COP 3503 – Computer Science II – CLASS NOTES - DAY #21

A priority queue is essentially a list of items in which each item has associated with it a priority. In general, different items may have different priorities and thus we speak of one item having a higher priority than another. Given such a list we can determine which is the highest (or lowest) priority item in the list. In general, items are inserted into a priority queue in arbitrary order. However, items are removed from the priority queue in the order of their priorities, typically starting with the highest priority item first. A single integer value is commonly used to indicate the priority of an item an typically the smaller this value the higher the priority of the item, however, this is also a problem specific consideration and other situations may occur.

Priority queues are commonly used by operating systems to manage the various functions of process control. For example, consider the software which manages a shared resource such as a networked printer. In general, it is possible for users to submit print jobs much more quickly than it is possible for the printer to print them (case in point are the CCII labs!). A simple solution is to place the print jobs into a FIFO queue. While this may seem fair in that the jobs are printed on a first-come, first-served basis, a user who has submitted a short document for printing will experience a long delay when much longer documents are already in the queue. An alternative solution is to use a priority queue in which the shorter the document, the higher its priority. In fact, it can be proven that printing documents in the order of their length minimizes the average time a user waits for their document to be printed.

Priority queues are also often used in the implementation of algorithms. Typically the problem to be solved consists of a number of subtasks, and the solution strategy involves prioritizing the subtasks and then performing those subtasks in the order of their priorities. Priority queues can be used to improve the performance of many backtracking algorithms. Priority queues are the basis for an optimal comparison based sorting algorithm known as the heap sort (we’ll look at this sort later). Many graph algorithms utilize priority queues to control traversing within the graph.

A mergeable priority queue is one that provides the ability to merge efficiently two priority queues into one. While this capability goes beyond the depth at which we will look at priority queues it is nonetheless an important aspect of dealing with priority queues. The reason that I mention it here is that a special kind of tree, called a leftist tree (no, its not a political statement) is typically employed when two or more priority queues will be merged; we will not discuss leftist trees in any detail, except for a cursory look. There are also more complex versions of priority queues which are double-ended in which both the highest and lowest priority items can be removed simultaneously. Efficient implementation of such a structure requires an even more specialized type of tree called a pairing heap.

Priority Queue Summary
· A priority queue is a structure where the highest priority item is the next item that will be dequeued. (Note that a priority queue can also be used to select the lowest priority item although this is less common.)

· Implementation typically sets the highest priority item to have the lowest integer value as its priority.

· Thus, the node with the lowest integer value should always be at the head of the queue.

· If implemented as a binary heap, insertion and deletion can be done in logarithmic time in the worst case.

Implementation Issues
A priority queue can be implemented in many different fashions, including that of a linked list. If an unsorted list is used, enqueueing can be accomplished in O(1) time. However, finding the element with highest priority and removing this item from the list will require O(n) time where n is the number of items in the queue. If a sorted list is used, finding the item with the highest priority and removing it becomes a O(1) operation, however, the enqueueing of a new item now becomes an O(n) operation.

Another way to implement a priority queue is to use a search tree. An AVL tree is a balanced tree in which the left and right subtrees of the root node differ in height by at most 1. If an AVL tree is used to implement the priority queue then it can be shown that all three operations, finding the highest priority item, deleting the highest priority item, and inserting a new item can all be accomplished in O(log n) time. However, search trees provide more functionality than is required for a priority queue. For instance, a search tree permits the removal of an arbitrary item from the tree an operation which is not allowed in a priority queue.

What is required to implement a priority queue is a structure with more efficient enqueueing and dequeueing operations than a linked list provides but with less functionality than is supported by a search tree. A commonly used structure to implement a priority queue is a heap which is a special case of a tree.

Binary Heaps
A binary heap is a heap-ordered, complete binary tree. We will focus on this special case of a tree as it is applied to the implementation of a priority queue. There are other applications for heaps, both n-ary heaps and binary heaps but we will not concern ourselves with these applications nor the more advanced n-ary heap structure.

One of the main advantages of a complete tree, as we will see later, is that it can be implemented using an array as its underlying foundational structure. Array subscript calculations are used to find the parent and children of a particular node in the tree. The array implementation also means that the overhead associated with storing subtree information in a given node is eliminated.

