so return

6. t.right.left != null &&t.right.right != null so no print

6. t.right.left == null && t.right.right == null so print “)”


6.  t.right.left != null && t.right.right != null so no print

Practice Tree Traversals

On the next two pages are three binary trees that can be used for practicing the various tree traversal algorithms.  You may have already discovered that binary tree traversals appear on the foundation exam with surprising regularity. The answers for the traversals are on the last page of the notes.

Tree #1


Tree #2


Tree #3


Practice Binary Tree Traversal Answers

Preorder:  Visit node, visit left subtree, visit right subtree

Inorder: Visit left subtree, visit node, visit right subtree

Postorder: Visit left subtree, visit right subtree, visit node

Tree #1


Preorder: 40, 30, 10, 32, 35, 70, 60, 65, 90


Inorder:  10, 30, 32, 35, 40, 60, 65, 70, 90


Postorder:  10, 35, 32, 30, 65, 60, 90, 70, 40

                   Tree #2


Preorder: 40, 30, 10, 5, 15, 32, 35, 70, 60, 65, 90, 95


Inorder:  5, 10, 15, 30, 32, 35, 40, 60, 65, 70, 90, 95


Postorder:  5, 15, 10, 35, 32, 30, 65, 60, 95, 90, 70, 40

                  Tree #3


Preorder: 40, 30, 10, 5, 15, 13, 12, 32, 35, 70, 60, 65, 66, 67, 68, 90, 95


Inorder:  5, 10, 12, 13, 15, 30, 32, 35, 40, 60, 65, 66, 67, 68, 70, 90, 95


Postorder: 5, 12, 13, 15, 10, 35, 32, 30, 68, 67, 66, 65, 60, 95, 90, 70, 40

E





D





C





B





A





root





IF





JHF





HGF





GF





F





E





C





B





A





D





root





3





7





a








 l





15





this is a Singly_Linked_List


(see Day 14 Notes)











k








 j





 i





 h








f





g





 m





e





d






































GF





HGF





IF





JHF





FE





root


children





child 1 





child n


           null





child 2








sub-tree with child1


as root





sub-tree with child2


as root





Tree Implementations





data     children   sibling


 x                          





data     children   sibling


                          





data     children   sibling


 x                          





data     children   sibling


                          





data     next


null





b





db





cb





root





root





2





2





1





1





c





b





d





-





*





a





+





40





30





70





60





65





90





10





32





35





65





35





90





60





32





10





70





30





40





5





15





95





95





15





5





65





35





90





60





32





10





70





30





40





13





12





66





67





68





Definition:  A tree t is a finite, nonempty set of nodes,





     t = {r} U T1 U T2 U(U Tn





with the following properties:





A designated node of the set, r, is called the root of the tree; and





2. The remaining nodes are partitioned into n ( 0 subsets T1, T2, …, Tn each of     which is a tree (called the subtrees of t).





For convenience, the notation t = {r, T1, T2, …, Tn} is commonly used to denote the tree t.











Day 15 - 4