Binary Heap Summary
· Can be implemented as an array (just like the queue).

· Combines the best properties of binary search trees and queues.

· Insertion: average case – O(1), worst case – O(log2 N).

· DeleteMin: worst case – O(log2 N).

· FindMin: worst case – O(1).

Like a binary search tree, the binary heap has two properties: a structure property and an ordering property. Any operation has the potential for destroying both the structure and ordering properties of the binary heap (hereafter called “the heap”). Therefore, operations on the heap will not be allowed to terminate until both properties are preserved.

Structure Property
· A tree is the only structure that gives logarithmic time bounds, therefore it makes sense to organize the heap as a tree.

· To ensure a logarithmic worst case time bound, we will need to ensure that the tree is complete.

Recall that a complete tree requires that every level be completely filled with the exception of the deepest level in the tree which must be filled from left to right with no missing children. A perfect binary tree is a complete binary tree in which every internal node has maximum children.

· A complete binary tree has several useful properties that make it well suited to the application of heaps.

1. The height (length of longest path) is at most (log2 N((where the tree contains N nodes). A complete tree of height H has between 2H and 2H+1(1 nodes.

2. In a complete binary tree, left and right references are not needed. Instead the level-order traversal of the tree can be stored in single-dimension array. The root node is stored in array position 1 (position 0 is utilized later by the priority queue). For any element in array position i, its left child will be found in position 2i and its right child will be found in position 2i+1. To determine it a node at index i has children test to see if 2i > number of elements. To determine the parent of a node at index i, check at index (i/2(.

Using an array to represent a tree is called an implicit tree representation. This method is very fast on most systems and the traversal operation become trivial and extremely fast.

Example:

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

Left child of node “A” (index 1) is located at index (2*1) = 2 or node “B”

Right child of node “A” (index 1) is located at index (2*1) +1 = 3 or node “C”

Parent of node “F” (index 6) is located at (6/2(= 3 or node “C”

Parent of node “I” (index 9) is located at (9/2(= 4 or node “D”

Child of node “H” (index 8) is located at (2*8) = 16 out of range so no child exists.

Ordering Property (Heap Order)
· In a heap, for every node x with parent p, the key value in p is smaller than the key value in x.

· The root always has the highest priority.

· Parent nodes have higher priority than their children.

· To indicate that the root has no parent and is of the highest priority, the implicit representation (the one using an array) will put (∞ position 0 of the array.

Basic Operations on the Heap
Insert
1. Insert a node into the next available spot (i.e., in the bottom ply).

2. Compare the key value of the new node with its parent’s key value, if the new node’s key value is less than its parent’s – interchange the nodes.

3. “Percolate” the node up into its correct position by recursively applying step #2.

Example:

Example:

Final tree maintaining structure and ordering properties.

DeleteMin
1. Get the key value from the root node.

2. Locate the bottom, rightmost child and interchange it with the root.

3. Compare the key values of the two children of the root and the compare the smaller of them with the key value of the root. Interchange if the root key value is greater than that of the smaller child key value.

4. Percolate down by treating each current node as a “root” and recursively applying step #3.

Example: return node “1”

Example: return 1

More Details on Insertion into a Binary Heap
The insertion technique that we used for inserting items into the binary heap, inserted N items and required O(log2 N) time to find the right spot at which to do the insertion. Thus the time required to insert N items is: O(N log2 N).

A better solution
A better solution to this problem involves a different technique for handling the insertion. The general algorithm is to place the items into the heap in arbitrary order (heap ordering is not preserved) while maintaining the structure property of the tree (the tree is complete). After the initial tree is constructed, then a fixHeap operation is called on every non-leaf node in the tree using a reverse level-order traversal which will percolate down non-heap ordered nodes eventually creating a heap-ordered tree. This process is shown below

Since the binary heap is implemented as an array, we can fill the array (insert the N items) without regard to their proper order in linear time, O(N). Then call fixHeap to structure the heap in linear time O(N). Therefore, this method will require O(N log2 N) time in the worst case.

[Note: fixHeap can be implemented in linear time. The following example illustrates how this technique works.] Starting with the first non-leaf level from the bottom of the tree, using a reverse level-order traversal, percolate the minimum value to the root of the current subtree. Note that leaf nodes do not need to be considered as they have no children with which to compare. The reason for the linear time bound is the bound which will be set on the number of swaps that fixHeap will need to make ensure heap ordering and this bound will be O(N). The theorem for this is in your textbook, if you’re interested.

Example: Illustration of linear time fixHeap() using percolateDown()

initial tree: has structure property, violates ordering property

1. call percolateDown(7)

no changes

 1

 2

 3

4

 5

6

7

2. call percolateDown(6)

swap 25, 45

3. call percolateDown(5)

no changes

4. call percolateDown(4)

swap 17, 20
5. call percolateDown(3)

no changes

6. call percolateDown(2)

swap 12, 47 then swap 37, 47

7. call percolateDown(1)

swap 12, 92, followed by17, 92, followed by 20, 92

final heap shown above

This technique is not without its problems, which include:

· Requires 2N space as 2 arrays are needed, one for the unordered heap and one created in heap order by fixHeap().

· Fix: This problem can be solved by using a “sliding heap” and altering the method fixHeap() to return the largest item. As maximal items are returned we remove them from the heap and decrease the size of the heap by one. The removed item is then placed into the cell of the array which has been “freed” from the heap.

Example:
	9
	7
	4
	2
	5
	1
	6
	8
	0

1. call fixHeap()

	7
	4
	2
	5
	1
	6
	8
	0
	9

2. call fixHeap()

	7
	4
	2
	5
	1
	6
	0
	8
	9

3. call fixHeap()

	4
	2
	5
	1
	6
	0
	7
	8
	9

4. call fixHeap()

	4
	2
	5
	1
	0
	6
	7
	8
	9

5. call fixHeap()

	4
	2
	1
	0
	5
	6
	7
	8
	9

6. call fixHeap()

	2
	1
	0
	4
	5
	6
	7
	8
	9

7. call fixHeap()

	1
	0
	2
	4
	5
	6
	7
	8
	9

8. call fixHeap()

	0
	1
	2
	4
	5
	6
	7
	8
	9

9. call fixHeap()

	0
	1
	2
	4
	5
	6
	7
	8
	9

When the index counter (the sliding part of the heap) gets to 0, the resulting array is in heap order.

Applications of Priority Queues
The Selection Problem
The selection problem involves the selection of the kth largest (or smallest) from a list of n elements (which may be totally ordered). This problem can obviously be solved by putting the elements into an array, sorting the array, and then returning the kth element in the array. If we assume a fairly simple sorting algorithm, the solution will require O(n2) time.

If a priority queue is used rather than a simple array the running time of an algorithm to solve the selection problem can be reduced to O(n). Consider the following simple algorithm which accomplishes this task. Place the elements into an array and then apply the process shown above (fixHeap()) to convert the array (“tree”) into a heap, recall that this will take O(n) time in the worst case. Once the heap is built perform k deletions on the heap, each of which will require O(log n) time, thus requiring a total of O(k log n) time. This will provide an algorithm that will select the kth smallest element from n elements in O(N + k log n) time. If k = O(n/log n), then the total time will be dominated by the time required to construct the heap and will be O(n). For larger values of k, the running time is O(k log n) since the time will be dominated by the k deletions from the heap. If k = (n/2(, then the running time is ((n log n).

Sorting Using A Binary Heap
Think about the process that we just went through to select the kth smallest element from a list of elements. Instead of assuming the k < n, what happens if k = n? If we set k = n and record the values that are removed from the heap as they are removed, we will have essentially sorted the elements in the array in O(n log n) time. Recall that all of the comparison based sorting algorithms that we covered earlier in the semester had a O(n2) worst case running time.

· Recall that the binary heap has both an ordering property and a structure property. The ordering property ensures that the items in the heap are basically sorted from minimum (root) value to maximum values (leafs).

· Removing (or reading) everything results in a sort.

· If this can be done in O(N log2 N) time, then we have found an optimal “comparison” based sorting algorithm.

The deletion technique, called deleteMin() (our Java method), removes the root item from the heap and requires O(1) time to do this, then the heap structure is reset and the ordering preserved which requires an additional O(log2 N) time. Since there are N items in the heap, removing all of them (i.e., emptying the heap) requires O(N log2 N) time. The method deleteMin() still requires O(N log2 N) time in the worst case.

Backtracking Algorithms
Using a priority queue to control the searching within the search space constructed by a backtracking algorithm can make the algorithm much more efficient than a search controlled simply based upon a level order traversal of the search space. The better the chance of finding a solution down one path the higher the priority should be that this path is explored before a path which has a lower probability of finding a solution (that is, a solution better than any currently discovered). Thus the value of the objective function for each node on a particular level will be prioritized and placed into a priority queue with the solution space searched on a highest priority first basis.

MinHeaps and MaxHeaps
In the examples that we covered above, the heaps were all MinHeaps. In a MinHeap the items with the smaller values are higher up in the tree (closer to the root) with the root node having the smallest value in the heap. Typically, in Computer Science applications involving priority, the smaller the priority number assigned to an element the higher the priority of that element. In this fashion a MinHeap works well. However, there are also applications which require O(1) access to the item with the largest value. This type of heap is called a MaxHeap. A MaxHeap maintains the larger valued items higher in the tree with the root node having the largest value of all items in the heap. The leaf nodes in a MaxHeap will contain the smallest valued items in the heap.

More Complex Heap Structures
Leftist Heaps
A leftist heap is a tree that tends to “lean” to the left. That is to say it is skewed to the left. This skewing is defined in terms of the shortest path from the root to a leaf node (external node). In a leftist tree, the shortest path to a leaf node is always found in the right subtree of the root.

Every node in a binary tree has associated with it a quantity called its null path length, which is defined as follows:

Definition: Null path length of a node:

Consider an arbitrary node x in some binary tree T. The null path length of node x is the shortest path in T from x to an external node of T. The null path length of node x is the length of its null path.

Typically, the null path length is expressed not in terms of an arbitrary node x, but rather in terms of the entire tree:

Definition: Null path length of a tree:

The null path length of an empty tree is zero and the null path length of a non-empty binary tree T = {r, TL, TR} is the null path length of its root r.

A leftist tree is a tree defined as:

Definition: A leftist tree is a binary tree with the following properties:

1. Either T is empty; or

2. T = {r, TL, TR}, where both TL and TR are leftist trees that have null path lengths dL and dR respectively, such that: dL (dR
Example: a leftist heap

3

 2

 3

 2

 2

 1

 1

1
 1

 2

 1

 1

1

 1

 1

1

The null path length of each node is shown beside the node in the diagram above. Notice that it is not necessarily the case in a leftist tree that the number of nodes to the left of a given node be greater than the number of nodes to the right. However, it is always the case that the null path length on the left is greater than or equal to the null path length on the right for every node in the tree.

13

13

16

13

8

7

1

17

20

30

41`

107

21

7

7

20

30

41`

17

21

10

17

20

30

41`

7

21

10

2

7

3

5

1

5

7

3

2

1

J

I

H

G

F

E

D

C

B

A

5

7

16

16

7

5

17

13

16

13

8

7

17

5

16

13

8

17

7

7

16

17

8

13

7

1

16

heap

all items in the heap

heap

heap

heap

end of heap

end of heap

end of heap

heap

end of heap

heap

heap

heap

heap

heap

end of heap

end of heap

end of heap

end of heap

end of heap

12

17

21

20

37

25

63

61

9220

55

47

45

64

83

73

73

83

64

45

47

55

20

61

63

25

37

17

21

12

92

73

83

64

45

37

55

20

61

63

25

12

17

21

47

92

73

83

64

45

37

55

20

61

63

25

12

17

21

47

92

73

83

64

45

37

55

17

61

63

25

12

20

21

47

92

73

83

64

45

37

55

17

61

63

25

12

20

21

47

92

92

73

83

64

25

37

55

17

61

63

45

12

20

21

47

92

47

21

20

12

45

63

61

17

55

37

25

64

83

73

Heaps and Priority Queues

end of heap

end of heap

1

2

5

6

3

8

14

13

9

12

4

11

16

10

7

15

Day 21 - 15

